1
|
Ji X, Chen Z, Wang Y, Huo X, Liang X, Wang H, Xu M. ERP44 could serve as a bridge mediating prognosis and immunity for glioma via single-cell and bulk RNA-sequencing. Gene 2025; 933:148963. [PMID: 39341519 DOI: 10.1016/j.gene.2024.148963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND There was evidence that ERP44 played vital roles in a variety of cancers. However, currently, ERP44 was rarely mentioned in gliomas. Therefore, we firstly integrated proteomics, bulk, as well as single-cell RNA-sequencing (scRNA-seq) to study the possible functions of ERP44 in glioma patients. METHODS From online databases, we obtained bulk RNA-seq, scRNA-seq, and proteomic data of ERP44 in gliomas and verified the expression of ERP44 by qRT-PCR. Then, the Noman diagram, gene set enrichment analysis (GSEA), and univariate/multivariate Cox regression analysis were all carried out in turn. Further discussions were also conducted regarding tumor immunity and ERP44 expression. RESULTS ERP44 in glioma tissues was found to be considerably higher than that in normal tissues (P<0.05) in the TCGA dataset, as well as the verification of GSE50161, GSE4290, and qRT-PCR results. High ERP44 expression indicated poorer overall survival (OS) for glioma (P<0.05), and it might also be used to predict gliomas' OS independently (P<0.05). In order to estimate these patients' survival prognosis, a Noman chart was created with effectiveness. According to GSEA analysis, ERP44 might be implicated in five significant pathways in gliomas. The levels of immune cell infiltration of LGG, the tumor immune microenvironments, the immunological checkpoints of LGG, and GBM were all strongly linked with ERP44 in terms of tumor immunity (P<0.05). Further scRNA-seq analysis revealed that ERP44 could be expressed in various cell types, including T cells, Mono/Macrophages, and malignant cells. CONCLUSIONS ERP44 was an oncogenic gene in gliomas, serving as a bridge mediating prognosis and immunity.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Neurosurgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China; Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng, Jiangsu, China; Department of Neurosurgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu, China; Department of Neurosurgery, The Affiliated Yancheng Hospital of Southeast University, Yancheng, Jiangsu, China
| | - Zhenglou Chen
- Department of Neurosurgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China; Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng, Jiangsu, China; Department of Neurosurgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu, China; Department of Neurosurgery, The Affiliated Yancheng Hospital of Southeast University, Yancheng, Jiangsu, China
| | - Yunjiang Wang
- Department of Neurosurgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China; Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng, Jiangsu, China; Department of Neurosurgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu, China; Department of Neurosurgery, The Affiliated Yancheng Hospital of Southeast University, Yancheng, Jiangsu, China
| | - Xuqi Huo
- Department of Neurosurgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China; Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng, Jiangsu, China; Department of Neurosurgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu, China; Department of Neurosurgery, The Affiliated Yancheng Hospital of Southeast University, Yancheng, Jiangsu, China
| | - Xiaodong Liang
- Department of Neurosurgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China; Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng, Jiangsu, China; Department of Neurosurgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu, China; Department of Neurosurgery, The Affiliated Yancheng Hospital of Southeast University, Yancheng, Jiangsu, China
| | - Hongsheng Wang
- Department of Neurosurgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China; Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng, Jiangsu, China; Department of Neurosurgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu, China; Department of Neurosurgery, The Affiliated Yancheng Hospital of Southeast University, Yancheng, Jiangsu, China
| | - Min Xu
- Department of Neurosurgery, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China; Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng, Jiangsu, China; Department of Neurosurgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu, China; Department of Neurosurgery, The Affiliated Yancheng Hospital of Southeast University, Yancheng, Jiangsu, China.
| |
Collapse
|
2
|
Zhang R, Meng Z, Wu X, Zhang M, Piao Z, Jin T. PD‐L1
/
p‐STAT3
promotes the progression of
NSCLC
cells by regulating
TAM
polarization. J Cell Mol Med 2022; 26:5872-5886. [DOI: 10.1111/jcmm.17610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rui Zhang
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Ziqi Meng
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Xuwei Wu
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| | - Meihua Zhang
- Department of Health Examination Centre Yanbian University Hospital Yanji China
| | - Zhengri Piao
- Department of radiology Yanbian University Hospital Yanji China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center Yanbian University Medical College Yanji China
- Key Laboratory of the Science and Technology Department of Jilin Province Yanji China
| |
Collapse
|
3
|
Tian Y, Sun H, Bao Y, Feng H, Pang J, En R, Jiang H, Wang T. ERp44 Regulates the Proliferation, Migration, Invasion, and Apoptosis of Gastric Cancer Cells Via Activation of ER Stress. Biochem Genet 2022; 61:809-822. [PMID: 36178559 DOI: 10.1007/s10528-022-10281-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies worldwide. Endoplasmic reticulum (ER) stress plays a key role in the progression of GC. Rapid proliferation of tumor cells interferes with ER homeostasis, leading to ER stress and triggering unfolded protein response. Therefore, it is very necessary to investigate abnormally expressed ER resident proteins (ERp) in cancer cells. This study aimed to investigate the possible roles of ERp44. The mRNA and protein expression of genes were detected using qRT-PCR and western blot. Cell apoptosis was calculated using flow cytometry. Cell proliferation was determined using CCK-8 and colony formation assay. Cell migration was detected by wound healing, and cell invasion was measured by transwell assay. We found that ERp44 was obviously decreased in GC tissues. Furthermore, ERp44 overexpression distinctly suppressed the proliferation, migration, and invasion of MGC-803 and KATO III cells. In contrast, apoptosis was promoted by ERp44 overexpression. Furthermore, mechanistic studies revealed that overexpression of ERp44 inhibited malignant biological processes by regulating the eIF-2α/CHOP signaling pathway. Taken together, our data demonstrated that ERp44 regulated the proliferation, migration, invasion, and apoptosis via ERp44/eIF-2α/CHOP axis in GC. Targeting the ERp44and ER stress may be a promising strategy for GC.
Collapse
Affiliation(s)
- Yongjing Tian
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Haibin Sun
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Yinshengboer Bao
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Haiping Feng
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Jian Pang
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Riletu En
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Hongliang Jiang
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Tengqi Wang
- Department of Cancer Center, Inner Mongolia Bayannur Hospital, No. 98, Ulan Buhe Road, Bayan Nur, Inner Mongolia, 015000, China.
| |
Collapse
|
4
|
Systematic Analysis of Molecular Subtypes and Immune Prediction Based on CD8 T Cell Pattern Genes Based on Head and Neck Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1500493. [PMID: 36059811 PMCID: PMC9436594 DOI: 10.1155/2022/1500493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
CD8+ T lymphocytes, also known as cytotoxic T lymphocytes, are the most powerful antitumour cells in the human body. Patients with head and neck squamous cell carcinoma (HNSCC) in whom CD8+ T lymphocyte infiltration is high have a better prognosis. However, the clinical significance and prognostic significance of CD8+ T cell-related regulatory genes in HNSCC remain unclear, and further research is required. In total, 446 CD8+ T cell-related genes were obtained using WGCNA. It was discovered that 111 genes included within the TCGA and GSE65858 datasets were intimately linked to the patient’s prognosis. These genes were included in the subsequent analysis. According to consensus clustering analysis, HNSCC samples were classified into 3 subtypes (IC1, IC2, and IC3). There were substantial differences between the three subtypes in terms of immunological molecules, immune function, and the response to drug treatment. In addition, the 8-gene signature, which was generated premised on CD8+ T cell-related genes, exhibited stable prognostic prediction in the TCGA and GEO datasets and different HNSCC patient subgroups and independently served as a prognostic indicator for HNSCC. More importantly, the 8-gene signature effectively predicted immunotherapy response. We first constructed a molecular subtype of HNSCC based on CD8+ T cell-related genes. Between the three subtypes, there were significant differences in the prognosis, clinical features, immunological molecules, and drug treatment response. The 8-gene signature that was further constructed effectively predicted prognosis and immunotherapy response.
Collapse
|
5
|
Luparello C, Branni R, Abruscato G, Lazzara V, Drahos L, Arizza V, Mauro M, Di Stefano V, Vazzana M. Cytotoxic capability and the associated proteomic profile of cell-free coelomic fluid extracts from the edible sea cucumber Holothuria tubulosa on HepG2 liver cancer cells. EXCLI JOURNAL 2022; 21:722-743. [PMID: 35721581 PMCID: PMC9203982 DOI: 10.17179/excli2022-4825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive cancer histotype and one of the most common types of cancer worldwide. The identification of compounds that might intervene to restrain neoplastic cell growth appears imperative due to its elevated overall mortality. The marine environment represents a reservoir rich in bioactive compounds in terms of primary and secondary metabolites produced by aquatic animals, mainly invertebrates. In the present study, we determined whether the water-soluble cell-free extract of the coelomic fluid (CFE) of the edible sea cucumber Holothuria tubulosa could play an anti-HCC role in vitro by analyzing the viability and locomotory behavior, cell cycle distribution, apoptosis and autophagy modulation, mitochondrial function and cell redox state of HepG2 HCC cells. We showed that CFE causes an early block in the cell cycle at the G2/M phase, which is coupled to oxidative stress promotion, autophagosome depletion and mitochondrial dysfunction ultimately leading to apoptotic death. We also performed a proteomic analysis of CFE identifying a number of proteins that are seemingly responsible for anti-cancer effects. In conclusion, H. tubulosa's CFE merits further investigation to develop novel promising anti-HCC prevention and/or treatment agents and also beneficial supplements for formulation of functional foods and food packaging material.
Collapse
Affiliation(s)
- Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Rossella Branni
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Giulia Abruscato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Valentina Lazzara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Laszlo Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Vita Di Stefano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| |
Collapse
|
6
|
Bi Y, Yang Z, Jin M, Zhai K, Wang J, Mao Y, Liu Y, Ding M, Wang H, Wang F, Cai H, Ji G. ERp44 is required for endocardial cushion development by regulating VEGFA secretion in myocardium. Cell Prolif 2022; 55:e13179. [PMID: 35088919 PMCID: PMC8891561 DOI: 10.1111/cpr.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Endocardial cushions are precursors of the valve septum complex that separates the four heart chambers. Several genes have been implicated in the development of endocardial cushions. Specifically, ERp44 has been found to play a role in the early secretory pathway, but its function in heart development has not been well studied. MATERIALS AND METHODS In this study, we established conditional and tissue-specific knockout mouse models. The morphology, survival rate, the development of heart and endocardial cushion were under evaluation. The relationship between ERp44 and VEGFA was investigated by transcriptome, qPCR, WB, immunofluorescence and immunohistochemistry. RESULTS ERp44 knockout (KO) mice were smaller in size, and most mice died during early postnatal life. KO hearts exhibited the typical phenotypes of congenital heart diseases, such as abnormal heart shapes and severe septal and valvular defects. Similar phenotypes were found in cTNT-Cre+/- ; ERp44fl / fl mice, which indicated that myocardial ERp44 principally controls endocardial cushion formation. Further studies demonstrated that the deletion of ERp44 significantly decreased the proliferation of cushion cells and impaired the endocardial-mesenchymal transition (EndMT), which was followed by endocardial cushion dysplasia. Finally, we found that ERp44 was directly bound to VEGFA and controlled its release, further regulating EndMT. CONCLUSION We demonstrated that ERp44 plays a specific role in heart development. ERp44 contributes to the development of the endocardial cushion by affecting VEGFA-mediated EndMT.
Collapse
Affiliation(s)
- Youkun Bi
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhiguang Yang
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Meng Jin
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kui Zhai
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jun Wang
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Mao
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Liu
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mingqin Ding
- National Institute of Biological SciencesBeijingChina
| | - Huiwen Wang
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Fengchao Wang
- National Institute of Biological SciencesBeijingChina
| | - Hong Cai
- Department of DermatologyAir Force Medical CenterPLABeijingChina
| | - Guangju Ji
- Key Laboratory of Interdisciplinary ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Koshenov Z, Oflaz FE, Hirtl M, Gottschalk B, Rost R, Malli R, Graier WF. Citrin mediated metabolic rewiring in response to altered basal subcellular Ca 2+ homeostasis. Commun Biol 2022; 5:76. [PMID: 35058562 PMCID: PMC8776887 DOI: 10.1038/s42003-022-03019-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/28/2021] [Indexed: 01/19/2023] Open
Abstract
In contrast to long-term metabolic reprogramming, metabolic rewiring represents an instant and reversible cellular adaptation to physiological or pathological stress. Ca2+ signals of distinct spatio-temporal patterns control a plethora of signaling processes and can determine basal cellular metabolic setting, however, Ca2+ signals that define metabolic rewiring have not been conclusively identified and characterized. Here, we reveal the existence of a basal Ca2+ flux originating from extracellular space and delivered to mitochondria by Ca2+ leakage from inositol triphosphate receptors in mitochondria-associated membranes. This Ca2+ flux primes mitochondrial metabolism by maintaining glycolysis and keeping mitochondria energized for ATP production. We identified citrin, a well-defined Ca2+-binding component of malate-aspartate shuttle in the mitochondrial intermembrane space, as predominant target of this basal Ca2+ regulation. Our data emphasize that any manipulation of this ubiquitous Ca2+ system has the potency to initiate metabolic rewiring as an instant and reversible cellular adaptation to physiological or pathological stress.
Collapse
Affiliation(s)
- Zhanat Koshenov
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Furkan E Oflaz
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Martin Hirtl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
- BioTechMed Graz, 8010, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria.
- BioTechMed Graz, 8010, Graz, Austria.
| |
Collapse
|
8
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
9
|
Tian H, Shi S, You B, Zhang Q, Gu M, You Y. ER resident protein 44 promotes malignant phenotype in nasopharyngeal carcinoma through the interaction with ATP citrate lyase. J Transl Med 2021; 19:77. [PMID: 33593371 PMCID: PMC7887808 DOI: 10.1186/s12967-020-02694-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is one of the most common malignancy in head and neck. With the development of treatments, the prognosis has improved these years, but metastasis is still the main cause of treatment failure. The endoplasmic reticulum (ER) resident protein 44 is a UPR-induced ER protein of the protein disulphide isomerase (PDI) family. This study investigated the role of ERp44 in NPC progression. Methods Firstly, immunohistochemistry, western blot and qRT-PCR were used to investigate the expression of ERp44 in NPC samples and cell lines. We analyzed 44 NPC samples for ERp44 expression and investigated the association between its expression level with clinicopathologic parameters. Then we took CCK8, Transwell migration assay and used the zebrafish model to access the role of ERp44 on the malignant phenotype in NPC cells. Secondly, we used co-IP to gain the proteins that interact with ERp44 and took proteomic analysis. Furthermore, we successfully constructed the mutant variants of ERp44 and found the interaction domain with ATP citrate lyase(ACLY). Lastly, we subcutaneously injected NPC cells into nude mice and took immunohistochemistry to exam the expression of ACLY and ERp44. Then we used western blot to detect the expression level of epithelial-mesenchymal transition (EMT) markers. Results In the present study, we found ERp44 was elevated in NPC tissues and correlated with clinical stages and survive state of the patients. In vitro, the downregulation of ERp44 in NPC cells (CNE2, 5-8F) could suppress cells proliferation and migration. After that, we recognized that ACLY might be a potential target that could interact with ERp44. We further constructed the mutant variants of ERp44 and found the interaction domain with ACLY. The promotion of ERp44 on cell migration could be inhibited when ACLY was knocked down. More importantly, we also observed that the interaction of ERp44 with ACLY, especially the thioredoxin region in ERp44 play a vital role in regulating EMT. Lastly, we found ERp44 was positively correlated with the expression of ACLY and could promote NPC cells growth in nude mice. Conclusion Our data indicated that ERp44 participates in promoting NPC progression through the interaction with ACLY and regulation of EMT.
Collapse
Affiliation(s)
- Hui Tian
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical College of Nantong University, Nantong, Jiangsu, China
| | - Si Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical College of Nantong University, Nantong, Jiangsu, China
| | - Bo You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical College of Nantong University, Nantong, Jiangsu, China
| | - Qicheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical College of Nantong University, Nantong, Jiangsu, China
| | - Miao Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China. .,Medical College of Nantong University, Nantong, Jiangsu, China.
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China. .,Institute of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China. .,Medical College of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
10
|
Alharbi A, Zhang Y, Parrington J. Deciphering the Role of Ca 2+ Signalling in Cancer Metastasis: From the Bench to the Bedside. Cancers (Basel) 2021; 13:E179. [PMID: 33430230 PMCID: PMC7825727 DOI: 10.3390/cancers13020179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 01/03/2023] Open
Abstract
Metastatic cancer is one of the major causes of cancer-related mortalities. Metastasis is a complex, multi-process phenomenon, and a hallmark of cancer. Calcium (Ca2+) is a ubiquitous secondary messenger, and it has become evident that Ca2+ signalling plays a vital role in cancer. Ca2+ homeostasis is dysregulated in physiological processes related to tumour metastasis and progression-including cellular adhesion, epithelial-mesenchymal transition, cell migration, motility, and invasion. In this review, we looked at the role of intracellular and extracellular Ca2+ signalling pathways in processes that contribute to metastasis at the local level and also their effects on cancer metastasis globally, as well as at underlying molecular mechanisms and clinical applications. Spatiotemporal Ca2+ homeostasis, in terms of oscillations or waves, is crucial for hindering tumour progression and metastasis. They are a limited number of clinical trials investigating treating patients with advanced stages of various cancer types. Ca2+ signalling may serve as a novel hallmark of cancer due to the versatility of Ca2+ signals in cells, which suggests that the modulation of specific upstream/downstream targets may be a therapeutic approach to treat cancer, particularly in patients with metastatic cancers.
Collapse
Affiliation(s)
- Abeer Alharbi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
- Pharmaceutical Sciences Department, College of Pharmacy, King Saud Bin Abdul-Aziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Yuxuan Zhang
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| |
Collapse
|
11
|
Parys JB, Bultynck G, Vervliet T. IP 3 Receptor Biology and Endoplasmic Reticulum Calcium Dynamics in Cancer. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:215-237. [PMID: 34050869 DOI: 10.1007/978-3-030-67696-4_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Intracellular Ca2+ signaling regulates a plethora of cellular functions. A central role in these processes is reserved for the inositol 1,4,5-trisphosphate receptor (IP3R), a ubiquitously expressed Ca2+-release channel, mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms (IP3R1, IP3R2 and IP3R3) exist, encoded respectively by ITPR1, ITPR2 and ITPR3. The proteins encoded by these genes are each about 2700 amino acids long and assemble into large tetrameric channels, which form the target of many regulatory proteins, including several tumor suppressors and oncogenes. Due to the important role of the IP3Rs in cell function, their dysregulation is linked to multiple pathologies. In this review, we highlight the complex role of the IP3R in cancer, as it participates in most of the so-called "hallmarks of cancer". In particular, the IP3R directly controls cell death and cell survival decisions via regulation of autophagy and apoptosis. Moreover, the IP3R impacts cellular proliferation, migration and invasion. Typical examples of the role of the IP3Rs in these various processes are discussed. The relative levels of the IP3R isoforms expressed and their subcellular localization, e.g. at the ER-mitochondrial interface, is hereby important. Finally, evidence is provided about how the knowledge of the regulation of the IP3R by tumor suppressors and oncogenes can be exploited to develop novel therapeutic approaches to fight cancer.
Collapse
Affiliation(s)
- Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Cancer Institute, KU Leuven, Leuven, Belgium.
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Tim Vervliet
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Gil-Hernández A, Silva-Palacios A. Relevance of endoplasmic reticulum and mitochondria interactions in age-associated diseases. Ageing Res Rev 2020; 64:101193. [PMID: 33069818 DOI: 10.1016/j.arr.2020.101193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Although the elixir of youth remains in the darkness, medical and scientific advances have succeeded in increasing human longevity; however, the predisposition to disease and its high economic cost are raising. Different strategies (e.g., antioxidants) and signaling pathways (e.g., Nrf2) have been identified to help regulate disease progression, nevertheless, there are still missing links that we need to understand. Contact sites called mitochondria-associated membranes (MAM) allow bi-directional communication between organelles as part of the essential functions in the cell to maintain its homeostasis. Different groups have deeply studied the role of MAM in aging; however, it's necessary to analyze their involvement in the progression of age-related diseases. In this review, we highlight the role of contact sites in these conditions, as well as the morphological and functional changes of mitochondria and ER in aging. We emphasize the intimate relationship between both organelles as a reflection of the biological processes that take place in the cell to try to regulate the deterioration characteristic of the aging process; proposing MAM as a potential target to help limit the disease progression with age.
Collapse
|
13
|
Ren J, Sun M, Zhou H, Ajoolabady A, Zhou Y, Tao J, Sowers JR, Zhang Y. FUNDC1 interacts with FBXL2 to govern mitochondrial integrity and cardiac function through an IP3R3-dependent manner in obesity. SCIENCE ADVANCES 2020; 6:6/38/eabc8561. [PMID: 32938669 PMCID: PMC7494344 DOI: 10.1126/sciadv.abc8561] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/03/2020] [Indexed: 05/13/2023]
Abstract
Defective mitophagy is causally linked to obesity complications. Here, we identified an interaction between mitophagy protein FUNDC1 (FUN14 domain containing 1) and receptor subunit of human SCF (SKP1/cullin/F-box protein) ubiquitin ligase complex FBXL2 as a gatekeeper for mitochondrial Ca2+ homeostasis through degradation of IP3R3 (inositol 1,4,5-trisphosphate receptor type 3). Loss of FUNDC1 in FUNDC1-/- mice accentuated high-fat diet-induced cardiac remodeling, functional and mitochondrial anomalies, cell death, rise in IP3R3, and Ca2+ overload. Mass spectrometry and co-immunoprecipitation analyses revealed an interaction between FUNDC1 and FBXL2. Truncated mutants of Fbox (Delta-F-box) disengaged FBXL2 interaction with FUNDC1. Activation or transfection of FBXL2, inhibition of IP3R3 alleviated, whereas disruption of FBXL2 localization sensitized lipotoxicity-induced cardiac damage. FUNDC1 deficiency accelerated and decelerated palmitic acid-induced degradation of FBXL2 and IP3R3, respectively. Our data suggest an essential role for interaction between FUNDC1 and FBXL2 in preserving mitochondrial Ca2+ homeostasis and cardiac function in obese hearts.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Pathology, University of Washington Seattle, Seattle, WA 98195, USA
| | - Mingming Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Hao Zhou
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5185715179, Iran
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri Columbia, Columbia, MO 65212, USA
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Zhai X, Sterea AM, El Hiani Y. Lessons from the Endoplasmic Reticulum Ca 2+ Transporters-A Cancer Connection. Cells 2020; 9:E1536. [PMID: 32599788 PMCID: PMC7349521 DOI: 10.3390/cells9061536] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Ca2+ is an integral mediator of intracellular signaling, impacting almost every aspect of cellular life. The Ca2+-conducting transporters located on the endoplasmic reticulum (ER) membrane shoulder the responsibility of constructing the global Ca2+ signaling landscape. These transporters gate the ER Ca2+ release and uptake, sculpt signaling duration and intensity, and compose the Ca2+ signaling rhythm to accommodate a plethora of biological activities. In this review, we explore the mechanisms of activation and functional regulation of ER Ca2+ transporters in the establishment of Ca2+ homeostasis. We also contextualize the aberrant alterations of these transporters in carcinogenesis, presenting Ca2+-based therapeutic interventions as a means to tackle malignancies.
Collapse
Affiliation(s)
- Xingjian Zhai
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | | | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
15
|
The mystery of mitochondria-ER contact sites in physiology and pathology: A cancer perspective. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165834. [PMID: 32437958 DOI: 10.1016/j.bbadis.2020.165834] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria-associated membranes (MAM), physical platforms that enable communication between mitochondria and the endoplasmic reticulum (ER), are enriched with many proteins and enzymes involved in several crucial cellular processes, such as calcium (Ca2+) homeostasis, lipid synthesis and trafficking, autophagy and reactive oxygen species (ROS) production. Accumulating studies indicate that tumor suppressors and oncogenes are present at these intimate contacts between mitochondria and the ER, where they influence Ca2+ flux between mitochondria and the ER or affect lipid homeostasis at MAM, consequently impacting cell metabolism and cell fate. Understanding these fundamental roles of mitochondria-ER contact sites as important domains for tumor suppressors and oncogenes can support the search for new and more precise anticancer therapies. In the present review, we summarize the current understanding of basic MAM biology, composition and function and discuss the possible role of MAM-resident oncogenes and tumor suppressors.
Collapse
|
16
|
Garranzo-Asensio M, San Segundo-Acosta P, Povés C, Fernández-Aceñero MJ, Martínez-Useros J, Montero-Calle A, Solís-Fernández G, Sanchez-Martinez M, Rodríguez N, Cerón MÁ, Fernandez-Diez S, Domínguez G, de Los Ríos V, Peláez-García A, Guzmán-Aránguez A, Barderas R. Identification of tumor-associated antigens with diagnostic ability of colorectal cancer by in-depth immunomic and seroproteomic analysis. J Proteomics 2020; 214:103635. [PMID: 31918032 DOI: 10.1016/j.jprot.2020.103635] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer related death worldwide. Its diagnosis at early stages would significantly improve the survival of CRC patients. The humoral immune response has been demonstrated useful for cancer diagnosis, predating clinical symptoms up to 3 years. Here, we employed an in-depth seroproteomic approach to identify proteins that elicit a humoral immune response in CRC patients. The seroproteomic approach relied on the immunoprecipitation with patient-derived autoantibodies of proteins from CRC cell lines with different metastatic properties followed by LC-MS/MS. After bioinformatics, we focused on 31 targets of CRC autoantibodies. After WB and IHC validation, ERP44 and TALDO1 showed potential to discriminate disease-free and metastatic CRC patients, and time to recurrence of CRC patients in stage II. Using plasma samples of 30 healthy individuals, 28 premalignant individuals, and 32 CRC patients, nine out of 13 selected targets for seroreactive analysis showed significant diagnostic ability to discriminate either CRC patients or premalignant subjects from controls. Our results suggest that the here defined panel of CRC autoantibodies and their target proteins should be included in CRC blood-based biomarker panels to get a clinically useful blood-based diagnostic signature for CRC detection. SIGNIFICANCE: Colorectal cancer is one of the deadliest cancer types mainly due to its late diagnosis. Its early diagnosis, therefore, is of great importance since it would significantly improve the survival of CRC patients. In our work, the in-depth seroproteomic analysis of colorectal cancer using isolated IgGs from colorectal cancer patients and controls and protein extract of colorectal cancer cells provide the identification of valuable biomarkers with diagnostic and prognostic ability of the disease.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda E-28220, Madrid, Spain
| | - Pablo San Segundo-Acosta
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda E-28220, Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Carmen Povés
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | | | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, E-28040 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda E-28220, Madrid, Spain
| | | | | | - Nuria Rodríguez
- Medical Oncology Department, Hospital Universitario La Paz, E-28046 Madrid, Spain
| | - María Ángeles Cerón
- Surgical Pathology Department, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | | | - Gemma Domínguez
- Departamento de Medicina, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, E-28029 Madrid, Spain
| | | | | | - Ana Guzmán-Aránguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda E-28220, Madrid, Spain.
| |
Collapse
|
17
|
Tsachaki M, Strauss P, Dunkel A, Navrátilová H, Mladenovic N, Odermatt A. Impact of 17β-HSD12, the 3-ketoacyl-CoA reductase of long-chain fatty acid synthesis, on breast cancer cell proliferation and migration. Cell Mol Life Sci 2020; 77:1153-1175. [PMID: 31302749 PMCID: PMC7109200 DOI: 10.1007/s00018-019-03227-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
Abstract
Metabolic reprogramming of tumor cells involves upregulation of fatty acid (FA) synthesis to support high bioenergetic demands and membrane synthesis. This has been shown for cytosolic synthesis of FAs with up to 16 carbon atoms. Synthesis of long-chain fatty acids (LCFAs), including ω-6 and ω-3 polyunsaturated FAs, takes place at the endoplasmic reticulum. Despite increasing evidence for an important role of LCFAs in cancer, the impact of their synthesis in cancer cell growth has scarcely been studied. Here, we demonstrated that silencing of 17β-hydroxysteroid dehydrogenase type 12 (17β-HSD12), essentially catalyzing the 3-ketoacyl-CoA reduction step in LCFA production, modulates proliferation and migration of breast cancer cells in a cell line-dependent manner. Increased proliferation and migration after 17β-HSD12 knockdown were partly mediated by metabolism of arachidonic acid towards COX2 and CYP1B1-derived eicosanoids. Decreased proliferation was rescued by increased glucose concentration and was preceded by reduced ATP production through oxidative phosphorylation and spare respiratory capacity. In addition, 17β-HSD12 silencing was accompanied by alterations in unfolded protein response, including a decrease in CHOP expression and increase in eIF2α activation and the folding chaperone ERp44. Our study highlights the significance of LCFA biosynthesis for tumor cell physiology and unveils unknown aspects of breast cancer cell heterogeneity.
Collapse
Affiliation(s)
- Maria Tsachaki
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Pirmin Strauss
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Anja Dunkel
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Hana Navrátilová
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Natasa Mladenovic
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
18
|
Liu R, Wang X, Yan Q. The regulatory network of lncRNA DLX6-AS1/miR-149-5p/ERP44 is possibly related to the progression of preeclampsia. Placenta 2020; 93:34-42. [PMID: 32250737 DOI: 10.1016/j.placenta.2020.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/13/2020] [Accepted: 02/03/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Long noncoding RNA DLX6 antisense RNA 1 (DLX6-AS1) has been reported to be involved in various human diseases, however, its potential role in the pathogenesis of preeclampsia (PE) has not been fully explored. METHODS The levels of DLX6-AS1, microRNA-149-5p (miR-149-5p) and endoplasmic reticulum protein 44 (ERP44) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Some clinicopathological parameters of PE were statistically analyzed. The cell proliferation, invasion and angiogenesis were assessed by methylthiazolyldiphenyl-tetrazolium bromide (MTT), transwell and tube formation assays, respectively. Levels of all protein were detected by western blot. The target relationship was predicted by StarBase v2.0 and confirmed by dual-luciferase reporter assay. RESULTS Higher levels of DLX6-AS1 and ERP44, lower level of miR-149-5p were observed in PE placenta tissues. Compared with PE group with low DLX6-AS1 expression, the systolic blood pressure, diastolic blood pressure and proteinuria levels in the group with high DLX6-AS1 expression were higher, and the infant body weight level was lower. The role of miR-149-5p on these clinicopathological parameters of PE patients was opposite to that of DLX6-AS1, while ERP44 had the same effect as DLX6-AS1. Besides, DLX6-AS1 directly targeted miR-149-5p and miR-149-5p targeted ERP44. The inhibitory impact of DLX6-AS1 overexpression or ERP44 overexpression on proliferation and invasion of trophoblast cells as well as angiogenesis of HUVEC cells was reversed by up-regulating miR-149-5p. We also found that DLX6-AS1 could enhance ERP44 expression by sponging miR-149-5p. CONCLUSION DLX6-AS1 inhibited proliferation and invasion of trophoblast cells, and suppressed angiogenesis of HUVEC cells by miR-149-5p/ERP44 pathway.
Collapse
Affiliation(s)
- Ronghui Liu
- Department of Obstetrics, Yantai Yantaishan Hospital, YanTai, Shandong, 264000, China
| | - Xiaolu Wang
- Department of Obstetrics, Yantai Yantaishan Hospital, YanTai, Shandong, 264000, China
| | - Qian Yan
- Department of Obstetrics, Yantai Yantaishan Hospital, YanTai, Shandong, 264000, China.
| |
Collapse
|
19
|
ER Ca 2+ release and store-operated Ca 2+ entry - partners in crime or independent actors in oncogenic transformation? Cell Calcium 2019; 82:102061. [PMID: 31394337 DOI: 10.1016/j.ceca.2019.102061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is a pleiotropic messenger that controls life and death decisions from fertilisation until death. Cellular Ca2+ handling mechanisms show plasticity and are remodelled throughout life to meet the changing needs of the cell. In turn, as the demands on a cell alter, for example through a change in its niche environment or its functional requirements, Ca2+ handling systems may be targeted to sustain the remodelled cellular state. Nowhere is this more apparent than in cancer. Oncogenic transformation is a multi-stage process during which normal cells become progressively differentiated towards a cancerous state that is principally associated with enhanced proliferation and avoidance of death. Ca2+ signalling is intimately involved in almost all aspects of the life of a transformed cell and alterations in Ca2+ handling have been observed in cancer. Moreover, this remodelling of Ca2+ signalling pathways is also required in some cases to sustain the transformed phenotype. As such, Ca2+ handling is hijacked by oncogenic processes to deliver and maintain the transformed phenotype. Central to generation of intracellular Ca2+ signals is the release of Ca2+ from the endoplasmic reticulum intracellular (ER) Ca2+ store via inositol 1,4,5-trisphosphate receptors (InsP3Rs). Upon depletion of ER Ca2+, store-operated Ca2+ entry (SOCE) across the plasma membrane occurs via STIM-gated Orai channels. SOCE serves to both replenish stores but also sustain Ca2+ signalling events. Here, we will discuss the role and regulation of these two signalling pathways and their interplay in oncogenic transformation.
Collapse
|
20
|
Valoskova K, Biebl J, Roblek M, Emtenani S, Gyoergy A, Misova M, Ratheesh A, Reis-Rodrigues P, Shkarina K, Larsen ISB, Vakhrushev SY, Clausen H, Siekhaus DE. A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion. eLife 2019; 8:e41801. [PMID: 30910009 PMCID: PMC6435326 DOI: 10.7554/elife.41801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva's vertebrate ortholog, MFSD1, rescues the minerva mutant's migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis.
Collapse
Affiliation(s)
| | - Julia Biebl
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Marko Roblek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Shamsi Emtenani
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Attila Gyoergy
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Michaela Misova
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Aparna Ratheesh
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUnited Kingdom
| | | | | | - Ida Signe Bohse Larsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Daria E Siekhaus
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
21
|
Pathophysiological consequences of isoform-specific IP 3 receptor mutations. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1707-1717. [PMID: 29906486 DOI: 10.1016/j.bbamcr.2018.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Abstract
Ca2+ signaling governs a diverse range of cellular processes and, as such, is subject to tight regulation. A main component of the complex intracellular Ca2+-signaling network is the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), a tetrameric channel that mediates Ca2+ release from the endoplasmic reticulum (ER) in response to IP3. IP3R function is controlled by a myriad of factors, such as Ca2+, ATP, kinases and phosphatases and a plethora of accessory and regulatory proteins. Further complexity in IP3R-mediated Ca2+ signaling is the result of the existence of three main isoforms (IP3R1, IP3R2 and IP3R3) that display distinct functional characteristics and properties. Despite their abundant and overlapping expression profiles, IP3R1 is highly expressed in neurons, IP3R2 in cardiomyocytes and hepatocytes and IP3R3 in rapidly proliferating cells as e.g. epithelial cells. As a consequence, dysfunction and/or dysregulation of IP3R isoforms will have distinct pathophysiological outcomes, ranging from neurological disorders for IP3R1 to dysfunctional exocrine tissues and autoimmune diseases for IP3R2 and -3. Over the past years, several IP3R mutations have surfaced in the sequence analysis of patient-derived samples. Here, we aimed to provide an integrative overview of the clinically most relevant mutations for each IP3R isoform and the subsequent molecular mechanisms underlying the etiology of the disease.
Collapse
|
22
|
IP 3R3 silencing induced actin cytoskeletal reorganization through ARHGAP18/RhoA/mDia1/FAK pathway in breast cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:945-958. [PMID: 29630900 DOI: 10.1016/j.bbamcr.2018.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Abstract
Cell morphology is altered in the migration process, and the underlying cytoskeleton remodeling is highly dependent of intracellular Ca2+ concentration. Many calcium channels are known to be involved in migration. Inositol 1,4,5-trisphosphate receptor (IP3R) was demonstrated to be implicated in breast cancer cells migration, but its involvement in morphological changes during the migration process remains unclear. In the present work, we showed that IP3R3 expression was correlated to cell morphology. IP3R3 silencing induced rounding shape and decreased adhesion in invasive breast cancer cell lines. Moreover, IP3R3 silencing decreased ARHGAP18 expression, RhoA activity, Cdc42 expression and Y861FAK phosphorylation. Interestingly, IP3R3 was able to regulate profilin remodeling, without inducing any myosin II reorganization. IP3R3 silencing revealed an oscillatory calcium signature, with a predominant oscillating profile occurring in early wound repair. To summarize, we demonstrated that IP3R3 is able to modulate intracellular Ca2+ availability and to coordinate the remodeling of profilin cytoskeleton organization through the ARHGAP18/RhoA/mDia1/FAK pathway.
Collapse
|
23
|
Kerkhofs M, Giorgi C, Marchi S, Seitaj B, Parys JB, Pinton P, Bultynck G, Bittremieux M. Alterations in Ca 2+ Signalling via ER-Mitochondria Contact Site Remodelling in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:225-254. [PMID: 28815534 DOI: 10.1007/978-981-10-4567-7_17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inter-organellar contact sites establish microdomains for localised Ca2+-signalling events. One of these microdomains is established between the ER and the mitochondria. Importantly, the so-called mitochondria-associated ER membranes (MAMs) contain, besides structural proteins and proteins involved in lipid exchange, several Ca2+-transport systems, mediating efficient Ca2+ transfer from the ER to the mitochondria. These Ca2+ signals critically control several mitochondrial functions, thereby impacting cell metabolism, cell death and survival, proliferation and migration. Hence, the MAMs have emerged as critical signalling hubs in physiology, while their dysregulation is an important factor that drives or at least contributes to oncogenesis and tumour progression. In this book chapter, we will provide an overview of the role of the MAMs in cell function and how alterations in the MAM composition contribute to oncogenic features and behaviours.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Bruno Seitaj
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Jan B Parys
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Geert Bultynck
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium.
| | - Mart Bittremieux
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|