1
|
Li M, Macro J, Huggins BJ, Meadows K, Mishra D, Martin D, Kannan K, Rogina B. Extended lifespan in female Drosophila melanogaster through late-life calorie restriction. GeroScience 2024; 46:4017-4035. [PMID: 38954128 PMCID: PMC11335708 DOI: 10.1007/s11357-024-01233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Calorie restriction has many beneficial effects on healthspan and lifespan in a variety of species. However, how late in life application of caloric restriction can extend fly life is not clear. Here we show that late-life calorie restriction increases lifespan in female Drosophila melanogaster aged on a high-calorie diet. This shift results in rapid decrease in mortality rate and extends fly lifespan. In contrast, shifting female flies from a low- to a high-calorie diet leads to a rapid increase in mortality and shorter lifespan. These changes are mediated by immediate metabolic and physiological adaptations. One of such adaptation is rapid adjustment in egg production, with flies directing excess energy towards egg production when shifted to a high diet, or away from reproduction in females shifted to low-caloric diet. However, lifelong female fecundity reveals no associated fitness cost due to CR when flies are shifted to a high-calorie diet. In view of high conservation of the beneficial effects of CR on physiology and lifespan in a wide variety of organisms, including humans, our findings could provide valuable insight into CR applications that could provide health benefits later in life.
Collapse
Affiliation(s)
- Michael Li
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Jacob Macro
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Billy J Huggins
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Kali Meadows
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Dushyant Mishra
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Dominique Martin
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Kavitha Kannan
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Blanka Rogina
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, 06030, USA.
- Institute for Systems Genomics, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
2
|
Li M, Macro J, Meadows K, Mishra D, Martin D, Olson S, Huggins BJ, Graveley BR, Li JYH, Rogina B. Late-life shift in caloric intake affects fly metabolism and longevity. Proc Natl Acad Sci U S A 2023; 120:e2311019120. [PMID: 38064506 PMCID: PMC10723134 DOI: 10.1073/pnas.2311019120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/05/2023] [Indexed: 12/17/2023] Open
Abstract
The prevalence of obesity is increasing in older adults and contributes to age-related decline. Caloric restriction (CR) alleviates obesity phenotypes and delays the onset of age-related changes. However, how late in life organisms benefit from switching from a high-(H) to a low-calorie (L) diet is unclear. We transferred male flies from a H to a L (HL) diet or vice versa (LH) at different times during life. Both shifts immediately change fly rate of aging even when applied late in life. HL shift rapidly reduces fly mortality rate to briefly lower rate than in flies on a constant L diet, and extends lifespan. Transcriptomic analysis uncovers that flies aged on H diet have acquired increased stress response, which may have temporal advantage over flies aged on L diet and leads to rapid decrease in mortality rate after HL switch. Conversely, a LH shift increases mortality rate, which is temporarily higher than in flies aged on a H diet, and shortens lifespan. Unexpectedly, more abundant transcriptomic changes accompanied LH shift, including increase in ribosome biogenesis, stress response and growth. These changes reflect protection from sudden release of ROS, energy storage, and use of energy to growth, which all likely contribute to higher mortality rate. As the beneficial effects of CR on physiology and lifespan are conserved across many organisms, our study provides framework to study underlying mechanisms of CR interventions that counteract the detrimental effects of H diets and reduce rate of aging even when initiated later in life.
Collapse
Affiliation(s)
- Michael Li
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Jacob Macro
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Kali Meadows
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Dushyant Mishra
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Dominique Martin
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Sara Olson
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| | - Billy Joe Huggins
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Brenton R. Graveley
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| | - James Y. H. Li
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| | - Blanka Rogina
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT06030
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT06030
| |
Collapse
|
3
|
Abstract
Aging has provided fruitful challenges for evolutionary theory, and evolutionary theory has deepened our understanding of aging. A great deal of genetic and molecular data now exists concerning mortality regulation and there is a growing body of knowledge concerning the life histories of diverse species. Assimilating all relevant data into a framework for the evolution of aging promises to significantly advance the field. We propose extensions of some key concepts to provide greater precision when applying these concepts to age-structured contexts. Secondary or byproduct effects of mutations are proposed as an important factor affecting survival patterns, including effects that may operate in small populations subject to genetic drift, widening the possibilities for mutation accumulation and pleiotropy. Molecular and genetic studies have indicated a diverse array of mechanisms that can modify aging and mortality rates, while transcriptome data indicate a high level of tissue and species specificity for genes affected by aging. The diversity of mechanisms and gene effects that can contribute to the pattern of aging in different organisms may mirror the complex evolutionary processes behind aging.
Collapse
Affiliation(s)
- Stewart Frankel
- Biology Department, University of Hartford, West Hartford, CT, United States
| | - Blanka Rogina
- Genetics and Genome Sciences, Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
4
|
Palli SR. Epigenetic regulation of post-embryonic development. CURRENT OPINION IN INSECT SCIENCE 2021; 43:63-69. [PMID: 33068783 PMCID: PMC8044252 DOI: 10.1016/j.cois.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 05/02/2023]
Abstract
Modifications to DNA and core histones influence chromatin organization and expression of the genome. DNA methylation plays a significant role in the regulation of multiple biological processes that regulate behavior and caste differentiation in social insects. Histone modifications play significant roles in the regulation of development and reproduction in other insects. Genes coding for acetyltransferases, deacetylases, methyltransferases, and demethylases that modify core histones have been identified in genomes of multiple insects. Studies on the function and mechanisms of action of some of these enzymes uncovered their contribution to post-embryonic development. The results from studies on epigenetic modifiers could help in the identification of inhibitors of epigenetic modifiers that could be developed to control pests and disease vectors.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, S225 Ag. Science N, Lexington, KY 40546, United States.
| |
Collapse
|
5
|
The Epigenetics of Aging in Invertebrates. Int J Mol Sci 2019; 20:ijms20184535. [PMID: 31540238 PMCID: PMC6769462 DOI: 10.3390/ijms20184535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Aging is an unstoppable process coupled to the loss of physiological function and increased susceptibility to diseases. Epigenetic alteration is one of the hallmarks of aging, which involves changes in DNA methylation patterns, post-translational modification of histones, chromatin remodeling and non-coding RNA interference. Invertebrate model organisms, such as Drosophila melanogaster and Caenorhabditis elegans, have been used to investigate the biological mechanisms of aging because they show, evolutionarily, the conservation of many aspects of aging. In this review, we focus on recent advances in the epigenetic changes of aging with invertebrate models, providing insight into the relationship between epigenetic dynamics and aging.
Collapse
|
6
|
Molecular characterization of class I histone deacetylases and their expression in response to thermal and oxidative stresses in the red flour beetle, Tribolium castaneum. Genetica 2019; 147:281-290. [DOI: 10.1007/s10709-019-00065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
|
7
|
Kopp Z, Park Y. Longer lifespan in the Rpd3 and Loco signaling results from the reduced catabolism in young age with noncoding RNA. Aging (Albany NY) 2019; 11:230-239. [PMID: 30620723 PMCID: PMC6339784 DOI: 10.18632/aging.101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/22/2018] [Indexed: 11/25/2022]
Abstract
Downregulation of Rpd3 (histone deacetylase) or Loco (regulator of G-protein signaling protein) extends Drosophila lifespan with higher stress resistance. We found rpd3-downregulated long-lived flies genetically interact with loco-upregulated short-lived flies in stress resistance and lifespan. Gene expression profiles between those flies revealed that they regulate common target genes in metabolic enzymes and signaling pathways, showing an opposite expression pattern in their contrasting lifespans. Functional analyses of more significantly changed genes indicated that the activities of catabolic enzymes and uptake/storage proteins are reduced in long-lived flies with Rpd3 downregulation. This reduced catabolism exhibited from a young age is considered to be necessary for the resultant longer lifespan of the Rpd3- and Loco-downregulated old flies, which mimics the dietary restriction (DR) effect that extends lifespan in the several species. Inversely, those catabolic activities that break down carbohydrates, lipids, and peptides were high in the short lifespan of Loco-upregulated flies. Long noncoding gene, dntRL (CR45923), was also found as a putative target modulated by Rpd3 and Loco for the longevity. Interestingly, this dntRL could affect stress resistance and lifespan, suggesting that the dntRL lncRNA may be involved in the metabolic mechanism of Rpd3 and Loco signaling.
Collapse
Affiliation(s)
- Zachary Kopp
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Yongkyu Park
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
8
|
Woods JK, Ziafazeli T, Rogina B. The effects of reduced rpd3 levels on fly physiology. ACTA ACUST UNITED AC 2017; 4:169-179. [PMID: 28447071 PMCID: PMC5389049 DOI: 10.3233/nha-160016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND: Rpd3 is a conserved histone deacetylase that removes acetyl groups from lysine residues within histones and other proteins. Reduction or inhibition of Rpd3 extends longevity in yeast, worms, and flies. Previous studies in flies suggest an overlap with the mechanism of lifespan extension by dietary restriction. However, the mechanism of rpd3’s effects on longevity remains unclear. OBJECTIVES: In this study we investigated how rpd3 reduction affects fly spontaneous physical activity, fecundity, and stress resistance. METHODS: We examined the effects of rpd3 reduction on fly spontaneous physical activity by using population monitors, we determined female fecundity by counting daily egg laying, and we determined fly survivorship in response to starvation and paraquat. RESULTS: In flies, rpd3 reduction increases peak spontaneous physical activity of rpd3def male flies at a young age but does not affect total 24 hour activity. Male and female rpd3def mutants are more resistant to starvation on low and high calorie diets. In addition, increased resistance to paraquat was observed in females of one allele. A decrease in rpd3 levels does not affect female fecundity. CONCLUSIONS: A decrease in rpd3 levels mirrors some but not all changes associated with calorie restriction, illustrated by an increased peak of spontaneous activity in rpd3def/+ heterozygous male flies but no effect on total spontaneous activity and fecundity.
Collapse
Affiliation(s)
- Jared K Woods
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Tahereh Ziafazeli
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, USA.,Present address: Department of Pediatrics, Division of Pediatric Endocrinology, Faculty of Health Sciences, McMaster University, ON, Canada
| | - Blanka Rogina
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health, Farmington, CT, USA.,Institute for Systems Genomics, School of Medicine, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|