1
|
Rogdakis T, Charou D, Latorrata A, Papadimitriou E, Tsengenes A, Athanasiou C, Papadopoulou M, Chalikiopoulou C, Katsila T, Ramos I, Prousis KC, Wade RC, Sidiropoulou K, Calogeropoulou T, Gravanis A, Charalampopoulos I. Development and Biological Characterization of a Novel Selective TrkA Agonist with Neuroprotective Properties against Amyloid Toxicity. Biomedicines 2022; 10:614. [PMID: 35327415 PMCID: PMC8945229 DOI: 10.3390/biomedicines10030614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins are growth factors that exert important neuroprotective effects by preventing neuronal death and synaptic loss. Nerve Growth Factor (NGF) acts through the activation of its high-affinity, pro-survival TrkA and low-affinity, pro-apoptotic p75NTR receptors. NGF has been shown to slow or prevent neurodegenerative signals in Alzheimer's Disease (AD) progression. However, its low bioavailability and its blood-brain-barrier impermeability limit the use of NGF as a potential therapeutic agent against AD. Based on our previous findings on synthetic dehydroepiandrosterone derivatives, we identified a novel NGF mimetic, named ENT-A013, which selectively activates TrkA and exerts neuroprotective, anti-amyloid-β actions. We now report the chemical synthesis, in silico modelling, metabolic stability, CYP-mediated reaction phenotyping and biological characterization of ENT-A013 under physiological and neurodegenerative conditions. We show that ENT-A013 selectively activates the TrkA receptor and its downstream kinases Akt and Erk1/2 in PC12 cells, protecting these cells from serum deprivation-induced cell death. Moreover, ENT-A013 promotes survival of primary Dorsal Root Ganglion (DRG) neurons upon NGF withdrawal and protects hippocampal neurons against Amyloid β-induced apoptosis and synaptic loss. Furthermore, this neurotrophin mimetic partially restores LTP impairment. In conclusion, ENT-A013 represents a promising new lead molecule for developing therapeutics against neurodegenerative disorders, such as Alzheimer's Disease, selectively targeting TrkA-mediated pro-survival signals.
Collapse
Affiliation(s)
- Thanasis Rogdakis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Alessia Latorrata
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Eleni Papadimitriou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Alexandros Tsengenes
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Christina Athanasiou
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Marianna Papadopoulou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Constantina Chalikiopoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Theodora Katsila
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Isbaal Ramos
- Innovative Technologies in Biological Systems SL (INNOPROT), 48160 Bizkaia, Spain;
| | - Kyriakos C. Prousis
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
| | - Kyriaki Sidiropoulou
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
- Department of Biology, University of Crete, 71113 Heraklion, Greece
| | - Theodora Calogeropoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| |
Collapse
|
2
|
Triaca V, Ruberti F, Canu N. NGF and the Amyloid Precursor Protein in Alzheimer's Disease: From Molecular Players to Neuronal Circuits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:145-165. [PMID: 34453297 DOI: 10.1007/978-3-030-74046-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), one of the most common causes of dementia in elderly people, is characterized by progressive impairment in cognitive function, early degeneration of basal forebrain cholinergic neurons (BFCNs), abnormal metabolism of the amyloid precursor protein (APP), amyloid beta-peptide (Aβ) depositions, and neurofibrillary tangles. According to the cholinergic hypothesis, dysfunction of acetylcholine-containing neurons in the basal forebrain contributes markedly to the cognitive decline observed in AD. In addition, the neurotrophic factor hypothesis posits that the loss nerve growth factor (NGF) signalling in AD may account for the vulnerability to atrophy of BFCNs and consequent impairment of cholinergic functions. Though acetylcholinesterase inhibitors provide only partial and symptomatic relief to AD patients, emerging data from in vivo magnetic resonance imaging (MRI) and positron emission tomography (PET) studies in mild cognitive impairment (MCI) and AD patients highlight the early involvement of BFCNs in MCI and the early phase of AD. These data support the cholinergic and neurotrophic hypotheses of AD and suggest new targets for AD therapy.Different mechanisms account for selective vulnerability of BFCNs to AD pathology, with regard to altered metabolism of APP and tau. In this review, we provide a general overview of the current knowledge of NGF and APP interplay, focusing on the role of APP in regulating NGF receptors trafficking/signalling and on the involvement of NGF in modulating phosphorylation of APP, which in turn controls APP intracellular trafficking and processing. Moreover, we highlight the consequences of APP interaction with p75NTR and TrkA receptor, which share the same binding site within the APP juxta-membrane domain. We underline the importance of insulin dysmetabolism in AD pathology, in the light of our recent data showing that overlapping intracellular signalling pathways stimulated by NGF or insulin can be compensatory. In particular, NGF-based signalling is able to ameliorates deficiencies in insulin signalling in the medial septum of 3×Tg-AD mice. Finally, we present an overview of NGF-regulated microRNAs (miRNAs). These small non-coding RNAs are involved in post-transcriptional regulation of gene expression , and we focus on a subset that are specifically deregulated in AD and thus potentially contribute to its pathology.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo, RM, Italy
| | - Francesca Ruberti
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo, RM, Italy
| | - Nadia Canu
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Campus A. Buzzati-Traverso, Monterotondo, RM, Italy. .,Department of System Medicine, Section of Physiology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|