1
|
Camon C, Prescott M, Neyt C, Decourt C, Stout MB, Campbell RE, Garratt M. Systemic metabolic benefits of 17α-estradiol are not exclusively mediated by ERα in glutamatergic or GABAergic neurons. GeroScience 2024; 46:6127-6140. [PMID: 38776045 PMCID: PMC11493872 DOI: 10.1007/s11357-024-01192-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/02/2024] [Indexed: 10/23/2024] Open
Abstract
17α-Estradiol (17αE2), a less-feminising enantiomer of 17β-estradiol, has been shown to prolong lifespan and improve metabolic health in a sex-specific manner in male, but not in female mice. Recent studies have demonstrated the pivotal role of estrogen receptor α (ERα) in mediating the effects of 17αE2 on metabolic health. However, the specific tissues and/or neuronal signalling pathways that 17αE2 acts through remain to be elucidated. ERα expression in glutamatergic and GABAergic neurons (principal excitatory and inhibitory neurons respectively) in the hypothalamus is essential for estradiol signalling. Therefore, we hypothesised that knocking out ERα from one of these neuronal populations would attenuate the established beneficial metabolic effects of 17αE2 in male mice exposed to a high fat diet. To test this hypothesis we used two established brain specific ERα KO models, targeting either glutamatergic or GABAergic neurons (Vglut2/Vgat-ERαKO). We show that both of these ERα KO models exhibit a strong reduction in ERα expression in the arcuate nucleus of the hypothalamus, a control centre for metabolic regulation. Deletion of ERα from GABAergic neurons significantly diminished the effect of 17αE2 on body weight relative to controls, although these animals still show metabolic benefits with 17αE2 treatment. The response to 17αE2 was unaffected by ERα deletion in glutamatergic neurons. Our results support a benefit of 17αE2 treatment in protection against metabolic dysfunction, but these effects do not depend on exclusive ERα expression in glutamatergic and GABAergic neurons and persist when ERα expression is strongly reduced in the arcuate nucleus of the hypothalamus.
Collapse
Affiliation(s)
- Celine Camon
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| | - Mel Prescott
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Christine Neyt
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Caroline Decourt
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Michael Garratt
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Sathiaseelan R, Isola JVV, Santín-Márquez R, Adekunbi D, Fornalik M, Salmon AB, Stout MB. A pilot study evaluating dosing tolerability of 17α-estradiol in male common marmosets (Callithrix jacchus). GeroScience 2024:10.1007/s11357-024-01311-z. [PMID: 39107620 DOI: 10.1007/s11357-024-01311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
17α-estradiol extends healthspan and lifespan in male mice without significant feminization or deleterious effects on reproductive function, making it a candidate for human translation. However, studies in animal models that more accurately replicate human physiology are necessary to establish 17α-estradiol dosing standards for clinical trials. This study evaluated the tolerability of 17α-estradiol treatment in the common marmoset over a short treatment duration. We found that male marmosets tolerated two dosing regimens (0.37-0.47 or 0.62-0.72 mg/kg/day) as evidenced by the absence of gastrointestinal distress, changes in vital signs, or overall health conditions. 17α-estradiol treatment mildly decreased body mass, adiposity, and glycosylated hemoglobin, although these changes were not statistically significant in most instances. However, neither dose of 17α-estradiol elicited feminization in our study, thereby suggesting that optimized dosing regimens may provide health benefits without feminization in primates. Additional studies are needed to determine if longer duration treatments would also be nonfeminizing and elicit significant health benefits, which would aid in developing dosing regimens targeting healthy aging in humans.
Collapse
Affiliation(s)
- Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Jose V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Roberto Santín-Márquez
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Daniel Adekunbi
- Barshop Institute for Longevity & Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Michal Fornalik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Adam B Salmon
- Barshop Institute for Longevity & Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- South Texas Veterans Affairs Medical Center, San Antonio, TX, USA
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Bubak MP, Mann SN, Borowik AK, Pranay A, Batushansky A, Vieira de Sousa Neto I, Mondal SA, Doidge SM, Davidyan A, Szczygiel MM, Peelor FF, Rigsby S, Broomfield ME, Lacy CI, Rice HC, Stout MB, Miller BF. 17α-Estradiol alleviates high-fat diet-induced inflammatory and metabolic dysfunction in skeletal muscle of male and female mice. Am J Physiol Endocrinol Metab 2024; 326:E226-E244. [PMID: 38197793 PMCID: PMC11193529 DOI: 10.1152/ajpendo.00215.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
17α-estradiol (17α-E2) is a naturally occurring nonfeminizing diastereomer of 17β-estradiol that has life span-extending effects in rodent models. To date, studies of the systemic and tissue-specific benefits of 17α-E2 have largely focused on the liver, brain, and white adipose tissue with far less focus on skeletal muscle. Skeletal muscle has an important role in metabolic and age-related disease. Therefore, this study aimed to determine whether 17α-E2 treatment has positive, tissue-specific effects on skeletal muscle during a high-fat feeding. We hypothesized that male, but not female, mice, would benefit from 17α-E2 treatment during a high-fat diet (HFD) with changes in the mitochondrial proteome to support lipid oxidation and subsequent reductions in diacylglycerol (DAG) and ceramide content. To test this hypothesis, we used a multiomics approach to determine changes in lipotoxic lipid intermediates, metabolites, and proteins related to metabolic homeostasis. Unexpectedly, we found that 17α-E2 had marked, but different, beneficial effects within each sex. In male mice, we show that 17α-E2 alleviates HFD-induced metabolic detriments of skeletal muscle by reducing the accumulation of diacylglycerol (DAG), and inflammatory cytokine levels, and altered the abundance of most of the proteins related to lipolysis and β-oxidation. Similar to male mice, 17α-E2 treatment reduced fat mass while protecting muscle mass in female mice but had little muscle inflammatory cytokine levels. Although female mice were resistant to HFD-induced changes in DAGs, 17α-E2 treatment induced the upregulation of six DAG species. In female mice, 17α-E2 treatment changed the relative abundance of proteins involved in lipolysis, β-oxidation, as well as structural and contractile proteins but to a smaller extent than male mice. These data demonstrate the metabolic benefits of 17α-E2 in skeletal muscle of male and female mice and contribute to the growing literature of the use of 17α-E2 for multi tissue health span benefits.NEW & NOTEWORTHY Using a multiomics approach, we show that 17α-E2 alleviates HFD-induced metabolic detriments in skeletal muscle by altering bioactive lipid intermediates, inflammatory cytokines, and the abundance of proteins related to lipolysis and muscle contraction. The positive effects of 17α-E2 in skeletal muscle occur in both sexes but differ in their outcome.
Collapse
Affiliation(s)
- Matthew P Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States
| | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Ivo Vieira de Sousa Neto
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Samim A Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Stephen M Doidge
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Arik Davidyan
- Department of Biological Sciences, California State University, Sacramento, California, United States
| | - Marcelina M Szczygiel
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Sandra Rigsby
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Matle E Broomfield
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Charles I Lacy
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, United States
| | - Heather C Rice
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, United States
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
4
|
Stout MB, Vaughan KL, Isola JVV, Mann SN, Wellman B, Hoffman JM, Porter HL, Freeman WM, Mattison JA. Assessing tolerability and physiological responses to 17α-estradiol administration in male rhesus macaques. GeroScience 2023; 45:2337-2349. [PMID: 36897526 PMCID: PMC10651821 DOI: 10.1007/s11357-023-00767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
17α-estradiol has recently been shown to extend healthspan and lifespan in male mice through multiple mechanisms. These benefits occur in the absence of significant feminization or deleterious effects on reproductive function, which makes 17α-estradiol a candidate for translation into humans. However, human dosing paradigms for the treatment of aging and chronic disease are yet to be established. Therefore, the goals of the current studies were to assess tolerability of 17α-estradiol treatment, in addition to evaluating metabolic and endocrine responses in male rhesus macaque monkeys during a relatively short treatment period. We found that our dosing regimens (0.30 and 0.20 mg/kg/day) were tolerable as evidenced by a lack of GI distress, changes in blood chemistry or complete blood counts, and unaffected vital signs. We also found that the higher dose did elicit mild benefits on metabolic parameters including body mass, adiposity, and glycosylated hemoglobin. However, both of our 17α-estradiol trial doses elicited significant feminization to include testicular atrophy, increased circulating estrogens, and suppressed circulating androgens and gonadotropins. We suspect that the observed level of feminization results from a saturation of the endogenous conjugation enzymes, thereby promoting a greater concentration of unconjugated 17α-estradiol in serum, which has more biological activity. We also surmise that the elevated level of unconjugated 17α-estradiol was subjected to a greater degree of isomerization to 17β-estradiol, which is aligned with the sevenfold increase in serum 17β-estradiol in 17α-estradiol treated animals in our first trial. Future studies in monkeys, and certainly humans, would likely benefit from the development and implementation of 17α-estradiol transdermal patches, which are commonly prescribed in humans and would circumvent potential issues with bolus dosing effects.
Collapse
Affiliation(s)
- Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, US.
- Oklahoma Medical Research Foundation, 825 NE 13Th Street Chapman S212, 73104, Oklahoma City, OK, US.
| | - Kelli L Vaughan
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US
| | - Jose V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, US
| | - Bayli Wellman
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, US
| | - Hunter L Porter
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Willard M Freeman
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, US
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Julie A Mattison
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US.
- National Institute On Aging, 16701 Elmer School Road, Building 103, 20842, Dickerson, MD, US.
| |
Collapse
|
5
|
Isola JVV, Veiga GB, de Brito CRC, Alvarado-Rincón JA, Garcia DN, Zanini BM, Hense JD, Vieira AD, Garratt M, Gasperin BG, Schneider A, Stout MB. 17α-estradiol does not adversely affect sperm parameters or fertility in male mice: implications for reproduction-longevity trade-offs. GeroScience 2023; 45:2109-2120. [PMID: 35689785 PMCID: PMC10651587 DOI: 10.1007/s11357-022-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022] Open
Abstract
17α-estradiol (17α-E2) is referred to as a nonfeminizing estrogen that was recently found to extend healthspan and lifespan in male, but not female, mice. Despite an abundance of data indicating that 17α-E2 attenuates several hallmarks of aging in male rodents, very little is known with regard to its effects on feminization and fertility. In these studies, we evaluated the effects of 17α-E2 on several markers of male reproductive health in two independent cohorts of mice. In alignment with our previous reports, chronic 17α-E2 treatment prevented gains in body mass, but did not adversely affect testes mass or seminiferous tubule morphology. We subsequently determined that chronic 17α-E2 treatment also did not alter plasma 17β-estradiol or estrone concentrations, while mildly increasing plasma testosterone levels. We also determined that chronic 17α-E2 treatment did not alter plasma follicle-stimulating hormone or luteinizing hormone concentrations, which suggests 17α-E2 treatment does not alter gonadotropin-releasing hormone neuronal function. Sperm quantity, morphology, membrane integrity, and various motility measures were also unaffected by chronic 17α-E2 treatment in our studies. Lastly, two different approaches were used to evaluate male fertility in these studies. We found that chronic 17α-E2 treatment did not diminish the ability of male mice to impregnate female mice, or to generate successfully implanted embryos in the uterus. We conclude that chronic treatment with 17α-E2 at the dose most commonly employed in aging research does not adversely affect reproductive fitness in male mice, which suggests 17α-E2 does not extend lifespan or curtail disease parameters through tradeoff effects with reproduction.
Collapse
Affiliation(s)
- José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Gabriel B Veiga
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Camila R C de Brito
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Joao A Alvarado-Rincón
- Facultad de Ciencias Agropecuarias, Universidad de La Salle, Campus Utopía, Yopal, Casanare, Colombia
| | - Driele N Garcia
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Bianka M Zanini
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jéssica D Hense
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Arnaldo D Vieira
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Bernardo G Gasperin
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Augusto Schneider
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil.
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
6
|
Mondal SA, Mann SN, van der Linden C, Sathiaseelan R, Kamal M, Das S, Bubak MP, Logan S, Miller BF, Stout MB. Metabolic benefits of 17α-estradiol in liver are partially mediated by ERβ in male mice. Sci Rep 2023; 13:9841. [PMID: 37330610 PMCID: PMC10276872 DOI: 10.1038/s41598-023-37007-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Metabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization. We recently reported that estrogen receptor α is required for the majority of 17α-E2-mediated benefits in male mice, but that 17α-E2 also attenuates fibrogenesis in liver, which is regulated by estrogen receptor β (ERβ)-expressing hepatic stellate cells (HSC). The current studies sought to determine if 17α-E2-mediated benefits on systemic and hepatic metabolism are ERβ-dependent. We found that 17α-E2 treatment reversed obesity and related systemic metabolic sequela in both male and female mice, but this was partially blocked in female, but not male, ERβKO mice. ERβ ablation in male mice attenuated 17α-E2-mediated benefits on hepatic stearoyl-coenyzme A desaturase 1 (SCD1) and transforming growth factor β1 (TGF-β1) production, which play critical roles in HSC activation and liver fibrosis. We also found that 17α-E2 treatment suppresses SCD1 production in cultured hepatocytes and hepatic stellate cells, indicating that 17α-E2 directly signals in both cell-types to suppress drivers of steatosis and fibrosis. We conclude that ERβ partially controls 17α-E2-mediated benefits on systemic metabolic regulation in female, but not male, mice, and that 17α-E2 likely signals through ERβ in HSCs to attenuate pro-fibrotic mechanisms.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Carl van der Linden
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Matthew P Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Sreemathi Logan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
7
|
Bubak MP, Mann SN, Borowik AK, Pranay A, Batushansky A, Mondal SA, Diodge SM, Davidyan A, Szczygiel MM, Peelor FR, Rigsby S, Broomfield M, Lacy CI, Rice HC, Stout MB, Miller BF. 17α-estradiol Alleviates High-Fat Diet-Induced Inflammatory and Metabolic Dysfunction in Skeletal Muscle of Male and Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542870. [PMID: 37398463 PMCID: PMC10312580 DOI: 10.1101/2023.05.30.542870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Skeletal muscle has a central role in maintaining metabolic homeostasis. 17α-estradiol (17α-E2), a naturally-occurring non-feminizing diastereomer of 17β-estradiol that demonstrates efficacy for improving metabolic outcomes in male, but not female, mice. Despite several lines of evidence showing that 17α-E2 treatment improves metabolic parameters in middle-aged obese and old male mice through effects in brain, liver, and white adipose tissue little is known about how 17α-E2 alters skeletal muscle metabolism, and what role this may play in mitigating metabolic declines. Therefore, this study aimed to determine if 17α-E2 treatment improves metabolic outcomes in skeletal muscle from obese male and female mice following chronic high fat diet (HFD) administration. We hypothesized that male, but not female, mice, would benefit from 17α-E2 treatment during HFD. To test this hypothesis, we used a multi-omics approach to determine changes in lipotoxic lipid intermediates, metabolites, and proteins related to metabolic homeostasis. In male mice, we show that 17α-E2 alleviates HFD-induced metabolic detriments of skeletal muscle by reducing the accumulation of diacylglycerol (DAGs) and ceramides, inflammatory cytokine levels, and reduced the abundance of most of the proteins related to lipolysis and beta-oxidation. In contrast to males, 17α-E2 treatment in female mice had little effect on the DAGs and ceramides content, muscle inflammatory cytokine levels, or changes to the relative abundance of proteins involved in beta-oxidation. These data support to the growing evidence that 17α-E2 treatment could be beneficial for overall metabolic health in male mammals.
Collapse
|
8
|
Isola JVV, Ko S, Ocañas SR, Stout MB. Role of Estrogen Receptor α in Aging and Chronic Disease. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230005. [PMID: 37425648 PMCID: PMC10327608 DOI: 10.20900/agmr20230005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Estrogen receptor alpha (ERα) plays a crucial role in reproductive function in both sexes. It also mediates cellular responses to estrogens in multiple nonreproductive organ systems, many of which regulate systemic metabolic homeostasis and inflammatory processes in mammals. The loss of estrogens and/or ERα agonism during aging is associated with the emergence of several comorbid conditions, particularly in females undergoing the menopausal transition. Emerging data also suggests that male mammals likely benefit from ERα agonism if done in a way that circumvents feminizing characteristics. This has led us, and others, to speculate that tissue-specific ERα agonism may hold therapeutic potential for curtailing aging and chronic disease burden in males and females that are at high-risk of cancer and/or cardiovascular events with traditional estrogen replacement therapies. In this mini-review, we emphasize the role of ERα in the brain and liver, summarizing recent evidence that indicates these two organs systems mediate the beneficial effects of estrogens on metabolism and inflammation during aging. We also discuss how 17α-estradiol administration elicits health benefits in an ERα-dependent manner, which provides proof-of-concept that ERα may be a druggable target for attenuating aging and age-related disease burden.
Collapse
Affiliation(s)
- José V. V. Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sunghwan Ko
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
9
|
Mondal SA, Mann SN, van der Linden C, Sathiaseelan R, Kamal M, Das S, Bubak MP, Logan S, Miller BF, Stout MB. Metabolic benefits of 17α-estradiol in liver are partially mediated by ERβ in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534216. [PMID: 36993459 PMCID: PMC10055366 DOI: 10.1101/2023.03.25.534216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Metabolic dysfunction underlies several chronic diseases. Dietary interventions can reverse metabolic declines and slow aging but remaining compliant is difficult. 17α-estradiol (17α-E2) treatment improves metabolic parameters and slows aging in male mice without inducing significant feminization. We recently reported that estrogen receptor α is required for the majority of 17α-E2-mediated benefits in male mice, but that 17α-E2 also attenuates fibrogenesis in liver, which is regulated by estrogen receptor β (ERβ)-expressing hepatic stellate cells (HSC). The current studies sought to determine if 17α-E2-mediated benefits on systemic and hepatic metabolism are ERβ-dependent. We found that 17α-E2 treatment reversed obesity and related systemic metabolic sequela in both male and female mice, but this was partially blocked in female, but not male, ERβKO mice. ERβ ablation in male mice attenuated 17α-E2-mediated benefits on hepatic stearoyl-coenyzme A desaturase 1 (SCD1) and transforming growth factor β1 (TGF-β1) production, which play critical roles in HSC activation and liver fibrosis. We also found that 17α-E2 treatment suppresses SCD1 production in cultured hepatocytes and hepatic stellate cells, indicating that 17α-E2 directly signals in both cell-types to suppress drivers of steatosis and fibrosis. We conclude that ERβ partially controls 17α-E2-mediated benefits on systemic metabolic regulation in female, but not male, mice, and that 17α-E2 likely signals through ERβ in HSCs to attenuate pro-fibrotic mechanisms.
Collapse
Affiliation(s)
- Samim Ali Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shivani N. Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Carl van der Linden
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Maria Kamal
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Matthew P. Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sreemathi Logan
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Benjamin F. Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
10
|
Mann SN, Hadad N, Nelson Holte M, Rothman AR, Sathiaseelan R, Ali Mondal S, Agbaga MP, Unnikrishnan A, Subramaniam M, Hawse J, Huffman DM, Freeman WM, Stout MB. Health benefits attributed to 17α-estradiol, a lifespan-extending compound, are mediated through estrogen receptor α. eLife 2020; 9:59616. [PMID: 33289482 PMCID: PMC7744101 DOI: 10.7554/elife.59616] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic dysfunction underlies several chronic diseases, many of which are exacerbated by obesity. Dietary interventions can reverse metabolic declines and slow aging, although compliance issues remain paramount. 17α-estradiol treatment improves metabolic parameters and slows aging in male mice. The mechanisms by which 17α-estradiol elicits these benefits remain unresolved. Herein, we show that 17α-estradiol elicits similar genomic binding and transcriptional activation through estrogen receptor α (ERα) to that of 17β-estradiol. In addition, we show that the ablation of ERα completely attenuates the beneficial metabolic effects of 17α-E2 in male mice. Our findings suggest that 17α-E2 may act through the liver and hypothalamus to improve metabolic parameters in male mice. Lastly, we also determined that 17α-E2 improves metabolic parameters in male rats, thereby proving that the beneficial effects of 17α-E2 are not limited to mice. Collectively, these studies suggest ERα may be a drug target for mitigating chronic diseases in male mammals.
Collapse
Affiliation(s)
- Shivani N Mann
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Niran Hadad
- The Jackson Laboratory, Bar Harbor, United States
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Alicia R Rothman
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Samim Ali Mondal
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Martin-Paul Agbaga
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Archana Unnikrishnan
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | | | - John Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States
| | - Willard M Freeman
- Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, United States.,Oklahoma City Veterans Affairs Medical Center, Oklahoma City, United States
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| |
Collapse
|
11
|
Mann SN, Pitel KS, Nelson-Holte MH, Iwaniec UT, Turner RT, Sathiaseelan R, Kirkland JL, Schneider A, Morris KT, Malayannan S, Hawse JR, Stout MB. 17α-Estradiol prevents ovariectomy-mediated obesity and bone loss. Exp Gerontol 2020; 142:111113. [PMID: 33065227 PMCID: PMC8351143 DOI: 10.1016/j.exger.2020.111113] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Menopause is a natural physiological process in older women that is associated with reduced estrogen production and results in increased risk for obesity, diabetes, and osteoporosis. 17α-estradiol (17α-E2) treatment in males, but not females, reverses several metabolic conditions associated with advancing age, highlighting sexually dimorphic actions on age-related pathologies. In this study we sought to determine if 17α-E2 could prevent ovariectomy (OVX)-mediated detriments on adiposity and bone parameters in females. Eight-week-old female C57BL/6J mice were subjected to SHAM or OVX surgery and received dietary 17α-E2 during a six-week intervention period. We observed that 17α-E2 prevented OVX-induced increases in body weight and adiposity. Similarly, uterine weight and luminal cell thickness were decreased by OVX and prevented by 17α-E2 treatment. Interestingly, 17α-E2 prevented OVX-induced declines in tibial metaphysis cancellous bone. And similarly, 17α-E2 improved bone density parameters in both tibia and femur cancellous bone, primarily in OVX mice. In contrast, to the effects on cancellous bone, cortical bone parameters were largely unaffected by OVX or 17α-E2. In the non-weight bearing lumbar vertebrae, OVX reduced trabecular thickness but not spacing, while 17α-E2 increased trabecular thickness and reduced spacing. Despite this, 17α-E2 did improve bone volume/tissue volume in lumbar vertebrae. Overall, we found that 17α-E2 prevented OVX-induced increases in adiposity and changes in bone mass and architecture, with minimal effects in SHAM-operated mice. We also observed that 17α-E2 rescued uterine tissue mass and lining morphology to control levels without inducing hypertrophy, suggesting that 17α-E2 could be considered as an adjunct to traditional hormone replacement therapies.
Collapse
Affiliation(s)
- Shivani N Mann
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Molly H Nelson-Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Urszula T Iwaniec
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA.
| | - Russell T Turner
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA.
| | - Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Katherine T Morris
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|