1
|
Liu W, Wang K, Lin Y, Wang L, Jin X, Qiu Y, Sun W, Zhang L, Sun Y, Dou X, Luo S, Su Y, Sun Q, Xiang W, Diao F, Li J. VPS34 Governs Oocyte Developmental Competence by Regulating Mito/Autophagy: A Novel Insight into the Significance of RAB7 Activity and Its Subcellular Location. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308823. [PMID: 39287146 PMCID: PMC11538714 DOI: 10.1002/advs.202308823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/06/2024] [Indexed: 09/19/2024]
Abstract
Asynchronous nuclear and cytoplasmic maturation in human oocytes is believed to cause morphological anomalies after controlled ovarian hyperstimulation. Vacuolar protein sorting 34 (VPS34) is renowned for its pivotal role in regulating autophagy and endocytic trafficking. To investigate its impact on oocyte development, oocyte-specific knockout mice (ZcKO) are generated, and these mice are completely found infertile, with embryonic development halted at 2- to 4-cell stage. This infertility is related with a disruption on autophagic/mitophagic flux in ZcKO oocytes, leading to subsequent failure of zygotic genome activation (ZGA) in derived 2-cell embryos. The findings further elucidated the regulation of VPS34 on the activity and subcellular translocation of RAS-related GTP-binding protein 7 (RAB7), which is critical not only for the maturation of late endosomes and lysosomes, but also for initiating mitophagy via retrograde trafficking. VPS34 binds directly with RAB7 and facilitates its activity conversion through TBC1 domain family member 5 (TBC1D5). Consistent with the cytoplasmic vacuolation observed in ZcKO oocytes, defects in multiple vesicle trafficking systems are also identified in vacuolated human oocytes. Furthermore, activating VPS34 with corynoxin B (CB) treatment improved oocyte quality in aged mice. Hence, VPS34 activation may represent a novel approach to enhance oocyte quality in human artificial reproduction.
Collapse
Affiliation(s)
- Wenwen Liu
- State Key Laboratory of Reproductive Medicine and Offspring HealthWomen's Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing Medical UniversityNanjingJiangsu211166China
| | - Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthCenter of Reproduction and GeneticsAffiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhouJiangsu215002China
| | - Yuting Lin
- The Center for Clinical Reproductive MedicineState Key Laboratory of Reproductive Medicine and Offspring HealthThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu212028China
| | - Lu Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Reproductive MedicineCangzhou Central HospitalCangzhouHebei061012China
| | - Xin Jin
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Center of Reproductive MedicineWuxi Maternity and Child Health Care HospitalNanjing Medical UniversityWuxiJiangsu214200China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Wenya Sun
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Ling Zhang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Yan Sun
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Xiaowei Dou
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsu210011China
| | - Shiming Luo
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouGuangdong513023China
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental BiologySchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Qingyuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouGuangdong513023China
| | - Wenpei Xiang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Feiyang Diao
- The Center for Clinical Reproductive MedicineState Key Laboratory of Reproductive Medicine and Offspring HealthThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu212028China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Innovation Center of Suzhou Nanjing Medical UniversitySuzhou430074China
| |
Collapse
|
2
|
Somma T, Mastantuoni C, Rispoli R, Bove I, Bocchino A, Salcuni AS, Driul L, Esposito F, Cappabianca P, Tessitore E, Cappelletto B. Pregnancy and lactation associated osteoporotic vertebral fracture: the neurosurgical perspective through a multicentric study. Neurosurg Rev 2024; 47:811. [PMID: 39436485 DOI: 10.1007/s10143-024-03056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/18/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
Pregnancy and lactation-associated osteoporosis is a rare form of osteoporosis occurring during late pregnancy and early lactation, featuring fragility fractures, primarily involving the vertebral bodies and leading to back pain. Its management involves osteoporosis treatment, complicated by potential drug-related dangerous effects on the fetus. Nevertheless, many controversies remain regarding diagnosis, prognosis, and treatment options. Herein, we propose a multicentric case series to provide a comprehensive neurosurgical, gynecological, and endocrinological perspective on the management of pregnancy and lactation-associated osteoporotic vertebral fractures. A multicenter retrospective study was conducted at the Neurosurgical Department of Università degli Studi di Napoli Federico II, the Neurosurgical Unit of Hopitaux Universitaires de Genève, and the Spine and Spinal Cord Surgery Unit of the University Hospital of Udine, collecting data from January 2014 to December 2022. The study has been approved by the ethical committee of each hospital. N = 11 patients with an overall number of 31 fractures were eligible, with a mean age of 36. N = 5 (16%) fractures in 4 patients (36%) developed during pregnancy, and N = 26 (84%) fractures in 7 (64%) patients occurred during lactation. The mean number of fractures per patient was 2,81. In 10 (90%) patients, fractures occurred at the first pregnancy, and 5 (45%) patients had uneventful subsequent pregnancies. The mean clinical signs and symptoms were back pain (92%), followed by loss of height (75%) and kyphosis (4 patients, 35%). One (9,09%) patient underwent in vitro fertilization (IVF), and one patient (9,09%) was receiving hormonal therapy (ethinylestradiol/drosiprenone). 10 out of 11 (90%) patients were treated conservatively, and 6 of them (60%) were managed with an orthosis. One (9,1%) patient underwent surgery for 5-level kyphoplasty. The mean average reduction of pain after one year of follow-up was 6,7 on the visual analogue scale (p-value 0,04). Pregnancy-related osteoporotic vertebral fractures are an emerging issue in developing countries, for which a conservative strategy ensures the best outcomes. The main goal is to improve bone mineral density through calcium and vitamin D supplementation and bone-active drugs as bisphosphonates or teriparatide. Surgery is warranted only in cases of a risk of severe deterioration of neurological functions.
Collapse
Affiliation(s)
- Teresa Somma
- Division of Neurosurgery, Department of Neurological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Ciro Mastantuoni
- Neurosurgery Department, P.O. Santa Maria delle Grazie Hospital, Neurosurgery Unit, ASL Napoli 2 Nord, Via Domiziana 1, Naples, 80078, Italy.
| | - Rossella Rispoli
- Spine and Spinal Cord Surgery Unit, University Hospital of Udine, Udine, Italy
| | - Ilaria Bove
- Division of Neurosurgery, Department of Neurological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Andrea Bocchino
- Spine and Spinal Cord Surgery Unit, University Hospital of Udine, Udine, Italy
| | | | - Lorenza Driul
- Department of Obstetrics and Gynecology, University Hospital of Udine, Udine, Italy
| | - Felice Esposito
- Division of Neurosurgery, Department of Neurological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Paolo Cappabianca
- Division of Neurosurgery, Department of Neurological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Enrico Tessitore
- Department of Clinical Neurosciences, Division of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Barbara Cappelletto
- Spine and Spinal Cord Surgery Unit, University Hospital of Udine, Udine, Italy
| |
Collapse
|
3
|
Rakha SI, Ateya AI, Safhi FA, Abdellatif AM. Ameliorative Effect of Lycopene on Follicular Reserve Depletion, Oxidative Damage, Apoptosis Rate, and Hormonal Profile during Repeated Superovulations in Mice. Vet Sci 2024; 11:414. [PMID: 39330792 PMCID: PMC11435522 DOI: 10.3390/vetsci11090414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Superovulation is a crucial step in assisted reproductive technology that involves the administration of gonadotrophins. Repeated superovulations result in severe ovarian damage. The present study investigated the effect of in vivo administration of lycopene on ovarian damage induced by four successive cycles of superovulation. Superovulated mice were simultaneously administered intraperitoneally with saline (R4) or 5 mg/kg lycopene (R4-Lyc). The evaluated parameters were the count of different types of follicles, expression of ovarian antioxidant- and apoptosis-related genes, and serum concentrations of estradiol, progesterone, and inhibin-B. Increased numbers of healthy follicles and a decreased count of atretic follicles were observed in mice of the R4-Lyc group compared to those of the R4 group. Moreover, significantly higher mRNA levels of Sod3, Cat, and Nrf2 and lower mRNA levels of Keap1, Tnf, Nfkb, and Casp3, together with decreased H2O2 concentrations and increased total antioxidant capacity, were detected in the ovaries of lycopene-treated mice. Regarding serum reproductive hormones, elevated concentrations of estradiol, progesterone, and inhibin-B were evident in lycopene-administered mice. The present study reports a significant role of lycopene in alleviating the ovarian damage induced by multiple hormonal superstimulations, which could help to improve the outcomes of in vitro embryo production.
Collapse
Affiliation(s)
- Shimaa I Rakha
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Fatmah A Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed M Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
4
|
Sampaio OGM, Santos SAAR, Damasceno MDBMV, Joventino LB, Schneider A, Masternak MM, Campos AR, Cavalcante MB. Impact of repeated ovarian hyperstimulation on the reproductive function. J Reprod Immunol 2024; 164:104277. [PMID: 38889661 DOI: 10.1016/j.jri.2024.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
One of six couples (17.5 % of the adult population) worldwide is affected by infertility during their lifetime. This number represents a substantial increase in the prevalence of this gynecological condition over the last decade. Ovulatory dysfunction and anovulation are the main causes of female infertility. Timed intercourse, intrauterine insemination, and assisted reproductive technology (ART), such as in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), are the most common interventions for infertile couples. Ovulation induction protocols for IVF/ICSI routinely use supraphysiological doses of gonadotropins to stimulate many preovulatory follicles. Animal and human studies suggested that ovarian hyperstimulation, alone or repeatedly, for ART cycles can induce changes in the immune response and increase the oxidative stress (OS) in the ovarian microenvironment. The consequences of repeated ovarian hyperstimulation on the human ovary remain poorly understood, particularly in relation to the effects of ovarian stimulation on the immune system and the potential for ovarian stimulation to cause OS. Animal studies have observed that repeated cycles of ovarian hyperstimulation can accelerate ovarian aging. Changes in ovarian hormone levels, accelerated loss of ovarian reserve, disorders in ovarian ultrastructure, ovarian senescence, and decreased reproductive performance represent possible long-term effects of repeated ovarian hyperstimulation. The short and long-term impact of the combination of antioxidant agents in ovarian hyperstimulation protocols in women undergoing ART must urgently be better understood. The recent increase in the number of ART and fertility preservation cycles may accelerate ovarian aging in these women, promoting consequences beyond the reproductive function and including health deterioration.
Collapse
Affiliation(s)
| | | | | | | | - Augusto Schneider
- Nutrition College, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Adriana Rolim Campos
- Graduate Program in Medical Sciences, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil
| | - Marcelo Borges Cavalcante
- Graduate Program in Medical Sciences, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil; Medical School, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil; CONCEPTUS - Reproductive Medicine, Fortaleza, CE 60.170-240, Brazil.
| |
Collapse
|
5
|
Sampaio OGM, Santos SAAR, Damasceno MDBMV, Joventino LB, Campos AR, Cavalcante MB. Repeated ovarian hyperstimulation promotes depression-like behavior in female mice. Horm Behav 2024; 164:105589. [PMID: 38878492 DOI: 10.1016/j.yhbeh.2024.105589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024]
Abstract
Controlled ovarian hyperstimulation (COH) is a common step for treating infertile couples undergoing assisted reproductive technologies and in female fertility preservation cycles. In some cases, undergoing multiple COHs is required for couples to conceive. Behavioral changes such as anxiety and depression can be caused by ovulation-inducing drugs. Sex steroids play a role in locomotor activity, behavioral changes, and nociception, specifically during fluctuations and sudden drops in estrogen levels. This study evaluated the effect of repeated ovarian hyperstimulation (ROH) on weight, locomotor activity, anxiety-like and depression-like behavior, and nociception in female mice. The animals were divided into two groups: control (placebo; Control) and treated (ROH; Treatment). Ovulation was induced once weekly for 10 consecutive weeks. Locomotor activity (open field test), anxiety-like behavior (elevated plus maze, hole board, and marble burying tests), depression-like behavior (splash and forced swim tests), and nociception (hot plate and Von Frey tests) were evaluated before and after ROH. Statistical analysis was conducted using two-way analysis of variance to evaluate the effects of ROH, age of mice, and their interaction. The results suggested that ROH contributed to weight gain, increased locomotor activity, and induced depression-like behavior in female mice. Furthermore, the age of the mouse contributed to weight gain, increased locomotor activity, and induced anxiety-like and depression-like behavior in female mice. ROH could change the behavior of female mice, particularly inducing depression-like behavior. Further studies are required to evaluate various COH protocols, specifically with drugs that prevent fluctuations and drastic drops in estrogen levels, such as aromatase inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Adriana Rolim Campos
- Graduate Program in Medical Sciences, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil; Experimental Biology Center, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil
| | - Marcelo Borges Cavalcante
- Graduate Program in Medical Sciences, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil; Medical School, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil; CONCEPTUS - Reproductive Medicine, Fortaleza, CE 60.170-240, Brazil.
| |
Collapse
|
6
|
Rahimi M, Daneshvar S, Khabbazi A. Pregnancy-associated osteoporosis following in vitro fertilization: A case report. Clin Case Rep 2024; 12:e8702. [PMID: 38523825 PMCID: PMC10957487 DOI: 10.1002/ccr3.8702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
This case report illustrates that in vitro fertilization (IVF) may be a potential risk factor for pregnancy-associated osteoporosis (PAO), highlighting the need for awareness and monitoring of bone health in women undergoing IVF treatments. PAO is a rare disease resulting from an imbalance of calcium in the body during pregnancy and lactation and presenting with fragility fractures. PAO occurs in late pregnancy or early postpartum period. A 28-year-old woman who conceived through IVF experienced severe back pain 2 days after delivery. Magnetic resonance imaging of the spine showed wedge-shaped fractures of T9-T12 vertebrae. Bone mineral density (BMD) was low on dual-energy x-ray absorptiometry. The laboratory tests were within the normal range. Based on the clinical manifestations, osteoporotic spine fracture, results of BMD, and exclusion of other causes of osteoporosis, the patient was diagnosed with PAO. Considering the deleterious effect of treatment with gonadotropin-releasing hormone and repeated superovulation on bone, we hypothesized that IVF may be an etiological factor for PAO.
Collapse
Affiliation(s)
- Mehran Rahimi
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Sara Daneshvar
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
7
|
Li M, Han J, Yang N, Li X, Wu X. Transcriptome profiling reveals superovulation with the gonadotropin-releasing hormone agonist trigger impaired embryo implantation in mice. Front Endocrinol (Lausanne) 2024; 15:1354435. [PMID: 38469140 PMCID: PMC10925639 DOI: 10.3389/fendo.2024.1354435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Superovulation is a critical step in assisted reproductive technology, but the use of human chorionic gonadotropin (hCG) as a trigger for superovulation can result in ovarian hyperstimulation. Thus, the use of Gonadotropin-releasing hormone agonist (GnRHa) trigger has been increasingly adopted, although it has been associated with a higher rate of pregnancy failure compared to natural cycles. This study aimed to investigate the effect of GnRHa trigger on embryo implantation in a mouse model. Methods Mice in the superovulation (PG) group were administered 7.5 IU of PMSG, followed by the injection of 3.5 μg of GnRHa (Leuprorelin) 48 h later, while mice in the control group (CTR) mated naturally. We compared the number of oocytes, blastocysts, and corpus luteum between the two groups and the implantation sites after the transfer of natural blastocysts. Ovaries, uterus, and serum 2 and 4 days after mating were collected for qRT-PCR, transcriptome sequencing, and hormone assays. Results The PG group had more oocytes, blastocysts, and corpus luteum after superovulation than the CTR group. However, the mRNA expression of leukemia inhibitory factor (Lif) and the number of implantation sites were reduced in the PG group. The ELISA assay revealed that superovulation increased ovarian estrogen secretion. The transcriptome analysis showed that superphysiological estrogen led to a response of the uterus to a high estrogen signal, resulting in abnormal endometrium and extracellular matrix remodeling and up-regulation of ion transport and inflammation-related genes. Conclusion Our findings suggest that a combination of PMSG and GnRHa trigger impaired embryo implantation in mice, as the excessive uterine response to superphysiological estrogen levels can lead to the change of gene expression related to endometrial remodeling, abnormal expression of uterine ion transport genes and excessive immune-related genes.
Collapse
Affiliation(s)
- Meng Li
- College of Animal Science and Technology, Hebei Technology Innovation Center of Cattle and Sheep Embryo, Hebei Agricultural University, Baoding, China
| | - Jingmei Han
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Nana Yang
- College of Animal Science and Technology, Hebei Technology Innovation Center of Cattle and Sheep Embryo, Hebei Agricultural University, Baoding, China
| | - Xiangyun Li
- College of Animal Science and Technology, Hebei Technology Innovation Center of Cattle and Sheep Embryo, Hebei Agricultural University, Baoding, China
| | - Xinglong Wu
- College of Animal Science and Technology, Hebei Technology Innovation Center of Cattle and Sheep Embryo, Hebei Agricultural University, Baoding, China
| |
Collapse
|
8
|
Panzaru MC, Florea A, Caba L, Gorduza EV. Classification of osteogenesis imperfecta: Importance for prophylaxis and genetic counseling. World J Clin Cases 2023; 11:2604-2620. [PMID: 37214584 PMCID: PMC10198117 DOI: 10.12998/wjcc.v11.i12.2604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous monogenic disease characterized by decreased bone mass, bone fragility, and recurrent fractures. The phenotypic spectrum varies considerably ranging from prenatal fractures with lethal outcomes to mild forms with few fractures and normal stature. The basic mechanism is a collagen-related defect, not only in synthesis but also in folding, processing, bone mineralization, or osteoblast function. In recent years, great progress has been made in identifying new genes and molecular mechanisms underlying OI. In this context, the classification of OI has been revised several times and different types are used. The Sillence classification, based on clinical and radiological characteristics, is currently used as a grading of clinical severity. Based on the metabolic pathway, the functional classification allows identifying regulatory elements and targeting specific therapeutic approaches. Genetic classification has the advantage of identifying the inheritance pattern, an essential element for genetic counseling and prophylaxis. Although genotype-phenotype correlations may sometimes be challenging, genetic diagnosis allows a personalized management strategy, accurate family planning, and pregnancy management decisions including options for mode of delivery, or early antenatal OI treatment. Future research on molecular pathways and pathogenic variants involved could lead to the development of genotype-based therapeutic approaches. This narrative review summarizes our current understanding of genes, molecular mechanisms involved in OI, classifications, and their utility in prophylaxis.
Collapse
Affiliation(s)
- Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Andreea Florea
- Department of Medical Genetics - Medical Genetics resident, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
9
|
Guan F, Zhang S, Fan L, Sun Y, Ma Y, Cao C, Zhang Y, He M, Du H. Kunling Wan improves oocyte quality by regulating the PKC/Keap1/Nrf2 pathway to inhibit oxidative damage caused by repeated controlled ovarian hyperstimulation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115777. [PMID: 36191663 DOI: 10.1016/j.jep.2022.115777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kunling Wan (KW) is a traditional Chinese medicine that is principally used for kidney deficiency, qi stagnation, and blood stasis, which are basic syndromes of infertility in China. KW can improve ovarian follicular development, ovarian function, and endometrial receptivity, which lead to improving pregnancy outcomes. Repeated controlled ovarian hyperstimulation (COH) reduces oocyte quality and results in a lower pregnancy rate. Whether KW has the potential to improve oocyte quality reduced by repeated COH has yet to be determined. AIMS OF THE STUDY The aim of this study wwas to evaluate the effect of KW on oocyte quality after damage due to repeated COH, and to investigate the mechanism(s) underlying the antioxidative protection of oocytes by mitochondria. MATERIALS AND METHODS Female Kunming mice were randomly divided into four groups: normal group, model (repeated COH) group, KW group, and N-acetylcysteine (NAC) group. We observed the morphology and quality of mitochondria, level of reactive oxygen species (ROS), and antioxidant enzymes activity of each group. Oocytes were treated with H2O2 and KW-containing serum, and we determined the antioxidant effects of KW on H2O2-treated oocytes and the mechanism involved in the regulation of Nrf2 in reducing oxidative damage. RESULTS Our results revealed that repeated COH caused oxidative damage and impaired oocyte mitochondrial function and structure, resulting in poor oocyte quality. KW pretreatment reduced oxidative damage by inhibiting ROS production and improving mitochondrial structure and function, thereby enhancing overall oocyte quality. In response to H2O2, KW activated the PKC/Keap1/Nrf2-signaling pathway and promoted the translocation of Nrf2 from the cytoplasm to the nucleus, which activated the expression of SOD and GSH-Px, and removed the excess ROS that caused the initial mitochondrial damage. CONCLUSIONS KW improved oocyte quality perturbed by repeated COH via reducing oxidative effects and improving mitochondrial function. The mechanism may be related to regulation of the PKC/Keap1/Nrf2 pathway in removing excess ROS.
Collapse
Affiliation(s)
- Fengli Guan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Shuancheng Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Lijie Fan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Ying Sun
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yucong Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Can Cao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Yu Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Ming He
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China.
| | - Hulan Du
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China.
| |
Collapse
|
10
|
Repeated controlled ovarian stimulation-induced ovarian and uterine damage in mice through the PI3K/AKT signaling pathway. Hum Cell 2023; 36:234-243. [PMID: 36441500 DOI: 10.1007/s13577-022-00829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
The effects of repeated controlled ovarian stimulation (COS) on the female reproductive system are still controversial. This study investigated the effects of repeated COS on the ovaries and uterus of mice and its possible mechanism. Female ICR (Institute of Cancer Research) mice were subjected to the COS using pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) for 1, 3, 5, and 7 cycles. Serum hormone levels, reactive oxidative stress (ROS), 8-hydroxy-2'-deoxyguanosine (8-OHdG), total antioxidant capacity (T-AOC), and superoxide dismutase (SOD) in the mouse ovary and uterus were analyzed by ELISA. The morphology of the ovary and endometrium, ovarian apoptosis, and expressions of the vascular endothelial growth factor (VEGF), leukemia inhibitory factor (LIF), PI3K, AKT, Bax, and Bcl-2 in the ovarian and uterine tissues were tested by hematoxylin-eosin (HE) staining, immunohistochemistry, and western blot. The results showed that repeated COS significantly decreased the hormone level (estradiol, progesterone and anti-Müllerian hormone), high-quality of the MII oocyte ratio, oocyte and embryo number, antioxidant capacity (T-AOC, SOD activity), and the protein level of Bcl-2, LIF, and VEGF, but increased the oxidative damage (ROS, 8-OHdG content), embryo fragment ratio, and expression of pro-apoptotic protein Bax. In addition, the expressions of p-PI3K and p-AKT also decreased with the increase of COS cycle. In conclusion, repeated COS causes ovarian and uterus damage possibly through the PI3K/AKT signaling pathway, and this finding may provide some experimental basis for guiding clinical treatment.
Collapse
|
11
|
Xiao Y, Peng X, Peng Y, Zhang C, Liu W, Yang W, Dou X, Jiang Y, Wang Y, Yang S, Xiang W, Wu T, Li J. Macrophage-derived extracellular vesicles regulate follicular activation and improve ovarian function in old mice by modulating local environment. Clin Transl Med 2022; 12:e1071. [PMID: 36229897 PMCID: PMC9561167 DOI: 10.1002/ctm2.1071] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023] Open
Abstract
In mammals, ovarian function is dependent on the primordial follicle pool and the rate of primordial follicle activation determines a female's reproductive lifespan. Ovarian ageing is characterised by chronic low-grade inflammation with accelerated depletion of primordial follicles and deterioration of oocyte quality. Macrophages (Mφs) play critical roles in multiple aspects of ovarian functions; however, it remains unclear whether Mφs modulate the primordial follicle pool and what is their role in ovarian ageing. Here, by using super- or naturally ovulated mouse models, we demonstrated for the first time that ovulation-induced local inflammation acted as the driver for selective activation of surrounding primordial follicles in each estrous cycle. This finding was related to infiltrating Mφs in ovulatory follicles and the dynamic changes of the two polarised Mφs, M1 and M2 Mφs, during the process. Further studies on newborn ovaries cocultured with different subtypes of Mφs demonstrated the stimulatory effect of M1 Mφs on primordial follicles, whereas M2 Mφs maintained follicles in a dormant state. The underlying mechanism was associated with the differential regulation of the Phosphatidylinositol 3-kinase/Mechanistic target of rapamycin (PI3K/mTOR) signaling pathway through secreted extracellular vesicles (EVs) and the containing specific miRNAs miR-107 (M1 Mφs) and miR-99a-5p (M2 Mφs). In aged mice, the intravenous injection of M2-EVs improved ovarian function and ameliorated the inflammatory microenvironment within the ovary. Thus, based on the anti-ageing effects of M2 Mφs in old mice, M2-EVs may represent a new approach to improve inflammation-related infertility in women.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsuChina,Women's Hospital School of Medicine Zhejiang UniversityZhejiangHangzhouChina
| | - Xiaoxu Peng
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsuChina,Bayer Healthcare Company LimitedPudongShanghaiChina
| | - Yue Peng
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Chi Zhang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Wei Liu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Weijie Yang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsuChina,Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw HospitalZhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceZhejiangHangzhouChina
| | - Xiaowei Dou
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsuChina,Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yuying Jiang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsuChina,Department of Immunology, Key Laboratory of Immunological Environment and Disease, Gusu School, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global HealthNanjing Medical UniversityNanjingJiangsuChina
| | - Yaxuan Wang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsuChina
| | - Shuo Yang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsuChina,Department of Immunology, Key Laboratory of Immunological Environment and Disease, Gusu School, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global HealthNanjing Medical UniversityNanjingJiangsuChina
| | - Wenpei Xiang
- Family Planning Research Institute/Center of Reproductive MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Tinghe Wu
- State Key Laboratory of Translational Medicine and Innovative Drug DevelopmentJiangsu Simcere Pharmaceutical Co., Ltd.NanjingJiangsuChina
| | - Jing Li
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
12
|
Yan F, Zhao Q, Li Y, Zheng Z, Kong X, Shu C, Liu Y, Shi Y. The role of oxidative stress in ovarian aging: a review. J Ovarian Res 2022; 15:100. [PMID: 36050696 PMCID: PMC9434839 DOI: 10.1186/s13048-022-01032-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
Ovarian aging refers to the process by which ovarian function declines until eventual failure. The pathogenesis of ovarian aging is complex and diverse; oxidative stress (OS) is considered to be a key factor. This review focuses on the fact that OS status accelerates the ovarian aging process by promoting apoptosis, inflammation, mitochondrial damage, telomere shortening and biomacromolecular damage. Current evidence suggests that aging, smoking, high-sugar diets, pressure, superovulation, chemotherapeutic agents and industrial pollutants can be factors that accelerate ovarian aging by exacerbating OS status. In addition, we review the role of nuclear factor E2-related factor 2 (Nrf2), Sirtuin (Sirt), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), Forkhead box O (FoxO) and Klotho signaling pathways during the process of ovarian aging. We also explore the role of antioxidant therapies such as melatonin, vitamins, stem cell therapies, antioxidant monomers and Traditional Chinese Medicine (TCM), and investigate the roles of these supplements with respect to the reduction of OS and the improvement of ovarian function. This review provides a rationale for antioxidant therapy to improve ovarian aging.
Collapse
Affiliation(s)
- Fei Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qi Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ying Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhibo Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xinliang Kong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Chang Shu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yanfeng Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Ma YC, Hao GM, Zhao ZM, Cui N, Fan YL, Zhang SC, Chen JW, Cao YC, Guan FL, Geng JR, Gao BL, Du HL. Effects of Bushen-Tiaojing-Fang on the pregnancy outcomes of infertile patients with repeated controlled ovarian stimulation. Sci Rep 2021; 11:15233. [PMID: 34635680 PMCID: PMC8505422 DOI: 10.1038/s41598-021-94366-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
Bushen-Tiaojing-Fang (BSTJF) is commonly used to treat infertility. This study investigated the effects of BSTJF on the pregnancy outcomes of patients with repeated controlled ovarian stimulation (COS), on mitochondrial function, and on oxidative stress in ovarian granulosa cells (GCs) and follicular fluid (FF). The samples and clinical data of 97 patients, including 35 in the control group, 29 in the placebo group and 33 in the BSTJF group, were collected for this study. The mitochondrial ultrastructure, ATP content, mitochondrial DNA (mtDNA) number, 8-hydroxy-2-deoxyguanosine (8-OHdG), Mn-superoxide dismutase (Mn-SOD), glutathione peroxidase (GSH-Px) activity levels, and mRNA expression levels of Mn-SOD, GSH-Px, and nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2) were analyzed. The high-grade embryo (P < 0.001), implantation (P = 0.033), and clinical pregnancy (P = 0.031) rates, as well as the ATP content (P = 0.014), mtDNA number (P = 0.035), GSH-Px activity (P = 0.004 in GCs and P = 0.008 in FF) and mRNA expression levels (P = 0.019), were significantly lower in the placebo group than in the control group, whereas the 8-OHdG content was significantly (P = 0.006 in FF) higher in the placebo group than in the control group. Compared with those in the placebo group, the high-grade embryo rate (P = 0.007), antioxidant enzyme activity (P = 0.037 and 0.036 in Mn-SOD; P = 0.047 and 0.030 in GSH-Px) and mRNA level (P < 0.001 in Nrf2, P = 0.039 in Mn-SOD and P = 0.002 in GSH-Px) were significantly higher in the BSTJF group, as were changes in mitochondrial ultrastructure, ATP (P = 0.040) and mtDNA number (P = 0.013). In conclusion, BSTJF can improve oxidative stress in patients with repeated COS and pregnancy outcomes.
Collapse
Affiliation(s)
- Yu-Cong Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Gui-Min Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhi-Ming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Na Cui
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yan-Li Fan
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shuan-Cheng Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Jing-Wei Chen
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Yu-Cong Cao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Feng-Li Guan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Jing-Ran Geng
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Bu-Lang Gao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Hui-Lan Du
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China.
| |
Collapse
|
14
|
Ma Y, Zhao Z, Hao G, Cui N, Fan Y, Cao Y, Tan Z, Geng J, Fan L, Du H, Gao B. Effects of multicycle gonadotropin-releasing hormone antagonist protocols on oxidative stress of follicular fluid and ovarian granulosa cells. Hum Cell 2021; 34:1324-1334. [PMID: 33963989 DOI: 10.1007/s13577-021-00545-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
The effect of repeated multicycle gonadotropin-releasing hormone antagonist (GnRH-ant) protocols on oxidative stress (OS) in follicular fluid (FF) and ovarian granulosa cells (GCs) remains unclear. This study investigated the effects of repeated multicycle GnRH-ant protocols on OS markers of FF and ovarian GCs. A total of 145 patients were enrolled and divided into four groups: 1 cycle group (n = 42), 2 cycles group (n = 37), 3 cycles group (n = 45), and 4-5 cycles group (n = 21). The FF and ovarian GCs of the patients were collected on the day of last oocyte retrieval and the levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were tested by ELISA. The results showed that the serum estradiol levels on hCG injection day in the 3 and 4-5 cycles were significantly (P < 0.05) lower than in the 1 and 2 cycles. The number of retrieved oocytes (12.1 ± 3.3 in cycle 1, 11.7 ± 3.1 in cycle 2, 10.4 ± 2.4 in cycle 3, and 9.4 ± 2.4 in cycles 4-5), embryos with two pronuclei (7.6 ± 3.0 in cycle 1, 7.0 ± 2.5 in cycle 2, 6.2 ± 2.6 in cycle 3, and 5.5 ± 2.1 in cycles 4-5), and the rates of high-quality embryos (52.2% in cycle 1, 47.9% in cycle 2, 38.6% in cycle 3, and 36.5% in cycles 4-5), implantation (35.4% in cycle 1, 32.4% in cycle 2, 23.8% in cycle 3, and 22.9% in cycles 4-5) and clinical pregnancy (50.0% in cycle 1, 43.2% in cycle 2, 33.3% in cycle 3, and 23.8% in cycles 4-5) in cycles 3 and 4-5 were significantly (P < 0.05) lower than those in cycles 1 and 2. Compared with 1 and 2 cycles, the 8-OHdG and SOD were significantly increased in the 3-5 cycles, while the CAT and GSH-Px levels were significantly decreased. Together, this study reveals repeated COS with the use of GnRH-ant protocols results in OS and changes the follicle microenvironment of FF and GCs, possibly leading to poor IVF outcomes in patients with 3-5 cycles of COS.
Collapse
Affiliation(s)
- Yucong Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Zhiming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Cui
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanli Fan
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yucong Cao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Zhanwang Tan
- Department of Clinical Basics of Chinese Medicine, College of Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingran Geng
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Lijie Fan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Huilan Du
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China.
| | - Bulang Gao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Zhytnik L, Simm K, Salumets A, Peters M, Märtson A, Maasalu K. Reproductive options for families at risk of Osteogenesis Imperfecta: a review. Orphanet J Rare Dis 2020; 15:128. [PMID: 32460820 PMCID: PMC7251694 DOI: 10.1186/s13023-020-01404-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background Osteogenesis Imperfecta (OI) is a rare genetic disorder involving bone fragility. OI patients typically suffer from numerous fractures, skeletal deformities, shortness of stature and hearing loss. The disorder is characterised by genetic and clinical heterogeneity. Pathogenic variants in more than 20 different genes can lead to OI, and phenotypes can range from mild to lethal forms. As a genetic disorder which undoubtedly affects quality of life, OI significantly alters the reproductive confidence of families at risk. The current review describes a selection of the latest reproductive approaches which may be suitable for prospective parents faced with a risk of OI. The aim of the review is to alleviate suffering in relation to family planning around OI, by enabling prospective parents to make informed and independent decisions. Main body The current review provides a comprehensive overview of possible reproductive options for people with OI and for unaffected carriers of OI pathogenic genetic variants. The review considers reproductive options across all phases of family planning, including pre-pregnancy, fertilisation, pregnancy, and post-pregnancy. Special attention is given to the more modern techniques of assisted reproduction, such as preconception carrier screening, preimplantation genetic testing for monogenic diseases and non-invasive prenatal testing. The review outlines the methodologies of the different reproductive approaches available to OI families and highlights their advantages and disadvantages. These are presented as a decision tree, which takes into account the autosomal dominant and autosomal recessive nature of the OI variants, and the OI-related risks of people without OI. The complex process of decision-making around OI reproductive options is also discussed from an ethical perspective. Conclusion The rapid development of molecular techniques has led to the availability of a wide variety of reproductive options for prospective parents faced with a risk of OI. However, such options may raise ethical concerns in terms of methodologies, choice management and good clinical practice in reproductive care, which are yet to be fully addressed.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.
| | - Kadri Simm
- Institute of Philosophy and Semiotics, Faculty of Arts and Humanities, University of Tartu, Tartu, Estonia.,Centre of Ethics, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Institute of Genomics, University of Tartu, Tartu, Estonia.,COMBIVET ERA Chair, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Aare Märtson
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
16
|
Tarín JJ, Pascual E, Pérez-Hoyos S, Gómez R, García-Pérez MA, Cano A. Cumulative probabilities of live birth across multiple complete IVF/ICSI cycles: a call for attention. J Assist Reprod Genet 2019; 37:141-148. [PMID: 31808046 DOI: 10.1007/s10815-019-01608-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To call attention to the fact that cumulative live birth (LB) proportions exhibit an inverted pattern to that displayed by each individual oocyte retrieval cycle (ORC-specific LB proportions) as well as when grouping together all the ORCs undergone by a woman (TNORC-specific LB proportions). METHODS A retrospective study of 1433 infertile women that had a LB using autologous fresh or frozen embryos and/or dropped out of IVF/ICSI treatment after completing a maximum number of three treatment cycles. Generalized Estimating Equations (GEE) and standard and landmark Kaplan-Meier survival analyses were applied. RESULTS A standard Kaplan-Meier analysis indicated that cumulative LB proportions rose as number of ORCs increased (0.320, 0.484, and 0.550 at ORC 1, 2, and 3, respectively). In contrast, landmark ORC-specific LB proportions showed an inverted pattern (0.320, 0.242, and 0.127 at ORC 1, 2, and 3, respectively). GEE models revealed that women's clinical outcomes decreased as TNORCs increased. In particular, compared to women that experienced just one ORC, women that underwent two and three ORCs displayed higher incidences of cycle cancellations before either oocyte retrieval or embryo transfer, and clinical pregnancy losses, and lower odds of LB. CONCLUSION Infertile women should be informed that cumulative LB probabilities exhibit an inverted pattern to that displayed by each individual ORC as well as when grouping together all the ORCs undergone by a woman.
Collapse
Affiliation(s)
- Juan J Tarín
- Department of Cellular Biology, Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
- Institute of Health Research INCLIVA, Valencia, Spain.
| | - Eva Pascual
- Department of Cellular Biology, Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Santiago Pérez-Hoyos
- Unitat d'Estadística i Bioinformàtica (UEB), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Raúl Gómez
- Institute of Health Research INCLIVA, Valencia, Spain
| | - Miguel A García-Pérez
- Institute of Health Research INCLIVA, Valencia, Spain
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, Burjassot, Valencia, Spain
| | - Antonio Cano
- Institute of Health Research INCLIVA, Valencia, Spain
- Service of Obstetrics and Gynecology, University Clinic Hospital, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
17
|
Shen L, Chen Y, Cheng J, Yuan S, Zhou S, Yan W, Liu J, Luo A, Wang S. CCL5 secreted by senescent theca‐interstitial cells inhibits preantral follicular development via granulosa cellular apoptosis. J Cell Physiol 2019; 234:22554-22564. [PMID: 31111482 DOI: 10.1002/jcp.28819] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lu Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yuan Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine Zhejiang University Hangzhou China
| | - Jing Cheng
- Department of Obstetrics and Gynecology Zhongnan Hospital of Wuhan University Wuhan China
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Junfeng Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|