1
|
Tahmaz I, Shahmoradi Ghahe S, Stasiak M, Liput KP, Jonak K, Topf U. Prefoldin 2 contributes to mitochondrial morphology and function. BMC Biol 2023; 21:193. [PMID: 37697385 PMCID: PMC10496292 DOI: 10.1186/s12915-023-01695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Prefoldin is an evolutionarily conserved co-chaperone of the tailless complex polypeptide 1 ring complex (TRiC)/chaperonin containing tailless complex 1 (CCT). The prefoldin complex consists of six subunits that are known to transfer newly produced cytoskeletal proteins to TRiC/CCT for folding polypeptides. Prefoldin function was recently linked to the maintenance of protein homeostasis, suggesting a more general function of the co-chaperone during cellular stress conditions. Prefoldin acts in an adenosine triphosphate (ATP)-independent manner, making it a suitable candidate to operate during stress conditions, such as mitochondrial dysfunction. Mitochondrial function depends on the production of mitochondrial proteins in the cytosol. Mechanisms that sustain cytosolic protein homeostasis are vital for the quality control of proteins destined for the organelle and such mechanisms among others include chaperones. RESULTS We analyzed consequences of the loss of prefoldin subunits on the cell proliferation and survival of Saccharomyces cerevisiae upon exposure to various cellular stress conditions. We found that prefoldin subunits support cell growth under heat stress. Moreover, prefoldin facilitates the growth of cells under respiratory growth conditions. We showed that mitochondrial morphology and abundance of some respiratory chain complexes was supported by the prefoldin 2 (Pfd2/Gim4) subunit. We also found that Pfd2 interacts with Tom70, a receptor of mitochondrial precursor proteins that are targeted into mitochondria. CONCLUSIONS Our findings link the cytosolic prefoldin complex to mitochondrial function. Loss of the prefoldin complex subunit Pfd2 results in adaptive cellular responses on the proteome level under physiological conditions suggesting a continuous need of Pfd2 for maintenance of cellular homeostasis. Within this framework, Pfd2 might support mitochondrial function directly as part of the cytosolic quality control system of mitochondrial proteins or indirectly as a component of the protein homeostasis network.
Collapse
Affiliation(s)
- Ismail Tahmaz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Somayeh Shahmoradi Ghahe
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Monika Stasiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Kamila P Liput
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Katarzyna Jonak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Ulrike Topf
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
2
|
Musa M, Dionisio PA, Casqueiro R, Milosevic I, Raimundo N, Krisko A. Lack of peroxisomal catalase affects heat shock response in Caenorhabditis elegans. Life Sci Alliance 2022; 6:6/1/e202201737. [PMID: 36347545 PMCID: PMC9644420 DOI: 10.26508/lsa.202201737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Exact mechanisms of heat shock-induced lifespan extension, although documented across species, are still not well understood. Here, we show that fully functional peroxisomes, specifically peroxisomal catalase, are needed for the activation of canonical heat shock response and heat-induced hormesis in Caenorhabditis elegans Although during heat shock, the HSP-70 chaperone is strongly up-regulated in the WT and in the absence of peroxisomal catalase (ctl-2(ua90)II), the small heat shock proteins display modestly increased expression in the mutant. Nuclear foci formation of HSF-1 is reduced in the ctl-2(ua90)II mutant. In addition, heat-induced lifespan extension, observed in the WT, is absent in the ctl-2(ua90)II strain. Activation of the antioxidant response and pentose phosphate pathway are the most prominent changes observed during heat shock in the WT worm but not in the ctl-2(ua90)II mutant. Involvement of peroxisomes in the cell-wide cellular response to transient heat shock reported here gives new insight into the role of organelle communication in the organism's stress response.
Collapse
Affiliation(s)
- Marina Musa
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Pedro A Dionisio
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ricardo Casqueiro
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal,Nuffield Department of Medicine, Wellcome Centre for Human Genetics, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal,Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Odoh CK, Guo X, Arnone JT, Wang X, Zhao ZK. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae. Biogerontology 2022; 23:169-199. [PMID: 35260986 PMCID: PMC8904166 DOI: 10.1007/s10522-022-09958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Molecular causes of aging and longevity interventions have witnessed an upsurge in the last decade. The resurgent interests in the application of small molecules as potential geroprotectors and/or pharmacogenomics point to nicotinamide adenine dinucleotide (NAD) and its precursors, nicotinamide riboside, nicotinamide mononucleotide, nicotinamide, and nicotinic acid as potentially intriguing molecules. Upon supplementation, these compounds have shown to ameliorate aging related conditions and possibly prevent death in model organisms. Besides being a molecule essential in all living cells, our understanding of the mechanism of NAD metabolism and its regulation remain incomplete owing to its omnipresent nature. Here we discuss recent advances and techniques in the study of chronological lifespan (CLS) and replicative lifespan (RLS) in the model unicellular organism Saccharomyces cerevisiae. We then follow with the mechanism and biology of NAD precursors and their roles in aging and longevity. Finally, we review potential biotechnological applications through engineering of microbial lifespan, and laid perspective on the promising candidature of alternative redox compounds for extending lifespan.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - James T Arnone
- Department of Biology, William Paterson University, Wayne, NJ, 07470, USA
| | - Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
| |
Collapse
|
4
|
Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res 2021; 20:5670642. [PMID: 31816015 DOI: 10.1093/femsyr/foz085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.
Collapse
Affiliation(s)
- Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
5
|
Zhang M, Wang J, Niu C, Zheng F, Liu C, Li Q. Screening of thermosensitive autolytic mutant brewer’s yeast and transcriptomic analysis of heat stress response. Can J Microbiol 2020; 66:631-640. [DOI: 10.1139/cjm-2019-0456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Brewer’s yeast has been widely used in the food industry, and the autolysates thereof are increasingly being studied for their valuable nutritional compositions. Yeast autolysis is most affected by medium composition and temperature. In this study, a thermosensitive autolytic brewer’s yeast P-510 was obtained with atmospheric and room temperature plasma mutagenesis plus 5-bromo-chloro-3-indolyl phosphate screening. The mutant rapidly autolyzed at 37 °C and the autolysates contained more active components and showed higher antioxidant activities compared with that of the parental strain, which indicated that the mutant’s autolysates can potentially be used as functional food and nutritional ingredients. Transcriptomic analysis of the mutant and parental strains at 28 and 37 °C suggested that thermosensitive autolysis of P-510 was probably caused by mitochondrial disfunction, glycogen metabolic flux of glycolysis and pentose phosphate pathway disorder, as well as hexose transport inhibition. The results revealed the important role of mitochondrial metabolism and glycogen utilization regulation in heat stress response of yeast.
Collapse
Affiliation(s)
- Mingfang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| |
Collapse
|
6
|
Meta-analytic evidence for the anti-aging effect of hormesis on Caenorhabditis elegans. Aging (Albany NY) 2020; 12:2723-2746. [PMID: 32031985 PMCID: PMC7041774 DOI: 10.18632/aging.102773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/12/2020] [Indexed: 11/26/2022]
Abstract
Mild stress-induced hormesis, as a promising strategy to improve longevity and healthy aging, meets both praise and criticism. To comprehensively assess the applicability of hormesis in aging intervention, this meta-analysis was conducted focusing on the effect of hormesis on Caenorhabditis elegans. Twenty-six papers involving 198 effect size estimates met the inclusion criteria. Meta-analytic results indicated that hormesis could significantly extend the mean lifespan of C. elegans by 16.7% and 25.1% under normal and stress culture conditions (p < 0.05), respectively. The healthspan assays showed that hormesis remarkably enhanced the bending frequency and pumping rate of worms by 28.9% and 7.0% (p < 0.05), respectively, while effectively reduced the lipofuscin level by 15.9% (p < 0.05). The obviously increased expression of dauer formation protein-16 (1.66-fold) and its transcriptional targets, including superoxide dismutase-3 (2.46-fold), catalase-1 (2.32-fold) and small heat shock protein-16.2 (2.88-fold) (p < 0.05), was one of the molecular mechanisms underlying these positive effects of hormesis. This meta-analysis provided strong evidence for the anti-aging role of hormesis, highlighting its lifespan-prolonging, healthspan-enhancing and resistance-increasing effects on C. elegans. Given that dauer formation protein-16 was highly conservative, hormesis offered the theoretical possibility of delaying intrinsic aging through exogenous intervention among humans.
Collapse
|
7
|
Oxidative Stress in Neurodegenerative Diseases: From a Mitochondrial Point of View. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2105607. [PMID: 31210837 PMCID: PMC6532273 DOI: 10.1155/2019/2105607] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Age is the main risk factor for a number of human diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, which increasing numbers of elderly individuals suffer. These pathological conditions are characterized by progressive loss of neuron cells, compromised motor or cognitive functions, and accumulation of abnormally aggregated proteins. Mitochondrial dysfunction is one of the main features of the aging process, particularly in organs requiring a high-energy source such as the heart, muscles, brain, or liver. Neurons rely almost exclusively on the mitochondria, which produce the energy required for most of the cellular processes, including synaptic plasticity and neurotransmitter synthesis. The brain is particularly vulnerable to oxidative stress and damage, because of its high oxygen consumption, low antioxidant defenses, and high content of polyunsaturated fats very prone to be oxidized. Thus, it is not surprising the importance of protecting systems, including antioxidant defenses, to maintain neuronal integrity and survival. Here, we review the role of mitochondrial oxidative stress in the aging process, with a specific focus on neurodegenerative diseases. Understanding the molecular mechanisms involving mitochondria and oxidative stress in the aging and neurodegeneration may help to identify new strategies for improving the health and extending lifespan.
Collapse
|
8
|
Boczek E, Gaglia G, Olshina M, Sarraf S. The first Autumn School on Proteostasis: from molecular mechanisms to organismal consequences. Cell Stress Chaperones 2019; 24:481-492. [PMID: 31073902 PMCID: PMC6527634 DOI: 10.1007/s12192-019-00998-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
The first Autumn School on Proteostasis was held at the Mediterranean Institute for Life Sciences (MedILS) in Split, Croatia, from November 12th-16th, 2018, bringing together 44 graduate students and postdoctoral fellows and 22 principal investigators from around the world. This meeting was geared towards providing students with an in-depth understanding of the field of proteostasis, with the aim of broadening their perspectives of the field. Session topics covered multiple aspects of cellular and organismal proteostasis, including fundamental principles, responses to heat shock, aging and disease, and protein folding, misfolding, and degradation. The structure of the meeting and the restricted number of participants afforded the students and postdocs the opportunity to interact with principal investigators to discuss not only their latest research, but also their career prospects and progression in a close, supportive environment.
Collapse
Affiliation(s)
- Edgar Boczek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Giorgio Gaglia
- Brigham Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Maya Olshina
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shireen Sarraf
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
9
|
Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Nutrients 2019; 11:nu11030504. [PMID: 30818813 PMCID: PMC6471790 DOI: 10.3390/nu11030504] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) protects against redox stress by providing reducing equivalents to antioxidants such as glutathione and thioredoxin. NADPH levels decline with aging in several tissues, but whether this is a major driving force for the aging process has not been well established. Global or neural overexpression of several cytoplasmic enzymes that synthesize NADPH have been shown to extend lifespan in model organisms such as Drosophila suggesting a positive relationship between cytoplasmic NADPH levels and longevity. Mitochondrial NADPH plays an important role in the protection against redox stress and cell death and mitochondrial NADPH-utilizing thioredoxin reductase 2 levels correlate with species longevity in cells from rodents and primates. Mitochondrial NADPH shuttles allow for some NADPH flux between the cytoplasm and mitochondria. Since a decline of nicotinamide adenine dinucleotide (NAD+) is linked with aging and because NADP+ is exclusively synthesized from NAD+ by cytoplasmic and mitochondrial NAD+ kinases, a decline in the cytoplasmic or mitochondrial NADPH pool may also contribute to the aging process. Therefore pro-longevity therapies should aim to maintain the levels of both NAD+ and NADPH in aging tissues.
Collapse
|