1
|
Hernandez AR, Parker E, Babar M, Banerjee A, Ding S, Simley A, Buford TW. Microbiome-driven alterations in metabolic pathways and impaired cognition in aged female TgF344-AD rats. AGING BRAIN 2024; 5:100119. [PMID: 38881651 PMCID: PMC11179252 DOI: 10.1016/j.nbas.2024.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Alzheimer's disease (AD) not only affects cognition and neuropathology, but several other facets capable of negatively impacting quality of life and potentially driving impairments, including altered gut microbiome (GMB) composition and metabolism. Aged (20 + mo) female TgF344-AD and wildtype rats were cognitively characterized on several tasks incorporating several cognitive domains, including task acquisition, object recognition memory, anxiety-like behaviors, and spatial navigation. Additionally, metabolic phenotyping, GMB sequencing throughout the intestinal tract (duodenum, jejunum, ileum, colon, and feces), neuropathological burden assessment and marker gene functional abundance predictions (PICRUSt2) were conducted. TgF344-AD rats demonstrated significant cognitive impairment in multiple domains, as well as regionally specific GMB dysbiosis. Relationships between peripheral factors were investigated using Canonical Correspondence Analysis (CCA), revealing correlations between GMB changes and both cognitive and metabolic factors. Moreover, communities of gut microbes contributing to essential metabolic pathways were significantly altered in TgF344-AD rats. These data indicate dysbiosis may affect cognitive outcomes in AD through alterations in metabolism-related enzymatic pathways that are necessary for proper brain function. Moreover, these changes were mostly observed in intestinal segments required for carbohydrate digestion, not fecal samples. These data support the targeting of intestinal and microbiome health for the treatment of AD.
Collapse
Affiliation(s)
- Abbi R Hernandez
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Erik Parker
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Maham Babar
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Anisha Banerjee
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Sarah Ding
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Alexis Simley
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Thomas W Buford
- Department of Medicine, Division of Geriatrics, Gerontology & Palliative Care, University of Alabama at Birmingham, Birmingham, AL 35205, USA
- Birmingham/Atlanta VA GRECC, Birmingham VA Medical Center, Birmingham, AL 35244, USA
| |
Collapse
|
2
|
Hernandez AR, Banerjee A, Carter CS, Buford TW. Angiotensin (1-7) Expressing Probiotic as a Potential Treatment for Dementia. FRONTIERS IN AGING 2021; 2:629164. [PMID: 34901930 PMCID: PMC8663799 DOI: 10.3389/fragi.2021.629164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Increasing life expectancies are unfortunately accompanied by increased prevalence of Alzheimer's disease (AD). Regrettably, there are no current therapeutic options capable of preventing or treating AD. We review here data indicating that AD is accompanied by gut dysbiosis and impaired renin angiotensin system (RAS) function. Therefore, we propose the potential utility of an intervention targeting both the gut microbiome and RAS as both are heavily involved in proper CNS function. One potential approach which our group is currently exploring is the use of genetically-modified probiotics (GMPs) to deliver therapeutic compounds. In this review, we specifically highlight the potential utility of utilizing a GMP to deliver Angiotensin (1-7), a beneficial component of the renin-angiotensin system with relevant functions in circulation as well as locally in the gut and brain.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anisha Banerjee
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christy S. Carter
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Thomas W. Buford
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
van den Heuvel MP, Scholtens LH, Kahn RS. Multiscale Neuroscience of Psychiatric Disorders. Biol Psychiatry 2019; 86:512-522. [PMID: 31320130 DOI: 10.1016/j.biopsych.2019.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
The human brain comprises a multiscale network with multiple levels of organization. Neurons with dendritic and axonal connections form the microscale fabric of brain circuitry, and macroscale brain regions and white matter connections form the infrastructure for system-level brain communication and information integration. In this review, we discuss the emerging trend of multiscale neuroscience, the multidisciplinary field that brings together data from these different levels of nervous system organization to form a better understanding of between-scale relationships of brain structure, function, and behavior in health and disease. We provide a broad overview of this developing field and discuss recent findings of exemplary multiscale neuroscience studies that illustrate the importance of studying cross-scale interactions among the genetic, molecular, cellular, and macroscale levels of brain circuitry and connectivity and behavior. We particularly consider a central, overarching goal of these multiscale neuroscience studies of human brain connectivity: to obtain insight into how disease-related alterations at one level of organization may underlie alterations observed at other scales of brain network organization in mental disorders. We conclude by discussing the current limitations, challenges, and future directions of the field.
Collapse
Affiliation(s)
- Martijn P van den Heuvel
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Lianne H Scholtens
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - René S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|