1
|
Plasma proteomic profiling in postural orthostatic tachycardia syndrome (POTS) reveals new disease pathways. Sci Rep 2022; 12:20051. [PMID: 36414707 PMCID: PMC9681882 DOI: 10.1038/s41598-022-24729-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a cardiovascular autonomic disorder characterized by excessive heart rate increase on standing, leading to debilitating symptoms with limited therapeutic possibilities. Proteomics is a large-scale study of proteins that enables a systematic unbiased view on disease and health, allowing stratification of patients based on their protein background. The aim of the present study was to determine plasma protein biomarkers of POTS and to reveal proteomic pathways differentially regulated in POTS. We performed an age- and sex-matched, case-control study in 130 individuals (case-control ratio 1:1) including POTS and healthy controls. Mean age in POTS was 30 ± 9.8 years (84.6% women) versus controls 31 ± 9.8 years (80.0% women). We analyzed plasma proteins using data-independent acquisition (DIA) mass spectrometry. Pathway analysis of significantly differently expressed proteins was executed using a cutoff log2 fold change set to 1.2 and false discovery rate (p-value) of < 0.05. A total of 393 differential plasma proteins were identified. Label-free quantification of DIA-data identified 30 differentially expressed proteins in POTS compared with healthy controls. Pathway analysis identified the strongest network interactions particularly for proteins involved in thrombogenicity and enhanced platelet activity, but also inflammation, cardiac contractility and hypertrophy, and increased adrenergic activity. Our observations generated by the first use a label-free unbiased quantification reveal the proteomic footprint of POTS in terms of a hypercoagulable state, proinflammatory state, enhanced cardiac contractility and hypertrophy, skeletal muscle expression, and adrenergic activity. These findings support the hypothesis that POTS may be an autoimmune, inflammatory and hyperadrenergic disorder.
Collapse
|
2
|
Yan Z, Zhang W, Xu P, Zheng W, Lin X, Zhou J, Chen J, He QY, Zhong J, Guo J, Cheng B, Wang T. Phosphoproteome and Biological Evidence Revealed Abnormal Calcium Homeostasis in Keloid Fibroblasts and Induction of Aberrant Platelet Aggregation. J Proteome Res 2021; 20:2521-2532. [PMID: 33710899 DOI: 10.1021/acs.jproteome.0c00984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Keloid is a benign tumor characterized by persistent inflammation, increased fibroblast proliferation, and abnormal deposition of collagen in the wound. The etiology of keloid is unclear. Here, we explored the phospho-signaling changes in human keloid fibroblasts via phosphoproteome mass spectrometry analysis. We found that comparative phosphoproteomics could statistically distinguish keloid from control fibroblasts. Differentially expressed phosphoproteins could predict the activation of known keloid-relevant upstream regulators including transforming growth factor-β1, interleukin (IL)-4, and IL-5. With multiple bioinformatics analyses, phosphorylated FLNA, TLN1, and VCL were significantly enriched in terms of calcium homeostasis and platelet aggregation. We biologically verified that keloid fibroblasts had a higher level of Ca2+ influx than the control fibroblasts upon ionomycin stimulation. Via co-cultivation analysis, we found that human keloid fibroblasts could directly promote platelet aggregation. As suggested by PhosphoPath and gene set enrichment analysis, pFLNA was centered as the top phosphoproteins associated with keloid phenotypes. We validated that pFLNA was upregulated both in keloid fibroblasts and keloid tissue section, implicating its biomarker potential. In conclusion, we reported the first phosphoproteome on keloid fibroblasts, based on which we revealed that keloid fibroblasts had aberrant calcium homeostasis and could directly induce platelet aggregation.
Collapse
Affiliation(s)
- Ziqi Yan
- MOE Key Laboratory of Tumor Molecular Biology and Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, China.,The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wanling Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, China.,The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Pengcheng Xu
- Department of Plastic Surgery, The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, General Hospital of Southern Theater Command, PLA, Guangzhou, Guangdong 510010, P. R. China
| | - Wenting Zheng
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xinyi Lin
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jian Zhou
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jianwu Chen
- Department of Plastic Surgery, The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, General Hospital of Southern Theater Command, PLA, Guangzhou, Guangdong 510010, P. R. China
| | - Qing-Yu He
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jingxiang Zhong
- MOE Key Laboratory of Tumor Molecular Biology and Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiahui Guo
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| | - Biao Cheng
- Department of Plastic Surgery, The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, General Hospital of Southern Theater Command, PLA, Guangzhou, Guangdong 510010, P. R. China
| | - Tong Wang
- MOE Key Laboratory of Tumor Molecular Biology and Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, China.,The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|