1
|
He M, Shen P, Qiu C, Wang J. Retraction of: miR-627-3p inhibits osteosarcoma cell proliferation and metastasis by targeting PTN. Aging (Albany NY) 2024; 16:12953-12954. [PMID: 39405203 PMCID: PMC11501389 DOI: 10.18632/aging.206128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Ming He
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People’s Republic of China
| | - Peng Shen
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People’s Republic of China
| | - Chuang Qiu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People’s Republic of China
| | - Jiashi Wang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People’s Republic of China
| |
Collapse
|
2
|
Shan L, Liu W, Zhan Y. Retraction of: Sulfated polysaccharide of Sepiella maindroni ink targets Akt and overcomes resistance to the FGFR inhibitor AZD4547 in bladder cancer. Aging (Albany NY) 2024; 16:12652-12653. [PMID: 39348489 PMCID: PMC11466476 DOI: 10.18632/aging.206104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Affiliation(s)
- Liping Shan
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Wei Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yunhong Zhan
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
3
|
Hegazy M, Elkady MA, Yehia AM, Elsakka EGE, Abulsoud AI, Abdelmaksoud NM, Elshafei A, Abdelghany TM, Elkhawaga SY, Ismail A, Mokhtar MM, El-Mahdy HA, Doghish AS. The role of miRNAs in laryngeal cancer pathogenesis and therapeutic resistance - A focus on signaling pathways interplay. Pathol Res Pract 2023; 246:154510. [PMID: 37167812 DOI: 10.1016/j.prp.2023.154510] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Laryngeal cancer (LC)is the malignancy of the larynx (voice box). The majority of LC are squamous cell carcinomas. Many risk factors were reported to be associated with LC as tobacco use, obesity, alcohol intake, human papillomavirus (HPV) infection, and asbestos exposure. Besides, epigenetics as non-coding nucleic acids also have a great role in LC. miRNAs are short nucleic acid molecules that can modulate multiple cellular processes by regulating the expression of their genes. Therefore, LC progression, apoptosis evasions, initiation, EMT, and angiogenesis are associated with dysregulated miRNA expressions. miRNAs also could have some vital signaling pathways such as mTOR/P-gp, Wnt/-catenin signaling, JAK/STAT, KRAS, and EGF. Besides, miRNAs also have a role in the modulation of LC response to different therapeutic modalities. In this review, we have provided a comprehensive and updated overview highlighting the microRNAs biogenesis, general biological functions, regulatory mechanisms, and signaling dysfunction in LC carcinogenesis, in addition to their clinical potential for LC diagnosis, prognosis, and chemotherapeutics response implications.
Collapse
Affiliation(s)
- Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
4
|
El-Mahdy HA, Mohamadin AM, Abulsoud AI, Khidr EG, El-Husseiny AA, Ismail A, Elsakka EGE, Mokhlis HA, El-Husseiny HM, Doghish AS. miRNAs as potential game-changers in head and neck cancer: Future clinical and medicinal uses. Pathol Res Pract 2023; 245:154457. [PMID: 37058745 DOI: 10.1016/j.prp.2023.154457] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
Head and neck cancers (HNCs) are a group of heterogeneous tumors formed most frequently from epithelial cells of the larynx, lips, oropharynx, nasopharynx, and mouth. Numerous epigenetic components, including miRNAs, have been demonstrated to have an impact on HNCs characteristics like progression, angiogenesis, initiation, and resistance to therapeutic interventions. The miRNAs may control the production of numerous genes linked to HNCs pathogenesis. The roles that miRNAs play in angiogenesis, invasion, metastasis, cell cycle, proliferation, and apoptosis are responsible for this impact. The miRNAs also have an impact on crucial HNCs-related mechanistic networks like the WNT/β-catenin signaling, PTEN/Akt/mTOR pathway, TGFβ, and KRAS mutations. miRNAs may affect how the HNCs respond to treatments like radiation and chemotherapy in addition to pathophysiology. This review aims to demonstrate the relationship between miRNAs and HNCs with a particular emphasis on how miRNAs impact HNCs signaling networks.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed M Mohamadin
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Hamada Ahmed Mokhlis
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Al Qalyubia 13736, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| |
Collapse
|
5
|
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol 2022; 12:965231. [PMID: 36158660 PMCID: PMC9492973 DOI: 10.3389/fonc.2022.965231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs are short non-coding RNAs that regulate gene expression post-transcriptionally contributing to the development of different diseases including cancer. The miR-200 family consists of five members, miR-200a, miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated in cancer tissue and their level is altered in the body fluids of cancer patients. Moreover, the levels of miR-200 family members correlate with clinical parameters such as cancer patients' survival which makes them potentially useful as diagnostic and prognostic biomarkers. MiRNAs can act as either oncomiRs or tumor suppressor miRNAs depending on the target genes and their role in the regulation of key oncogenic signaling pathways. In most types of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates all features of cancer. In this review, we summarized the expression pattern of the miR-200 family in different types of cancer and their potential utility as biomarkers. Moreover, we comprehensively described the role of miR-200 family members in the regulation of all hallmarks of cancer proposed by Hanahan and Weinberg with the focus on the epithelial-mesenchymal transition, invasiveness, and metastasis of tumor cells.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
6
|
Functional mechanism and clinical implications of miR-141 in human cancers. Cell Signal 2022; 95:110354. [PMID: 35550172 DOI: 10.1016/j.cellsig.2022.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
Abstract
Cancer is caused by the abnormal proliferation of local tissue cells under the control of many oncogenic factors. MicroRNAs (miRNAs) are a class of evolutionarily conserved, approximately 22-nucleotide noncoding small RNAs that influence transcriptional regulationby binding to the 3'-untranslated region of target messenger RNA. As a member of the miRNA family, miR-141 acts as a suppressor or an oncomiR in various cancers and regulates cancer cell proliferation, apoptosis, invasion, and metastasis through a variety of signaling pathways, such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and constitutive activation of nuclear factor-κB (NF-κB). Target gene validation and pathway analysis have provided mechanistic insight into the role of this miRNA in different tissues. This review also outlines novel findings that suggest miR-141 may be useful as a noninvasive biomarker and as a therapeutic target in several cancers.
Collapse
|
7
|
Gurer T, Aytekin A, Caki E, Gezici S. miR-485-3p and miR-4728-5p as Tumor Suppressors in Pathogenesis of Colorectal Cancer. Mol Biol 2022. [DOI: 10.1134/s0026893322030062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Karmakar M, Lai PC, Sinha S, Glaser S, Chakraborty S. Identification of miR-203a, mir-10a, and miR-194 as predictors for risk of lymphovascular invasion in head and neck cancers. Oncotarget 2021; 12:1499-1519. [PMID: 34316330 PMCID: PMC8310671 DOI: 10.18632/oncotarget.28022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Lymphovascular invasion (LVI) is an important prognostic indicator of lymph node metastasis and disease aggressiveness but clear molecular mechanisms mediating this in head and neck cancers (HNSC) remain undefined. To identify important microRNAs (miRNAs) in HNSC that associate with and are also predictive of increased risk of LVI, we used a combination of clustering algorithms, multiple regression analyses and machine learning approaches and analyzed miRNA expression profiles in the TCGA HNSC database. As the first step, we identified miRNAs with increased association with LVI as a binary variable. In order to determine whether the identified miRNAs would show functional clusters that are also indicative of increased risk for LVI, we carried out unsupervised as well as supervised clustering. Our results identified distinct clusters of miRNAs that are predictive of increased LVI. We further refined these findings using a Random forest approach, and miR-203a-3p, mir-10a-5p, and miR-194-5p to be most strongly associated with LVI. Pathway enrichment analysis showed these miRNAs targeted genes involved in Hippo signaling and fatty acid oxidation pathways that are mediators of lymph node metastasis. Specific association was also identified between the miRNAs associated with LVI and expression of several lymphangiogenic genes that could be critical for determination of therapeutic strategies.
Collapse
Affiliation(s)
- Moumita Karmakar
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Pei-Chun Lai
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Samiran Sinha
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Medical Research and Education Building, Bryan, TX 77807, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Medical Research and Education Building, Bryan, TX 77807, USA
| |
Collapse
|
9
|
Kang Y, Zhang Y, Sun Y. MicroRNA‑198 suppresses tumour growth and metastasis in oral squamous cell carcinoma by targeting CDK4. Int J Oncol 2021; 59:39. [PMID: 33982769 PMCID: PMC8121097 DOI: 10.3892/ijo.2021.5219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs/miR) often contribute to the progression of oral squamous cell carcinoma (OSCC) via the regulation of mRNA. The present study aimed to investigate the role of miR‑198 in OSCC pathogenesis and explore the underlying mechanism. Reverse transcription‑quantitative (RT‑q)PCR was performed to determine miR‑198 expression in OSCC tissues and cell lines, and univariate and multivariate analyses were applied to evaluate the survival of patients with OSCC. The effects of miR‑198 on OSCC cell lines were studied in vitro and in vivo. A set of epithelial‑mesenchymal transition (EMT) markers were detected to determine whether miR‑198 was involved in EMT. Lastly, using luciferase assays, a novel target of miR‑198 was identified and the effect of the new target gene of miR‑198 on cell proliferation and invasion was also studied. It was identified that miR‑198 expression was decreased in OSCC tissues and cell lines, and low expression of miR‑198 was associated with poor overall survival and disease‑free survival. Overexpression of miR‑198 appeared to significantly inhibit the proliferation, invasion and EMT of OSCC cells. Moreover, the luciferase assay results showed that miR‑198 interacted with cyclin‑dependent kinase 4 (CDK4) by directly targeting the miRNA‑binding site in the CDK4 sequence, and RT‑qPCR results showed that CDK4 expression was increased in OSCC tissues and cell lines. In addition, transfection of small interfering RNA against CDK4 in OSCC cells showed similar inhibitory effects on cell proliferation, invasion and EMT, whereas CDK4 overexpression in OSCC cells partially reversed the inhibitory effects of the miR‑198 mimic. The present results indicated that miR‑198 suppressed OSCC tumour growth and metastasis by directly targeting CDK4 expression. Thus, miR‑198 may be a potential therapeutic target in the treatment of OSCC.
Collapse
Affiliation(s)
- Yuanyuan Kang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Ying Zhang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| | - Yan Sun
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
10
|
Hsieh PL, Huang CC, Yu CC. Emerging Role of MicroRNA-200 Family in Dentistry. Noncoding RNA 2021; 7:35. [PMID: 34208375 PMCID: PMC8293310 DOI: 10.3390/ncrna7020035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs ~22 nucleotides in length, which have been shown to participate in various biological processes. As one of the most researched miRNAs, the miR-200 family has been found to regulate several factors that are associated with the epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs) behavior. In this review, we briefly summarize the background of the miR-200 family and their implication in various dental diseases. We focus on the expression changes, biological functions, and clinical significance of the miR-200 family in oral cancer; periodontitis; oral potentially malignant disorder; gingival overgrowth; and other periodontal diseases. Additionally, we discuss the use of the miR-200 family as molecular biomarkers for diagnosis, prognostic, and therapeutic application.
Collapse
Affiliation(s)
- Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Chun-Chung Huang
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
11
|
Vahabi M, Blandino G, Di Agostino S. MicroRNAs in head and neck squamous cell carcinoma: a possible challenge as biomarkers, determinants for the choice of therapy and targets for personalized molecular therapies. Transl Cancer Res 2021; 10:3090-3110. [PMID: 35116619 PMCID: PMC8797920 DOI: 10.21037/tcr-20-2530] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are referred to a group of heterogeneous cancers that include structures of aerodigestive tract such as oral and nasal cavity, salivary glands, oropharynx, pharynx, larynx, paranasal sinuses, and local lymph nodes. HNSCC is characterized by frequent alterations of several genes such as TP53, PIK3CA, CDKN2A, NOTCH1, and MET as well as copy number increase in EGFR, CCND1, and PIK3CA. These genomic alterations play a role in terms of resistance to chemotherapy, molecular targeted therapy, and prediction of patient outcome. MicroRNAs (miRNAs) are small single-stranded noncoding RNAs which are about 19-25 nucleotides. They are involved in the tumorigenesis of HNSCC including dysregulation of cell survival, proliferation, cellular differentiation, adhesion, and invasion. The discovery of the stable presence of the miRNAs in all human body made them attractive biomarkers for diagnosis and prognosis or as targets for novel therapeutic ways, enabling personalized treatment for HNSCC. In recent times the number of papers concerning the characterization of miRNAs in the HNSCC tumorigenesis has grown a lot. In this review, we discuss the very recent studies on different aspects of miRNA dysregulation with their clinical significance and we apologize for the many past and most recent works that have not been mentioned. We also discuss miRNA-based therapy that are being tested on patients by clinical trials.
Collapse
Affiliation(s)
- Mahrou Vahabi
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, viale Europa, Catanzaro, Italy
| |
Collapse
|
12
|
Wang Y, Tao B, Li J, Mao X, He W, Chen Q. Melatonin Inhibits the Progression of Oral Squamous Cell Carcinoma via Inducing miR-25-5p Expression by Directly Targeting NEDD9. Front Oncol 2020; 10:543591. [PMID: 33344223 PMCID: PMC7738623 DOI: 10.3389/fonc.2020.543591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Melatonin exerts anti-cancer roles in various types of cancers. However, to the best of our knowledge, its role in oral squamous cell carcinoma (OSCC) is unknown. The present study aimed to investigate the role of melatonin and its underlying mechanism in OSCC. MTT, colony formation, wound healing, and transwell invasion assays proved that melatonin played anti-tumor effects in OSCC cells by inhibiting cell viability, proliferation, migration, and invasion in a concentration-dependent manner. The RT-qPCR analysis showed that miR-25-5p was significantly upregulated after melatonin treatment. Further, miR-25-5p might be involved in melatonin-induced inhibitory effects on the biological behavior of OSCC. The expression of miR-25-5p was decreased in tumor tissues and OSCC cells detected by RT-qPCR. MTT assay, colony formation assay, and TUNEL staining indicated miR-25-5p overexpression inhibited OSCC cell viability, proliferation, and induced OSCC cell apoptosis. Furthermore, wound healing, transwell invasion assay, and animal experiments suggested that miR-25-5p might exert suppressive effects on the migration, invasion, and tumor formation of OSCC cells, while miR-25-5p knockdown exhibited the opposite effects in OSCC cells. Bioinformatics analysis, western blot analysis, and luciferase reporter assay suggested that neural precursor cell expressed developmentally downregulated protein 9 (NEDD9) was proved to be a putative target for miR-25-5p. The role of NEDD9 in inhibiting OSCC cell proliferation, invasion, and migration was verified with NEDD9 siRNA transfection. Thus, melatonin exerted anti-proliferative, anti-invasive, and anti-migrative effects on OSCC via miR-25-5p/NEDD9 pathway. Melatonin could be applied as a potential novel drug on treating OSCC.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Stomatology, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaying Li
- Huiqiao Medical Center, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Xiaoqun Mao
- Nursing Department, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qinbiao Chen
- Neurosurgery Department, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
13
|
Carron J, Torricelli C, Silva JK, Queiroz GSR, Ortega MM, Lima CSP, Lourenço GJ. microRNAs deregulation in head and neck squamous cell carcinoma. Head Neck 2020; 43:645-667. [PMID: 33159410 DOI: 10.1002/hed.26533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Head and neck (HN) squamous cell carcinoma (SCC) is the eighth most common human cancer worldwide. Besides tobacco and alcohol consumption, genetic and epigenetic alterations play an important role in HNSCC occurrence and progression. microRNAs (miRNAs) are small noncoding RNAs that regulate cell cycle, proliferation, development, differentiation, and apoptosis by interfering in gene expression. Expression profiling of miRNAs showed that some miRNAs are upregulated or downregulated in tumor cells when compared with the normal cells. The present review focuses on the role of miRNAs deregulations in HNSCC, enrolled in risk, development, outcome, and therapy sensitivity. Moreover, the influence of single nucleotide variants in miRNAs target sites, miRNAs seed sites, and miRNAs-processing genes in HNSCC was also revised. Due to its potential for cancer diagnosis, progression, and as a therapeutic target, miRNAs may bring new perspectives in HNSCC understanding and therapy, especially for those patients with no or insufficient treatment options.
Collapse
Affiliation(s)
- Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Caroline Torricelli
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Janet K Silva
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Gabriela S R Queiroz
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Manoela M Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, Brazil
| | - Carmen S P Lima
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Gustavo J Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
14
|
Clinical Significance of the Interleukin 24 mRNA Level in Head and Neck Squamous Cell Carcinoma and Its Subgroups: An In Silico Investigation. JOURNAL OF ONCOLOGY 2020; 2020:7042025. [PMID: 33014054 PMCID: PMC7519990 DOI: 10.1155/2020/7042025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022]
Abstract
IL24 mRNA is known to have an apoptotic effect on cancer cells but not on noncancer cells. However, the expression level of the IL24 mRNA in head and neck squamous cell carcinoma (HNSCC) and its subgroups is rarely studied. In this study, the clinical implication of IL24 mRNA was evaluated in the common subgroups of HNSCC, including oral squamous cell carcinoma (OSCC), nasopharyngeal carcinoma (NPC), and laryngeal squamous cell carcinoma (LSCC) for analysis. Substantial IL24 mRNA expression data were calculated from several databases, such as the Gene Expression Omnibus (GEO), ArrayExpress, Sequence Read Archive (SRA), ONCOMINE, and The Cancer Genome Atlas (TCGA) databases. We ultimately collected a total of 41 microarrays and RNA-seq including 1,564 HNSCC and 603 noncancer tissue samples. IL24 mRNA was highly expressed in OSCC, LSCC, and NPC as shown by the separated standard mean difference (SMD), as well as HNSCC as a whole part (SMD = 1.47, 95% confdence interval (CI) = 1.24−1.70, P < 0.0001). In all subgroups, the IL24 mRNA upregulation had the ability to distinguish cancer from noncancer tissue with area under the curves (AUCs) of the summary receiver operating characteristic (sROC) higher than 0.85. In conclusion, IL24 mRNA may be used as a potential marker for cancer screening, and its clinical diagnostic value needs to be further studied. It also provides a new idea for the treatment of the IL24 gene in HNSCC and its subgroups in the future.
Collapse
|
15
|
Chen S, Zhang JY, Sun LS, Li XF, Bai JY, Zhang HY, Li TJ. miR-762 Promotes Malignant Development of Head and Neck Squamous Cell Carcinoma by Targeting PHLPP2 and FOXO4. Onco Targets Ther 2019; 12:11425-11436. [PMID: 31920332 PMCID: PMC6935361 DOI: 10.2147/ott.s221442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is among the most common malignant tumors worldwide. This study, investigated the role of microRNA (miR)-762 in regulating HNSCC progression. Materials and methods The expression levels of miR-762 in HNSCC tissues were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Statistical analyses were performed to investigate the association of miR-762 with clinicopathological features in patients with HNSCC. Cell proliferation and migration were examined by cell counting (CCK-8) and IncuCyte assays. Target genes of miR-762 were screened using bioinformatics tools and microarrays, and confirmed using a luciferase activity reporter assay, qRT-PCR and Western blot analysis. Recuse experiments were performed to detect whether target genes mediated the effects of miR-762 on HNSCC cells. The in vivo effects of miR-762 were verified using tumor xenografts. Results HNSCC clinical specimens showed high expression levels of miR-762, which positively correlated with tumor-node-metastasis (TNM) stage and poor prognosis of HNSCC. miR-762 overexpression promoted the proliferation and migration of HNSCC cells in vitro. In addition, overexpression of miR-762 upregulated the expression of phosphorylated AKT (p-AKT) and mesenchymal markers (N-cadherin and vimentin), but suppressed epithelial marker (E-cadherin) expression. miR-762 also promoted HNSCC tumor growth in vivo. PH domain and leucine-rich repeat protein phosphatase 2 (PHLPP2) and Forkhead box O4 (FOXO4) were direct target genes of miR-762. HNSCC tissues had low expression levels of PHLPP2 and FOXO4, showing a negative correlation with miR-762 expression. Moreover, silencing of PHLPP2 and FOXO4 mimicked the tumor-promotive effects of miR-762 on HNSCC cells. Notably, overexpression of PHLPP2 and FOXO4 abolished the pro-tumoral function of miR-762 on cell proliferation and migration. Conclusion miR-762 promotes HNSCC progression by targeting PHLPP2 and FOXO4. Therefore, miR-762 might be a potential diagnostic or therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100081, People's Republic of China
| | - Jian-Yun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100081, People's Republic of China
| | - Li-Sha Sun
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100081, People's Republic of China
| | - Xue-Fen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100081, People's Republic of China
| | - Jia-Ying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - He-Yu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100081, People's Republic of China
| | - Tie-Jun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
16
|
Yang Z, Qin L, Yang D, Chen W, Qian Y, Jin J. Signal amplification method for miR-205 assay through combining graphene oxide with duplex-specific nuclease. RSC Adv 2019; 9:27341-27346. [PMID: 35529221 PMCID: PMC9070658 DOI: 10.1039/c9ra04663a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/27/2019] [Indexed: 11/28/2022] Open
Abstract
Since microRNA-205 (miR-205) is a predictive biomarker for anti-radiation of nasopharyngeal carcinoma (NPC), quantitative detection of miR-205 is important for developing personalized strategies for the treatment of NPC. In this investigation, based on the graphene oxide sensor and duplex specific nuclease (DSN) for fluorescence signal amplification, a highly sensitive detection method for miR-205 was designed. A target-recycling mechanism is employed, where a single miR-205 target triggers the cleavage of many DNA signal probes. The method shows the ability to analyze miR-205 in solution, and it can detect miR-205 at concentrations as low as 132 pmol L−1 with a linear range of 5–40 nmol L−1. Furthermore, the method is specific in that it distinguishes between a target miRNA and a sequence with single base, double base and three base mismatches, as well as other miRNAs. Considering simplicity and excellent sensitivity/specificity, it is promising for applications in radioresistance studies as well as the early clinical diagnosis of NPC. A signal amplified method for detecting a biomarker of radiation-resistant nasopharyngeal carcinoma using graphene oxide and duplex-specific nuclease was constructed.![]()
Collapse
Affiliation(s)
- Zhaoqi Yang
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Lan Qin
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Dutao Yang
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Weixia Chen
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Yue Qian
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Jian Jin
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|