1
|
Chen Y, Gu Y, Cao C, Zheng Q, Sun L, Ding W, Ma L, Wang C, Zhang W. Exploring α-synuclein Interaction Partners and their Potential Clinical Implications for Parkinson's Disease. Neurochem Res 2024; 50:23. [PMID: 39560845 DOI: 10.1007/s11064-024-04250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Alpha-synuclein aggregates are strongly associated with Parkinson's disease (PD), a degenerative neurological disorder characterized by a progressive loss in motor functions. Our study aimed to unravel the potential interaction partners of α-synuclein for exploring the synucleinpathy of PD related to α-synuclein aggregates. α-synuclein was expressed in E.coli and purified by affinity chromatography followed by isolation and identification of its interaction partners using pulldown assay coupled with LC-MS/MS. The impacts of the identified interaction partners on PD were evaluated based on GSE205450 dataset. Consequently, 157 proteins were identified by the criteria of unique peptide = 5. Four proteins including ACO2, ANT1, ATP5F1B and CKB were confirmed using immunostaining coupled with α-synuclein-pulldown assay. Transcriptomics assay showed that the dominant biological processes influenced by α-synuclein interaction partners with differential expression were energy metabolism. Together with GSE205450, Western blot assay showed that α-synuclein interaction partners involved in energy metabolism were down-regulated in PD patients and the MPTP-lesioned mice. ROC curves indicated their clinical implications as diagnostic indices of PD. Using ANT1 as an example, we found that protein aggregates formed by ANT1 and α-synuclein predominantly solely appeared in the cells and mice with PD-like variations. Thereby, low levels of the interaction partners of α-synuclein associated with energy metabolism were associated with PD pathogenesis via forming protein aggregates. This study provides an insight into developing innovative targets on PD based on synucleinpathy.
Collapse
Affiliation(s)
- Yingfei Chen
- Grade 2020, Capital Medical University, Beijing, 100069, China
| | - Yanan Gu
- Laboratory Department, The first affiliated hospital of Dalian Medical University, Dalian, 116021, China
| | - Can Cao
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qiuying Zheng
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lili Sun
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Wenyong Ding
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Li Ma
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Cui Wang
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, 116033, China.
| | - Wenli Zhang
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
2
|
Zhang W, Chen T, Zhao H, Ren S. Glycosylation in aging and neurodegenerative diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1208-1220. [PMID: 39225075 PMCID: PMC11466714 DOI: 10.3724/abbs.2024136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/23/2024] [Indexed: 09/04/2024] Open
Abstract
Aging, a complex biological process, involves the progressive decline of physiological functions across various systems, leading to increased susceptibility to neurodegenerative diseases. In society, demographic aging imposes significant economic and social burdens due to these conditions. This review specifically examines the association of protein glycosylation with aging and neurodegenerative diseases. Glycosylation, a critical post-translational modification, influences numerous aspects of protein function that are pivotal in aging and the pathophysiology of diseases such as Alzheimer's disease, Parkinson's disease, and other neurodegenerative conditions. We highlight the alterations in glycosylation patterns observed during aging, their implications in the onset and progression of neurodegenerative diseases, and the potential of glycosylation profiles as biomarkers for early detection, prognosis, and monitoring of these age-associated conditions, and delve into the mechanisms of glycosylation. Furthermore, this review explores their role in regulating protein function and mediating critical biological interactions in these diseases. By examining the changes in glycosylation profiles associated with each part, this review underscores the potential of glycosylation research as a tool to enhance our understanding of aging and its related diseases.
Collapse
Affiliation(s)
- Weilong Zhang
- />NHC Key Laboratory of Glycoconjugates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Tian Chen
- />NHC Key Laboratory of Glycoconjugates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Huijuan Zhao
- />NHC Key Laboratory of Glycoconjugates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Shifang Ren
- />NHC Key Laboratory of Glycoconjugates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
3
|
Peng Y, Wang C, Ma W, Chen Q, Xu G, Kong Y, Ma L, Ding W, Zhang W. Deficiency of polypeptide N-acetylgalactosamine transferase 9 contributes to a risk for Parkinson's disease via mitochondrial dysfunctions. Int J Biol Macromol 2024; 263:130347. [PMID: 38401583 DOI: 10.1016/j.ijbiomac.2024.130347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Polypeptide N-acetylgalactosamine transferase 9 (GALNT9) catalyzes the initial step of mucin-type O-glycosylation via linking N-acetylgalactosamine (GalNAc) to serine/threonine in a protein. To unravel the association of GALNT9 with Parkinson's disease (PD), a progressive neurodegenerative disorder, GALNT9 levels were evaluated in the patients with PD and mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and statistically analyzed based on the GEO datasets of GSE114918 and GSE216281. Glycoproteins with exposing GalNAc were purified using lectin affinity chromatography and identified by LC-MS/MS. The influence of GALNT9 on cells was evaluated via introducing a GALNT9-specific siRNA into SH-SY5Y cells. Consequently, GALNT9 deficiency was found to occur under PD conditions. GALNT9 silencing contributed to a causative factor in PD pathogenesis via reducing the levels of intracellular dopamine, tyrosine hydroxylase and soluble α-synuclein, and promoting α-synuclein aggregates. MS identification revealed 14 glycoproteins. 5 glycoproteins, including ACO2, ATP5B, CKB, CKMT1A, ALDOC, were associated with energy metabolism. GALNT9 silencing resulted in mitochondrial dysfunctions via increasing ROS accumulation, mitochondrial membrane depolarization, mPTPs opening, Ca2+ releasing and activation of the CytC-related apoptotic pathway. The dysfunctional mitochondria then triggered mitophagy, possibly intermediated by adenine nucleotide translocase 1. Our study suggests that GALNT9 is potentially developed into an auxiliary diagnostic index and therapeutic target of PD.
Collapse
Affiliation(s)
- Yuanwen Peng
- Department of Epidemiology, Dalian Medical University, Dalian 116044, China
| | - Cui Wang
- Department of Neurology, Dalian Municipal Central Hospital, Dalian 116033, China
| | - Wei Ma
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qianhui Chen
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Guannan Xu
- Department of Epidemiology, Dalian Medical University, Dalian 116044, China
| | - Ying Kong
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Li Ma
- Department of Epidemiology, Dalian Medical University, Dalian 116044, China
| | - Wenyong Ding
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Wenli Zhang
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
4
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Xu M, Jin H, Ge W, Zhao L, Liu Z, Guo Z, Wu Z, Chen J, Mao C, Zhang X, Liu CF, Yang S. Mass Spectrometric Analysis of Urinary N-Glycosylation Changes in Patients with Parkinson's Disease. ACS Chem Neurosci 2023; 14:3507-3517. [PMID: 37677068 DOI: 10.1021/acschemneuro.3c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Urine is thought to provide earlier and more sensitive molecular changes for biomarker discovery than blood. Numerous glycoproteins, peptides, and free glycans are present in urine through glomerular filtration of plasma, cell shedding, apoptosis, proteolytic cleavage, and exosome secretion. Urine biomarkers have enormous diagnostic potential, and the use of these biomarkers is a long-standing practice. The discovery of non-urological disease biomarkers from urine is also gaining attention due to its non-invasive sample collection and ease of analysis. Abnormal protein glycosylation in plasma or cerebrospinal fluid has been associated with Parkinson's disease, however, whether urine with Parkinson's disease has characteristic glycosylation remains to be explored. Here, we use mass spectrometry-based glycomics and glycoproteomics approaches to analyze urine samples for glycans, glycosites, and intact glycopeptides of urine samples. Reduced abundance of N-glycans was detected at the level of total glycans as well as specific glycosites of glycopeptides. The most abundant N-glycan in urine is S(6)1H5N4F1; S(6)2H5N4 and N4H4F1 are highly present in serum and urine, and 10 biantennary galactosylated N-glycans in the urine of PD patients were significantly decreased. The downregulation of sialylation may be due to the reduction of ST3GAL2. Site-specific N-glycosylation analysis revealed that AMBP, UMOD, and RNase1 have PD-specific N-glycosylation sites. GO and KEGG analysis revealed that N-glycosylation changes may provide clues to identify disease-specific glycosylation biomarkers in Parkinson's disease.
Collapse
Affiliation(s)
- Mingming Xu
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Hong Jin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Wei Ge
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lingbo Zhao
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhaoliang Liu
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zeyu Guo
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jing Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chengjie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Health Examination Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
6
|
Effects of the genetic knockout of the β-1,3-galactosyltransferase 2 on spatial learning and neurons in the adult mouse hippocampus and somatosensory cortex. Neuroreport 2023; 34:46-55. [PMID: 36504040 DOI: 10.1097/wnr.0000000000001857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Glycosyltransferases contribute to the biosynthesis of glycoproteins, proteoglycans and glycolipids and play essential roles in various processes in the brain, such as learning and memory, brain development, neuronal survival and neurodegeneration. β-1,3-galactosyltransferase 2 (B3galt2) belongs to the β-1,3-galactosyltransferase gene family and is highly expressed in the brain. Recent studies have indicated that B3galt2 plays a vital role in ischemic stroke through several signaling pathways in a mouse model. However, the function of B3galt2 in the brain remains poorly understood. METHODS The genotypes of mice were determined by PCR. To verify B3galt2 expression in an adult mouse brain, X-gal staining was performed in 6-month-old B3galt2 heterozygous (B3galt2+/-) mice. Using adult B3galt2 homozygous (B3galt2-/-), heterozygous and wild-type (WT) littermates, spatial learning and memory were determined by the Morris Water Maze test, and neurotoxicity and synaptic plasticity were examined by immunofluorescence. RESULTS B3galt2 was highly expressed in the adult mouse hippocampus and cortex, especially in the hippocampal dentate gyrus. Compared to that of WT mice, the spatial learning ability of adult B3galt2-/- mice was impaired. B3galt2 mutations also caused neuronal loss and synaptic dysfunction in the hippocampus and somatosensory cortex, and these changes were more obvious in B3galt2-/- mice than in B3galt2+/- mice. CONCLUSIONS The findings indicate that B3galt2 plays an important role in cognitive function, neuronal maintenance and synaptic plasticity in the adult mouse brain. This study suggests that genetic and/or pharmacological manipulation of glycosyltransferases may be a novel strategy for elucidating the mechanism of and managing various brain disorders.
Collapse
|
7
|
Identification of ADP/ATP Translocase 1 as a Novel Glycoprotein and Its Association with Parkinson's Disease. Neurochem Res 2022; 47:3355-3368. [PMID: 35962937 DOI: 10.1007/s11064-022-03688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
Protein glycosylation plays a crucial role in central nervous system, and abnormal glycosylation has major implications for human diseases. This study aims to evaluate an etiological implication of the variation in glycosylation for Parkinson's disease (PD), a neurodegenerative disorder. Based on a PD mouse model constructed by the intraperitoneal injection with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine, glycosylation variation was accessed using biotinylated lectin of dolichos biflorus agglutinin (DBA) specific for the exposed N-acetylgalactosamine linked to glycoprotein. Consequently, a glycoprotein with a significantly reduced N-acetylgalactosamination was identified as ADP/ATP translocase 1 (ANT1) by lectin affinity chromatography coupled with MALDI-TOF MS/MS (mass spectrometry), and confirmed by the analysis of dual co-immunofluorescence and Western blot. A tissue-specific distribution of de-N-acetylgalactosaminated ANT1 was found to be correlated with high risk of PD. At cellular level, an obvious co-aggregation between ANT1 and DBA was only found in the MPP+-induced PD-like cell model using dual co-immunofluorescence. Thus, we found that ANT1 was a potential glycoprotein with terminal N-acetylgalactosamine moiety, and the variation of glycosylation in ANT1 was associated with PD. This investigation provides an innovative insight in protein glycosylation with PD pathogenesis.
Collapse
|
8
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
9
|
Wilkinson H, Thomsson KA, Rebelo AL, Hilliard M, Pandit A, Rudd PM, Karlsson NG, Saldova R. The O-Glycome of Human Nigrostriatal Tissue and Its Alteration in Parkinson's Disease. J Proteome Res 2021; 20:3913-3924. [PMID: 34191522 PMCID: PMC8353623 DOI: 10.1021/acs.jproteome.1c00219] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 12/31/2022]
Abstract
O-Glycosylation changes in misfolded proteins are of particular interest in understanding neurodegenerative conditions such as Parkinson's disease (PD) and incidental Lewy body disease (ILBD). This work outlines optimizations of a microwave-assisted nonreductive release to limit glycan degradation and employs this methodology to analyze O-glycosylation on the human striatum and substantia nigra tissue in PD, ILBD, and healthy controls, working alongside well-established reductive release approaches. A total of 70 O-glycans were identified, with ILBD presenting significantly decreased levels of mannose-core (p = 0.017) and glucuronylated structures (p = 0.039) in the striatum and PD presenting an increase in sialylation (p < 0.001) and a decrease in sulfation (p = 0.001). Significant increases in sialylation (p = 0.038) in PD were also observed in the substantia nigra. This is the first study to profile the whole nigrostriatal O-glycome in healthy, PD, and ILBD tissues, outlining disease biomarkers alongside benefits of employing orthogonal techniques for O-glycan analysis.
Collapse
Affiliation(s)
- Hayden Wilkinson
- NIBRT
GlycoScience Group, National Institute for
Bioprocessing, Research and Training, Blackrock, Dublin A94 X099, Ireland
- CÚRAM,
SFI Research Centre for Medical Devices, National University of Ireland, Galway, Galway H91 W2TY, Ireland
- UCD
School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin D07 A8NN, Ireland
| | - Kristina A. Thomsson
- Department
of Medical Biochemistry and Cell Biology, Institute of Biomedicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Ana L. Rebelo
- CÚRAM,
SFI Research Centre for Medical Devices, National University of Ireland, Galway, Galway H91 W2TY, Ireland
| | - Mark Hilliard
- NIBRT
GlycoScience Group, National Institute for
Bioprocessing, Research and Training, Blackrock, Dublin A94 X099, Ireland
| | - Abhay Pandit
- CÚRAM,
SFI Research Centre for Medical Devices, National University of Ireland, Galway, Galway H91 W2TY, Ireland
| | - Pauline M. Rudd
- NIBRT
GlycoScience Group, National Institute for
Bioprocessing, Research and Training, Blackrock, Dublin A94 X099, Ireland
| | - Niclas G. Karlsson
- Department
of Medical Biochemistry and Cell Biology, Institute of Biomedicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
- Department
of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo 0167, Norway
| | - Radka Saldova
- NIBRT
GlycoScience Group, National Institute for
Bioprocessing, Research and Training, Blackrock, Dublin A94 X099, Ireland
- CÚRAM,
SFI Research Centre for Medical Devices, National University of Ireland, Galway, Galway H91 W2TY, Ireland
- UCD
School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin D07 A8NN, Ireland
| |
Collapse
|
10
|
Mustapha M, Taib CNM. MPTP-induced mouse model of Parkinson's disease: A promising direction of therapeutic strategies. Bosn J Basic Med Sci 2021; 21:422-433. [PMID: 33357211 PMCID: PMC8292858 DOI: 10.17305/bjbms.2020.5181] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022] Open
Abstract
Among the popular animal models of Parkinson's disease (PD) commonly used in research are those that employ neurotoxins, especially 1-methyl- 4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). This neurotoxin exerts it neurotoxicity by causing a barrage of insults, such as oxidative stress, mitochondrial apoptosis, inflammation, excitotoxicity, and formation of inclusion bodies acting singly and in concert, ultimately leading to dopaminergic neuronal damage in the substantia nigra pars compacta and striatum. The selective neurotoxicity induced by MPTP in the nigrostriatal dopaminergic neurons of the mouse brain has led to new perspectives on PD. For decades, the MPTP-induced mouse model of PD has been the gold standard in PD research even though it does not fully recapitulate PD symptomatology, but it does have the advantages of simplicity, practicability, affordability, and fewer ethical considerations and greater clinical correlation than those of other toxin models of PD. The model has rejuvenated PD research and opened new frontiers in the quest for more novel therapeutic and adjuvant agents for PD. Hence, this review summarizes the role of MPTP in producing Parkinson-like symptoms in mice and the experimental role of the MPTP-induced mouse model. We discussed recent developments of more promising PD therapeutics to enrich our existing knowledge about this neurotoxin using this model.
Collapse
Affiliation(s)
- Musa Mustapha
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor (Darul Ehsan), Malaysia
- Department of Human Anatomy, Faculty of Basic Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Che Norma Mat Taib
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor (Darul Ehsan), Malaysia
| |
Collapse
|
11
|
Ding W, Qi M, Ma L, Xu X, Chen Y, Zhang W. ADP/ATP translocase 1 protects against an α-synuclein-associated neuronal cell damage in Parkinson's disease model. Cell Biosci 2021; 11:130. [PMID: 34246309 PMCID: PMC8272299 DOI: 10.1186/s13578-021-00645-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND ADP/ATP translocase 1 (ANT1) is involved in the exchange of cytosolic ADP and mitochondrial ATP, and its defection plays an important role in mitochondrial pathogenesis. To reveal an etiological implication of ANT1 for Parkinson's disease (PD), a neurodegenerative disorder, a mouse model treated with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine and neuroblastoma cell model induced by 1-methyl-4-pehny1-pyridine were utilized in this study. RESULTS The tissue-specific abundance in ANT1 in mouse brains was accessed using the analysis of Western blot and immunohistochemistry. Down-regulated soluble ANT1 was found to be correlated with PD, and ANT1 was associated with PD pathogenesis via forming protein aggregates with α-synuclein. This finding was confirmed at cellular level using neuroblastoma cell models. ANT1 supplement in neuronal cells revealed the protective roles of ANT1 against cytotoxicity caused by MPP+. Protein interaction assay, coupled with the analysis of LC-MS/MS, silver-stained SDS-PAGE and Western blot against anti-ANT1 antibody respectively, illustrated the interaction of ANT1 with α-synuclein using the expressed α-synuclein as a bite. Additionally, a significant increasing ROSs was detected in the MPP+-treated cells. CONCLUSIONS This study indicated that ANT1 was a potentially causative factor of PD, and led to neuropathogenic injury via promoting the formation of protein aggregates with α-synuclein. This investigation potentially promotes an innovative understanding of ANT1 on the etiology of PD and provides valuable information on developing potential drug targets in PD treatment or reliable biomarkers in PD prognostication.
Collapse
Affiliation(s)
- Wenyong Ding
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Minghua Qi
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Li Ma
- Department of Epidemiology, Dalian Medical University, Dalian, 116044, China
| | - Xuefei Xu
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yingfei Chen
- Grade 2020, Capital Medical University, Beijing, 100069, China
| | - Wenli Zhang
- Biochemistry and Molecular Biology Department of College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
12
|
Ho GPH, Ramalingam N, Imberdis T, Wilkie EC, Dettmer U, Selkoe DJ. Upregulation of Cellular Palmitoylation Mitigates α-Synuclein Accumulation and Neurotoxicity. Mov Disord 2020; 36:348-359. [PMID: 33103814 DOI: 10.1002/mds.28346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Synucleinopathies, including Parkinson's disease (PD), are characterized by α-synuclein (αS) cytoplasmic inclusions. αS-dependent vesicle-trafficking defects are important in PD pathogenesis, but their mechanisms are not well understood. Protein palmitoylation, post-translational addition of the fatty acid palmitate to cysteines, promotes trafficking by anchoring specific proteins to the vesicle membrane. αS itself cannot be palmitoylated as it lacks cysteines, but it binds to membranes, where palmitoylation occurs, via an amphipathic helix. We hypothesized that abnormal αS membrane-binding impairs trafficking by disrupting palmitoylation. Accordingly, we investigated the therapeutic potential of increasing cellular palmitoylation. OBJECTIVES We asked whether upregulating palmitoylation by inhibiting the depalmitoylase acyl-protein-thioesterase-1 (APT1) ameliorates pathologic αS-mediated cellular phenotypes and sought to identify the mechanism. METHODS Using human neuroblastoma cells, rat neurons, and iPSC-derived PD patient neurons, we examined the effects of pharmacologic and genetic downregulation of APT1 on αS-associated phenotypes. RESULTS APT1 inhibition or knockdown decreased αS cytoplasmic inclusions, reduced αS serine-129 phosphorylation (a PD neuropathological marker), and protected against αS-dependent neurotoxicity. We identified the APT1 substrate microtubule-associated-protein-6 (MAP6), which binds to vesicles in a palmitoylation-dependent manner, as a key mediator of these effects. Mechanistically, we found that pathologic αS accelerated palmitate turnover on MAP6, suggesting that APT1 inhibition corrects a pathological αS-dependent palmitoylation deficit. We confirmed the disease relevance of this mechanism by demonstrating decreased MAP6 palmitoylation in neurons from αS gene triplication patients. CONCLUSIONS Our findings demonstrate a novel link between the fundamental process of palmitoylation and αS pathophysiology. Upregulating palmitoylation represents an unexplored therapeutic strategy for synucleinopathies. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gary P H Ho
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thibaut Imberdis
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Erin C Wilkie
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Simple and Complex Sugars in Parkinson's Disease: a Bittersweet Taste. Mol Neurobiol 2020; 57:2934-2943. [PMID: 32430844 DOI: 10.1007/s12035-020-01931-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
Abstract
Neuronal homeostasis depends on both simple and complex sugars (the glycoconjugates), and derangement of their metabolism is liable to impair neural function and lead to neurodegeneration. Glucose levels boost glycation phenomena, a wide series of non-enzymatic reactions that give rise to various intermediates and end-products that are potentially dangerous in neurons. Glycoconjugates, including glycoproteins, glycolipids, and glycosaminoglycans, contribute to the constitution of the unique features of neuron membranes and extracellular matrix in the nervous system. Glycosylation defects are indeed frequently associated with nervous system disturbances and neurodegeneration. Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms associated with the loss of dopaminergic neurons in the pars compacta of the substantia nigra. Neurons present intracytoplasmic inclusions of α-synuclein aggregates involved in the disease pathogenesis together with the impairment of the autophagy-lysosome function, oxidative stress, and defective traffic and turnover of membrane components. In the present review, we selected relevant recent contributions concerning the direct involvement of glycation and glycosylation in α-synuclein stability, impaired autophagy and lysosomal function in PD, focusing on potential models of PD pathogenesis provided by genetic variants of glycosphingolipid processing enzymes, especially glucocerebrosidase (GBA). Moreover, we collected data aimed at defining the glycomic profile of PD patients as a tool to help in diagnosis and patient subtyping, as well as those pointing to sugar-related compounds with potential therapeutic applications in PD.
Collapse
|