1
|
Dehghanbanadaki N, Taghdir M, Naderi-Manesh H. Structural dynamic investigation of Wnt signalling activation through Co-receptor LRP6. J Biomol Struct Dyn 2025:1-14. [PMID: 39819348 DOI: 10.1080/07391102.2024.2446667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/13/2024] [Indexed: 01/19/2025]
Abstract
Cancer sparks if the components of the cellular signaling network are aberrantly activated, leading to uncontrolled cell growth and proliferation. One of the most important players of this highly regulated network is the Wnt/β-catenin signaling, with a significant role in human health and disease. The critical co-receptor of this pathway, LRP6, is overexpressed in various cancer types and is a target for therapy. Therefore, understanding the details of the LRP6 structural activation mechanism is of tremendous importance. This research intended to compare the structural-dynamics features of the E3E4 functional domain of LRP6 induced by the activator Wnt3a and the inhibitor, Dkk1_C, compared with the receptor behavior in the apo-state. Using molecular docking, molecular dynamics simulation, and G_MMPBSA calculation, we characterized overlapping binding regions of Wnt3a and Dkk1_C on E3E4. Despite their overall similar interacting regions, Dkk1_C and Wnt induce remarkably different inter-blades hydrogen bonds, structural-dynamics behavior, and conformational energy landscape in E3E4. According to our findings, Dkk1_C stabilized the interaction. between BP3 blades 2-3, 3-4, and 4-5 and BP4 blades 1-6, 1-2, 2-3, and 3-4, aligned with apo-state. However, on the other hand, Wnt distinguishably destabilized the hydrogen bond networks of these blades. Our DCCM analysis also depicted a similar correlation pattern of apo and Dkk1-bound states, and dramatic differences in Wnt-bound state, with a specific enhancement of correlated movements in EGF4. These data provide atomistic-level clues of how natural regulators of Wnt signaling manipulate LRP6 dynamics and, therefore, guide the structure-based design of efficient artificial inhibitors/activators for the pathway.
Collapse
Affiliation(s)
- N Dehghanbanadaki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - M Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - H Naderi-Manesh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
兰 元, 余 丽, 胡 芝, 邹 淑. [Research Progress in the Regulatory Role of circRNA-miRNA Network in Bone Remodeling]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:263-272. [PMID: 38645873 PMCID: PMC11026875 DOI: 10.12182/20240360301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 04/23/2024]
Abstract
The dynamic balance between bone formation and bone resorption is a critical process of bone remodeling. The imbalance of bone formation and bone resorption is closely associated with the occurrence and development of various bone-related diseases. Under both physiological and pathological conditions, non-coding RNAs (ncRNAs) play a crucial regulatory role in protein expression through either inhibiting mRNAs translation or promoting mRNAs degradation. Circular RNAs (circRNAs) are a type of non-linear ncRNAs that can resist the degradation of RNA exonucleases. There is accumulating evidence suggesting that circRNAs and microRNAs (miRNAs) serve as critical regulators of bone remodeling through their direct or indirect regulation of the expression of osteogenesis-related genes. Additionally, recent studies have revealed the involvement of the circRNAs-miRNAs regulatory network in the process by which mesenchymal stem cells (MSCs) differentiate towards the osteoblasts (OB) lineage and the process by which bone marrow-derived macrophages (BMDM) differentiate towards osteoclasts (OC). The circRNA-miRNA network plays an important regulatory role in the osteoblastic-osteoclastic balance of bone remodeling. Therefore, a thorough understanding of the circRNA-miRNA regulatory mechanisms will contribute to a better understanding of the regulatory mechanisms of the balance between osteoblastic and osteoclastic activities in the process of bone remodeling and the diagnosis and treatment of related diseases. Herein, we reviewed the functions of circRNA and microRNA. We also reviewed their roles in and the mechanisms of the circRNA-miRNA regulatory network in the process of bone remodeling. This review provides references and ideas for further research on the regulation of bone remodeling and the prevention and treatment of bone-related diseases.
Collapse
Affiliation(s)
- 元辰 兰
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 丽媛 余
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 芝爱 胡
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淑娟 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Chen Y, Gan W, Cheng Z, Zhang A, Shi P, Zhang Y. Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects. Mater Today Bio 2024; 24:100920. [PMID: 38226013 PMCID: PMC10788623 DOI: 10.1016/j.mtbio.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Bone defects have become a major cause of disability and death. To overcome the limitations of natural bone implants, including donor shortages and immune rejection risks, bone tissue engineering (BTE) scaffolds have emerged as a promising therapy for bone defects. Despite possessing good biocompatibility, these metal, ceramic and polymer-based scaffolds are still challenged by the harsh conditions in bone defect sites. ROS accumulation, bacterial infection, excessive inflammation, compromised blood supply deficiency and tumor recurrence negatively impact bone tissue cells (BTCs) and hinder the osteointegration of BTE scaffolds. Phenolic compounds, derived from plants and fruits, have gained growing application in treating inflammatory, infectious and aging-related diseases due to their antioxidant ability conferred by phenolic hydroxyl groups. The prevalent interactions between phenols and functional groups also facilitate their utilization in fabricating scaffolds. Consequently, phenols are increasingly incorporated into BTE scaffolds to boost therapeutic efficacy in bone defect. This review demonstrated the effects of phenols on BTCs and bone defect microenvironment, summarized the intrinsic mechanisms, presented the advances in phenol-modified BTE scaffolds and analyzed their potential risks in practical applications. Overall, phenol-modified BTE scaffolds hold great potential for repairing bone defects, offering novel patterns for BTE scaffold construction and advancing traumatological medicine.
Collapse
Affiliation(s)
| | | | | | - Anran Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Synthetic Pathways and the Therapeutic Potential of Quercetin and Curcumin. Int J Mol Sci 2022; 23:ijms232214413. [PMID: 36430891 PMCID: PMC9696847 DOI: 10.3390/ijms232214413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Polyphenols are considered popular ingredients in the pharmaceutical and medical fields due to their preventive and therapeutic properties. However, the potential effects and mechanisms of action of individual polyphenols remain largely unknown. Herein, we analyzed recent data on the synthetic pathways, features, and similarity of the properties of quercetin, as the most famous flavonoid, and curcumin, a representative of curcuminoids that despite their anti-oxidant activity, also have a pro-oxidant effect, depending on the concentration and the cellular environment. This review focuses on an analysis of their anti-cancer efficacy against various cancer cell lines via cell cycle arrest (regulation of p53/p21 and CDK/cyclins) and by triggering the mitochondrial intrinsic (Bcl-2/Bax/caspase 9) apoptotic pathway, as well as through the modulation of the signaling pathways (PI3K/Akt, Wnt/β-catenin, JAK/STAT, MAPK, p53, and NF-ĸB) and their influence on the non-coding RNAs involved in angiogenesis, invasion, migration, and metastasis. The therapeutic potential of quercetin and curcumin is discussed not only on the basis of their anti-cancer effects, but also with regard to their anti-diabetic, anti-obesity, anti-inflammatory, and anti-bacterial actions.
Collapse
|
5
|
Chen D, Yu C, Ying Y, Luo Y, Ren L, Zhu C, Yang K, Wu B, Liu Q. Study of the Osteoimmunomodulatory Properties of Curcumin-Modified Copper-Bearing Titanium. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103205. [PMID: 35630685 PMCID: PMC9144993 DOI: 10.3390/molecules27103205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022]
Abstract
Peri-implantitis can lead to implant failure. In this study, curcumin (CUR) was modified onto the copper-bearing titanium alloy (Cu-Ti) with the assistance of polydopamine (PDA) in order to study the bone immune response and subsequent osteogenesis. FE-SEM, XPS and water contact angle were utilized to characterize the coating surface. Bone marrow mesenchymal stem cells (BMSCs) and macrophages were cultured separately and together onto the CUR modified Cu-Ti. Cell activity, expression of relative genes and proteins, cell migration ability, and fluorescence staining of cells were performed. CUR modification slightly increased the activation of M1-type and M2-type cells under physiological conditions. In the inflammation state, CUR inhibited the overexpression of M1 macrophages and induced M2-type differentiation. In addition, the modification itself could provoke the expression of osteoblastic-related genes of BMSCs, while promoting the osteogenic differentiation of BMSCs through the activation of macrophages in both physiological and inflammatory states. The BMSCs migration was increased, the expression of osteogenic-related genes and proteins was up-regulated, and alkaline phosphatase activity (ALP) was increased. Thus, the modification of CUR can promote the osteointegration effect of Cu-Ti by bone immunomodulation and may, in addition, improve the success rate of implants.
Collapse
Affiliation(s)
- Danhong Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; (D.C.); (C.Y.); (Y.Y.)
- College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Chengcheng Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; (D.C.); (C.Y.); (Y.Y.)
- College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Ying Ying
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; (D.C.); (C.Y.); (Y.Y.)
- College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Yuanyi Luo
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.L.); (C.Z.)
| | - Ling Ren
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (L.R.); (K.Y.)
| | - Caizhen Zhu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.L.); (C.Z.)
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (L.R.); (K.Y.)
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; (D.C.); (C.Y.); (Y.Y.)
- College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
- Correspondence: (Q.L.); (B.W.); Tel.: +86-20-62787153 (Q.L.); +86-20-62787678 (B.W.)
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China; (D.C.); (C.Y.); (Y.Y.)
- College of Stomatology, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou 510515, China
- Correspondence: (Q.L.); (B.W.); Tel.: +86-20-62787153 (Q.L.); +86-20-62787678 (B.W.)
| |
Collapse
|
6
|
Cui J, Chen H, Zhang K, Li X. Targeting the Wnt signaling pathway for breast cancer bone metastasis therapy. J Mol Med (Berl) 2021; 100:373-384. [PMID: 34821953 DOI: 10.1007/s00109-021-02159-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Osteolytic bone destruction is found in approximately 60% of advanced breast cancer patients. With the pathogenesis of bone metastasis being unclear, traditional antiresorptive therapeutic strategies might not be ideal for treatment. The Wnt pathway is a highly organized cascade involved in multiple stages of cancer bone metastasis, and Wnt-targeted therapeutic strategies have shown promise in achieving favorable outcomes. In this review, we summarize the current progress of pharmacological Wnt modulators against breast cancer bone metastasis, discuss emerging therapeutic strategies based on Wnt pathway-related targets for bone therapy, and highlight opportunities to better harness the Wnt pathway for bone metastasis therapeutics to further reveal the implications of the Wnt pathway in bone metastasis pathology and provide new ideas for the development of Wnt-based intervention strategies against breast cancer bone metastasis.
Collapse
Affiliation(s)
- Jingyao Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haoran Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
7
|
Ramesh P, Jagadeesan R, Sekaran S, Dhanasekaran A, Vimalraj S. Flavonoids: Classification, Function, and Molecular Mechanisms Involved in Bone Remodelling. Front Endocrinol (Lausanne) 2021; 12:779638. [PMID: 34887836 PMCID: PMC8649804 DOI: 10.3389/fendo.2021.779638] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids are polyphenolic compounds spotted in various fruits, vegetables, barks, tea plants, and stems and many more natural commodities. They have a multitude of applications through their anti-inflammatory, anti-oxidative, anti-carcinogenic properties, along with the ability to assist in the stimulation of bone formation. Bone, a rigid connective body tissue made up of cells embedded in a mineralised matrix is maintained by an assemblage of pathways assisting osteoblastogenesis and osteoclastogenesis. These have a significant impact on a plethora of bone diseases. The homeostasis between osteoblast and osteoclast formation decides the integrity and structure of the bone. The flavonoids discussed here are quercetin, kaempferol, icariin, myricetin, naringin, daidzein, luteolin, genistein, hesperidin, apigenin and several other flavonoids. The effects these flavonoids have on the mitogen activated protein kinase (MAPK), nuclear factor kappa β (NF-kβ), Wnt/β-catenin and bone morphogenetic protein 2/SMAD (BMP2/SMAD) signalling pathways, and apoptotic pathways lead to impacts on bone remodelling. In addition, these polyphenols regulate angiogenesis, decrease the levels of inflammatory cytokines and play a crucial role in scavenging reactive oxygen species (ROS). Considering these important effects of flavonoids, they may be regarded as a promising agent in treating bone-related ailments in the future.
Collapse
Affiliation(s)
| | | | - Saravanan Sekaran
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | | | | |
Collapse
|
8
|
The Multifaceted Therapeutic Mechanisms of Curcumin in Osteosarcoma: State-of-the-Art. JOURNAL OF ONCOLOGY 2021; 2021:3006853. [PMID: 34671398 PMCID: PMC8523229 DOI: 10.1155/2021/3006853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is a major form of malignant bone tumor that typically occurs in young adults and children. The combination of aggressive surgical strategies and chemotherapy has led to improvements in survival time, although individuals with recurrent or metastatic conditions still have an extremely poor prognosis. This disappointing situation strongly indicates that testing novel, targeted therapeutic agents is imperative to prevent the progression of osteosarcoma and enhance patient survival time. Curcumin, a naturally occurring phenolic compound found in Curcuma longa, has been shown to have a wide variety of anti-tumor, anti-oxidant, and anti-inflammatory activities in many types of cancers including osteosarcoma. Curcumin is a highly pleiotropic molecule that can modulate intracellular signaling pathways to regulate cell proliferation, inflammation, and apoptosis. These signaling pathways include RANK/RANKL, Notch, Wnt/β-catenin, apoptosis, autophagy, JAK/STAT, and HIF-1 pathways. Additionally, curcumin can regulate the expression of various types of microRNAs that are involved in osteosarcoma. Therefore, curcumin may be a potential candidate for the prevention and treatment of osteosarcoma. This comprehensive review not only covers the use of curcumin in the treatment of osteosarcoma and its anti-cancer molecular mechanisms but also reveals the novel delivery strategies and combination therapies with the aim to improve the therapeutic effect of curcumin.
Collapse
|
9
|
Zhang T, Chen X, Qu Y, Ding Y. Curcumin Alleviates Oxygen-Glucose-Deprivation/Reperfusion-Induced Oxidative Damage by Regulating miR-1287-5p/LONP2 Axis in SH-SY5Y Cells. Anal Cell Pathol (Amst) 2021; 2021:5548706. [PMID: 34589382 PMCID: PMC8476263 DOI: 10.1155/2021/5548706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress-induced neuronal damage is a main cause of ischemia/reperfusion injury. Curcumin (Cur), the principal constituent extracted from dried rhizomes of Curcuma longa L. (turmeric), exhibits excellent antioxidant effects. Previous studies have indicated that miR-1287-5p was downregulated in patients with ischemic stroke. Additionally, we predicted that Lon Peptidase 2, Peroxisomal (LONP2), which is involved in oxidative stress regulation, is targeted by miR-1287-5p. The aim of the current study is to investigate the effect of Cur on ischemia/reperfusion damage and its underlying mechanism. To mimic ischemia/reperfusion damage environment, SH-SY5Y cells were subjected to oxygen-glucose-deprivation/reperfusion (OGD/R). OGD/R treatment downregulated miR-1287-5p and upregulated LONP2 in SH-SY5Y cells, but Cur alleviated OGD/R-induced oxidative damage and reversed the effect of OGD/R on the expression of miR-1287-5p and LONP2. Furthermore, we confirmed the interactive relationship between miR-1287-5p and LONP2 (negative regulation). We revealed that miR-1287-5p overexpression alleviated OGD/R-induced oxidative damage alleviation, similar to the effect of Cur. MiR-1287-5p inhibition accentuated OGD/R-induced oxidative damage in SH-SY5Y cells, which was reversed by Cur. The expression of LONP2 in OGD/R-treated SH-SY5Y cells was decreased by miR-1287-5p overexpression and increased by miR-1287-5p inhibition, and Cur counteracted the increase in LONP2 expression induced by miR-1287-5p inhibition. In conclusion, we suggest that Cur alleviates OGD/R-induced oxidative damage in SH-SY5Y cells by regulating the miR-1287-5p/LONP2 axis. The findings provide a theoretical basis for the clinical application of curcumin.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Provincial Hospital Traditional Chinese Medicine, Wuhan 430074, China
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Province Traditional Chinese Medicine Research Institute, Wuhan 430074, China
| | - Xiaomin Chen
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Provincial Hospital Traditional Chinese Medicine, Wuhan 430074, China
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Province Traditional Chinese Medicine Research Institute, Wuhan 430074, China
| | - Yueqing Qu
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Provincial Hospital Traditional Chinese Medicine, Wuhan 430074, China
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Province Traditional Chinese Medicine Research Institute, Wuhan 430074, China
| | - Yanbing Ding
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Provincial Hospital Traditional Chinese Medicine, Wuhan 430074, China
- Department of Traditional Chinese Medicine Encephalopathy, Hubei Province Traditional Chinese Medicine Research Institute, Wuhan 430074, China
| |
Collapse
|
10
|
Ghafouri-Fard S, Abak A, Tavakkoli Avval S, Rahmani S, Shoorei H, Taheri M, Samadian M. Contribution of miRNAs and lncRNAs in osteogenesis and related disorders. Biomed Pharmacother 2021; 142:111942. [PMID: 34311172 DOI: 10.1016/j.biopha.2021.111942] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs have been found to regulate several developmental processes among them is osteogenesis. Although these transcripts have several distinct classes, two classes i.e. microRNAs and long non-coding RNAs have attained more attention. These transcripts regulate intramembranous as well as endochondral ossification processes. The effects of microRNAs on osteogenesis are mostly mediated through modulation of Wnt/β-catenin and TGFβ/BMP pathways. Long non-coding RNAs can directly affect expression of these pathways or osteogenic transcription factors. Moreover, they can serve as a molecular sponge for miRNAs. MALAT1/miR-30, MALAt1/miR-214, LEF1-AS1/miR-24-3p, MCF2L-AS1/miR-33a, MSC-AS1/miR-140-5p and KCNQ1OT1/miR-214 are examples of such kind of interaction between lncRNAs and miRNAs in the context of osteogenesis. In the current paper, we explain these two classes of non-coding RNAs in the osteogenesis and related disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Bonilla DA, Moreno Y, Rawson ES, Forero DA, Stout JR, Kerksick CM, Roberts MD, Kreider RB. A Convergent Functional Genomics Analysis to Identify Biological Regulators Mediating Effects of Creatine Supplementation. Nutrients 2021; 13:2521. [PMID: 34444681 PMCID: PMC8397972 DOI: 10.3390/nu13082521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine (Cr) and phosphocreatine (PCr) are physiologically essential molecules for life, given they serve as rapid and localized support of energy- and mechanical-dependent processes. This evolutionary advantage is based on the action of creatine kinase (CK) isozymes that connect places of ATP synthesis with sites of ATP consumption (the CK/PCr system). Supplementation with creatine monohydrate (CrM) can enhance this system, resulting in well-known ergogenic effects and potential health or therapeutic benefits. In spite of our vast knowledge about these molecules, no integrative analysis of molecular mechanisms under a systems biology approach has been performed to date; thus, we aimed to perform for the first time a convergent functional genomics analysis to identify biological regulators mediating the effects of Cr supplementation in health and disease. A total of 35 differentially expressed genes were analyzed. We identified top-ranked pathways and biological processes mediating the effects of Cr supplementation. The impact of CrM on miRNAs merits more research. We also cautiously suggest two dose-response functional pathways (kinase- and ubiquitin-driven) for the regulation of the Cr uptake. Our functional enrichment analysis, the knowledge-based pathway reconstruction, and the identification of hub nodes provide meaningful information for future studies. This work contributes to a better understanding of the well-reported benefits of Cr in sports and its potential in health and disease conditions, although further clinical research is needed to validate the proposed mechanisms.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Yurany Moreno
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia;
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Diego A. Forero
- Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA;
- Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
12
|
Pan L, Sha J, Lin W, Wang Y, Bian T, Guo J. Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis. Exp Ther Med 2021; 22:969. [PMID: 34335911 PMCID: PMC8290411 DOI: 10.3892/etm.2021.10401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/04/2021] [Indexed: 12/22/2022] Open
Abstract
Curcumin has been shown to inhibit the growth of a variety of tumor cells. However, the biological functions of curcumin in prostate cancer (PCa) have not yet fully elucidated. The objective of the present study was to investigate the role of curcumin on the proliferation, migration, invasion and apoptosis of PCa cells and the underlying mechanism. Cell Counting Kit-8 and flow cytometry were used to detect the effects of curcumin at different concentrations on the proliferation and apoptosis of PCa cell lines, PC-3 and DU145. BrdU and Transwell assays, western blotting and reverse transcription-quantitative PCR were used to determine the effect of curcumin on cell proliferation, migration and invasion, apoptosis-related protein expression, and microRNA (miR)-30a-5p and PCNA clamp associated factor (PCLAF) expression, respectively. In addition, bioinformatics analysis and Pearson's correlation test were used to verify the relationship between miR-30a-5p and PCLAF. Curcumin was observed to impede the proliferation, migration and invasion of PCa cells, and promote their apoptosis in a time- and dose-dependent manner. Curcumin enhanced miR-30a-5p expression and inhibited PCLAF expression; furthermore, there was a negative correlation between miR-30a-5p and PCLAF expression in PCa tissues. In addition, transfection of miR-30a-5p inhibitors partially reversed the function of curcumin on cell proliferation, migration, invasion and apoptosis. Overall, curcumin suppressed the malignant biological behaviors of PCa cells by regulating the miR-30a-5p/PCLAF axis.
Collapse
Affiliation(s)
- Liang Pan
- Department of Urology, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200031, P.R. China
| | - Jian Sha
- Department of Urology, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200031, P.R. China
| | - Wenyao Lin
- Department of Urology, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200031, P.R. China
| | - Yuxiong Wang
- Department of Urology, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200031, P.R. China
| | - Tingzhang Bian
- Department of Urology, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200031, P.R. China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
13
|
Ayadilord M, Nasseri S, Emadian Razavi F, Saharkhiz M, Rostami Z, Naseri M. Immunomodulatory effects of phytosomal curcumin on related-micro RNAs, CD200 expression and inflammatory pathways in dental pulp stem cells. Cell Biochem Funct 2021; 39:886-895. [PMID: 34235754 DOI: 10.1002/cbf.3659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Human dental pulp stem cells (hDPSCs) have significant potential of immunomodulatory for therapeutic and regenerative biomedical applications compared to other mesenchymal stem cells (MSCs). Nowadays, alteration of gene expression is an important way to improve the performance of MSCs in the clinic. MicroRNAs (miRs) and CD200 are known to modulate the immune system in MSCs. Curcumin is famous for its anti-inflammatory impacts. Phytosomal curcumin (PC) is a nanoparticle synthesized from curcumin that removes the drawbacks of curcumin. The purpose of this research was to assess the effects of PC on the expression of the CD200 and four key miRNAs in immune system. PC (30 μM) treatment of hDPSCs could ameliorate their immunoregulatory property, presented by reduced expressions of miR-21, miR-155 and miR-126, as well as enhanced expressions of miR-23 and CD200. The PC was also able to reduce PI3K\AKT1\NF-κB expressions that were target genes for these miRs and involved in inflammatory pathways. Moreover, PC was more effective than curcumin in improving the immune modulation of hDPSCs. Evidence in this study suggested that PC mediates immunoregulatory activities in hDPSC via miRs and CD200 to regulate PI3K\AKT1\NF-κB signalling pathways, which may provide a theoretical basis for PC in the treatment of many diseases. SIGNIFICANCE OF THE STUDY: Autoimmune diseases or tooth caries are partly attributed to global health problems and their common drug treatments have several side effects. The goal of this study is dentin regeneration and autoimmune diseases treatment via stem cell-based approaches with phytosomal curcumin (PC), for the first time. Because dental pulp stem cells have unique advantages (including higher immunomodulatory capacity) over other mesenchymal stem cells, we considered them the best option for treating these diseases. Using PC, we try to increase the immunomodulatory properties of these cells.
Collapse
Affiliation(s)
- Malaksima Ayadilord
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Nasseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Department of Prosthodontics, Birjand University of Medical Sciences, Birjand, Iran
| | - Mansoore Saharkhiz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
14
|
Extracellular Vesicles: Potential Mediators of Psychosocial Stress Contribution to Osteoporosis? Int J Mol Sci 2021; 22:ijms22115846. [PMID: 34072559 PMCID: PMC8199340 DOI: 10.3390/ijms22115846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoporosis is characterized by low bone mass and damage to the bone tissue’s microarchitecture, leading to increased fracture risk. Several studies have provided evidence for associations between psychosocial stress and osteoporosis through various pathways, including the hypothalamic-pituitary-adrenocortical axis, the sympathetic nervous system, and other endocrine factors. As psychosocial stress provokes oxidative cellular stress with consequences for mitochondrial function and cell signaling (e.g., gene expression, inflammation), it is of interest whether extracellular vesicles (EVs) may be a relevant biomarker in this context or act by transporting substances. EVs are intercellular communicators, transfer substances encapsulated in them, modify the phenotype and function of target cells, mediate cell-cell communication, and, therefore, have critical applications in disease progression and clinical diagnosis and therapy. This review summarizes the characteristics of EVs, their role in stress and osteoporosis, and their benefit as biological markers. We demonstrate that EVs are potential mediators of psychosocial stress and osteoporosis and may be beneficial in innovative research settings.
Collapse
|
15
|
Xu C, Wang M, Guo W, Sun W, Liu Y. Curcumin in Osteosarcoma Therapy: Combining With Immunotherapy, Chemotherapeutics, Bone Tissue Engineering Materials and Potential Synergism With Photodynamic Therapy. Front Oncol 2021; 11:672490. [PMID: 34094974 PMCID: PMC8172965 DOI: 10.3389/fonc.2021.672490] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma is a dominating malignant bone tumor with high mortality due to pulmonary metastases. Furthermore, because of the cancer cell erosion and surgery resection, osteosarcoma always causes bone defects, which means dysfunction and disfigurement are seldom inevitable. Although various advanced treatments (e.g. chemotherapy, immunotherapy, radiotherapy) are coming up, the 5-year survival rate for osteosarcoma with metastases is still dismal. In line with this, the more potent treatments for osteosarcoma are in high demand. Curcumin, a perennial herb, has been reportedly applied in the therapy of various types of tumors via different mechanisms. In vitro, it has also been reported that curcumin can inhibit the proliferation of osteosarcoma cell lines and can be used to repair bone defects. This seems curcumin is a promising candidate in osteosarcoma treatment. However, due to its congenital property like hydrophobicity, and low bioavailability, affecting its anticancer effect, clinical applications of curcumin are highly limited. To enhance its performance in cancer therapies, some synergist approaches with curcumin have emerged. The present review presents some prospective ones (i.e. combinations with immunotherapy, chemotherapeutics, bone tissue engineering, and biomaterials) applied in osteosarcoma treatment. Additionally, with the advancements of photodynamic therapy in cancer therapy, this review also prospects the combination of curcumin with photodynamic therapy in osteosarcoma treatment.
Collapse
Affiliation(s)
- Chunfeng Xu
- Section of Restorative and Reconstructive Oral Care, Department of Oral Health Sciences, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mingjie Wang
- Section of Restorative and Reconstructive Oral Care, Department of Oral Health Sciences, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wei Guo
- Department of Oral-Maxillofacial and Head-Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Sun
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, United States.,Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yuelian Liu
- Section of Restorative and Reconstructive Oral Care, Department of Oral Health Sciences, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Gaus S, Li H, Li S, Wang Q, Kottek T, Hahnel S, Liu X, Deng Y, Ziebolz D, Haak R, Schmalz G, Liu L, Savkovic V, Lethaus B. Shared Genetic and Epigenetic Mechanisms between the Osteogenic Differentiation of Dental Pulp Stem Cells and Bone Marrow Stem Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6697810. [PMID: 33628811 PMCID: PMC7884974 DOI: 10.1155/2021/6697810] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To identify the shared genetic and epigenetic mechanisms between the osteogenic differentiation of dental pulp stem cells (DPSC) and bone marrow stem cells (BMSC). MATERIALS AND METHODS The profiling datasets of miRNA expression in the osteogenic differentiation of mesenchymal stem cells from the dental pulp (DPSC) and bone marrow (BMSC) were searched in the Gene Expression Omnibus (GEO) database. The differential expression analysis was performed to identify differentially expressed miRNAs (DEmiRNAs) dysregulated in DPSC and BMSC osteodifferentiation. The target genes of the DEmiRNAs that were dysregulated in DPSC and BMSC osteodifferentiation were identified, followed by the identification of the signaling pathways and biological processes (BPs) of these target genes. Accordingly, the DEmiRNA-transcription factor (TFs) network and the DEmiRNAs-small molecular drug network involved in the DPSC and BMSC osteodifferentiation were constructed. RESULTS 16 dysregulated DEmiRNAs were found to be overlapped in the DPSC and BMSC osteodifferentiation, including 8 DEmiRNAs with a common expression pattern (8 upregulated DEmiRNAs (miR-101-3p, miR-143-3p, miR-145-3p/5p, miR-19a-3p, miR-34c-5p, miR-3607-3p, miR-378e, miR-671-3p, and miR-671-5p) and 1 downregulated DEmiRNA (miR-671-3p/5p)), as well as 8 DEmiRNAs with a different expression pattern (i.e., miR-1273g-3p, miR-146a-5p, miR-146b-5p, miR-337-3p, miR-382-3p, miR-4508, miR-4516, and miR-6087). Several signaling pathways (TNF, mTOR, Hippo, neutrophin, and pathways regulating pluripotency of stem cells), transcription factors (RUNX1, FOXA1, HIF1A, and MYC), and small molecule drugs (curcumin, docosahexaenoic acid (DHA), vitamin D3, arsenic trioxide, 5-fluorouracil (5-FU), and naringin) were identified as common regulators of both the DPSC and BMSC osteodifferentiation. CONCLUSION Common genetic and epigenetic mechanisms are involved in the osteodifferentiation of DPSCs and BMSCs.
Collapse
Affiliation(s)
- Sebastian Gaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Hanluo Li
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Simin Li
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Qian Wang
- Department of Central Laboratory, Taian Central Hospital, Longtan Road No. 29, Taian, 271000 Shandong Province, China
| | - Tina Kottek
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Sebastian Hahnel
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Xiangqiong Liu
- Department of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Yupei Deng
- Department of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Lei Liu
- Department of Neurology, Shandong Provincial Third Hospital, Cheeloo Chollege of Medicine, Shandong University, Jinan, 100191 Shandong Province, China
| | - Vuk Savkovic
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| | - Bernd Lethaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, Leipzig 04103, Germany
| |
Collapse
|
17
|
Zhang L, Wu J, Li Y, Jiang Y, Wang L, Chen Y, Lv Y, Zou Y, Ding X. Circ_0000527 promotes the progression of retinoblastoma by regulating miR-646/LRP6 axis. Cancer Cell Int 2020; 20:301. [PMID: 32669977 PMCID: PMC7350616 DOI: 10.1186/s12935-020-01396-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023] Open
Abstract
Background Researches validate that circular RNAs (circRNAs) are dysregulated in a variety of malignancies and play an important role in regulating the malignant phenotype of tumor cells. Nevertheless, the role of circ_0000527 in retinoblastoma (RB) and its regulatory mechanisms remain largely unknown. Methods Real-time PCR (RT-PCR) was used to detect circ_0000527 and miR-646 expression in RB tissues and cells. The LRP6 expression in RB cells was detected by Western blot. The relationship between circ_0000527 expression and the clinicopathological parameters of RB patients was analyzed. Cell proliferation, apoptosis and metastasis were monitored by cell counting kit-8 (CCK-8), flow cytometry, and Transwell assay. The dual-luciferase reporter gene assay and RIP assay were employed to verify the targeting relationship between circ_0000527 and miR-646, miR-646 and LRP6. Results Circ_0000527 was highly expressed in both RB and RB cell lines, whose high expression level and degree of differentiation were significantly correlated with the increase in cTNM staging level. Overexpression of circ_0000527 contributed to RB cell proliferation, migration, invasion and suppressed cell apoptosis, while knocking down circ_0000527 inhibited the above malignant biological behavior. The underlying mechanism suggested that functioning as a endogenous competitive RNA, circ_0000527 directly targeted miR-646 and positively regulated LRP6 expression. Conclusion Circ_0000527 enhances the proliferation and metastasis of RB cells by modulating the miR-646/LRP6 axis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003 Shandong China
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003 Shandong China
| | - Yujun Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003 Shandong China
| | - Yanxia Jiang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003 Shandong China
| | - Lili Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003 Shandong China
| | - Yunqing Chen
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003 Shandong China
| | - Yalin Lv
- Department of Dermatology, The Affiliated Hospital of Qingdao University, No 16, Jiangsu Road, South District, Qingdao, 266003 Shandong China
| | - Yuwei Zou
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003 Shandong China
| | - Xiaoyan Ding
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003 Shandong China
| |
Collapse
|
18
|
Luo X, Li L, Xu W, Cheng Y, Xie Z. HLY78 Attenuates Neuronal Apoptosis via the LRP6/GSK3β/β-Catenin Signaling Pathway After Subarachnoid Hemorrhage in Rats. Neurosci Bull 2020; 36:1171-1181. [PMID: 32562163 DOI: 10.1007/s12264-020-00532-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
Neuronal apoptosis is one of the essential mechanisms of early brain injury after subarachnoid hemorrhage (SAH). Recently, HLY78 has been shown to inhibit apoptosis in tumor cells and embryonic cells caused by carbon ion radiation through activation of the Wnt/β-catenin pathway. This study was designed to explore the anti-apoptotic role of HLY78 in experimental SAH. The results demonstrated that HLY78 attenuated neuronal apoptosis and the neurological deficits after SAH through the activation of low-density lipoprotein receptor-related protein 6 (LRP6), which subsequently increased the level of phosphorylated glycogen synthesis kinase 3 beta (p-GSK3β) (Ser9), β-catenin, and Bcl-2, accompanied by a decrease of p-β-catenin, Bax, and cleaved caspase 3. An LRP6 small-interfering ribonucleic acid reversed the effects of HLY78. In conclusion, HLY78 attenuates neuronal apoptosis and improves neurological deficits through the LRP6/GSK3β/β-catenin signaling pathway after SAH in rats. HLY78 is a promising therapeutic agent to attenuate early brain injury after SAH.
Collapse
Affiliation(s)
- Xu Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Lina Li
- Department of Nephrology, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
19
|
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Afshar EG, Farkhondeh T, Samarghandian S. Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: A review. Phytother Res 2020; 34:1745-1760. [PMID: 32157749 DOI: 10.1002/ptr.6642] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Curcumin is a naturally occurring nutraceutical compound with a number of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic, antitumor, and cardioprotective. This plant-derived chemical has demonstrated great potential in targeting various signaling pathways to exert its protective effects. Signal transducers and activator of transcription (STAT) is one of the molecular pathways involved in a variety of biological processes such as cell proliferation and cell apoptosis. Accumulating data demonstrates that the STAT pathway is an important target in treatment of a number of disorders, particularly cancer. Curcumin is capable of affecting STAT signaling pathway in induction of its therapeutic impacts. Curcumin is able to enhance the level of anti-inflammatory cytokines and improve inflammatory disorders such as colitis by targeting STAT signaling pathway. Furthermore, studies show that inhibition of JAK/STAT pathway by curcumin is involved in reduced migration and invasion of cancer cells. Curcumin normalizes the expression of JAK/STAT signaling pathway to exert anti-diabetic, renoprotective, and neuroprotective impacts. At the present review, we provide a comprehensive discussion about the effect of curcumin on JAK/STAT signaling pathway to direct further studies in this field.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hossein Rafiei
- Department of Biology, Faculty of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham G Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|