1
|
Qin Q, Zhou Y, Guo J, Chen Q, Tang W, Li Y, You J, Li Q. Conserved methylation signatures associate with the tumor immune microenvironment and immunotherapy response. Genome Med 2024; 16:47. [PMID: 38566132 PMCID: PMC10985907 DOI: 10.1186/s13073-024-01318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Aberrant DNA methylation is a major characteristic of cancer genomes. It remains unclear which biological processes determine epigenetic reprogramming and how these processes influence the variants in the cancer methylome, which can further impact cancer phenotypes. METHODS We performed pairwise permutations of 381,900 loci in 569 paired DNA methylation profiles of cancer tissue and matched normal tissue from The Cancer Genome Atlas (TCGA) and defined conserved differentially methylated positions (DMPs) based on the resulting null distribution. Then, we derived independent methylation signatures from 2,465 cancer-only methylation profiles from the TCGA and 241 cell line-based methylation profiles from the Genomics of Drug Sensitivity in Cancer (GDSC) cohort using nonnegative matrix factorization (NMF). We correlated DNA methylation signatures with various clinical and biological features, including age, survival, cancer stage, tumor immune microenvironment factors, and immunotherapy response. We inferred the determinant genes of these methylation signatures by integrating genomic and transcriptomic data and evaluated the impact of these signatures on cancer phenotypes in independent bulk and single-cell RNA/methylome cohorts. RESULTS We identified 7,364 differentially methylated positions (2,969 Hyper-DMPs and 4,395 Hypo-DMPs) in nine cancer types from the TCGA. We subsequently retrieved three highly conserved, independent methylation signatures (Hyper-MS1, Hypo-MS1, and Hypo-MS4) from cancer tissues and cell lines based on these Hyper and Hypo-DMPs. Our data suggested that Hypo-MS4 activity predicts poor survival and is associated with immunotherapy response and distant tumor metastasis, and Hypo-MS4 activity is related to TP53 mutation and FOXA1 binding specificity. In addition, we demonstrated a correlation between the activities of Hypo-MS4 in cancer cells and the fractions of regulatory CD4 + T cells with the expression levels of immunological genes in the tumor immune microenvironment. CONCLUSIONS Our findings demonstrated that the methylation signatures of distinct biological processes are associated with immune activity in the cancer microenvironment and predict immunotherapy response.
Collapse
Affiliation(s)
- Qingqing Qin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Ying Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Jintao Guo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Qinwei Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
| | - Weiwei Tang
- Department of Medical Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian, Medical University, Xiamen, 361003, China
| | - Yuchen Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Jun You
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, Cancer Center, Xiamen, 361003, China
| | - Qiyuan Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China.
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China.
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
2
|
Rao MMV, Likith M, Kavya R, Hariprasad TPN. Plectin as a putative novel biomarker for breast cancer: an in silico study. NETWORK MODELING ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2022; 11:49. [DOI: 10.1007/s13721-022-00392-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 01/03/2025]
|
3
|
ARL11 correlates with the immunosuppression and poor prognosis in breast cancer: A comprehensive bioinformatics analysis of ARL family members. PLoS One 2022; 17:e0274757. [DOI: 10.1371/journal.pone.0274757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
ADP-ribosylation factor-like protein (ARL) family members (ARLs) may regulate the malignant phenotypes of cancer cells. However, relevant studies on ARLs in breast cancer (BC) are limited. In this research, the expression profiles, genetic variations, and prognostic values of ARLs in BC have been systematically analyzed for the first time using various databases. We find that ARLs are significantly dysregulated in BC according to the TCGA database, which may result from DNA methylation and copy number alteration. Prognostic analysis suggests that ARL11 is the most significant prognostic indicator for BC, and higher ARL11 predicts worse clinical outcomes for BC patients. Further functional enrichment analysis demonstrates that ARL11 enhances the immunosuppression in BC, and dysregulation of ARL11 is significantly associated with immune infiltration in various types of cancer. Our results demonstrate the potential of ARL11 as an immune therapeutic target for BC.
Collapse
|
4
|
Xie H, Xiao R, He Y, He L, Xie C, Chen J, Hong Y. MicroRNA-100 inhibits breast cancer cell proliferation, invasion and migration by targeting FOXA1. Oncol Lett 2021; 22:816. [PMID: 34671430 PMCID: PMC8503813 DOI: 10.3892/ol.2021.13077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are highly conserved single-stranded small non-coding RNAs, which are involved in the physiological and pathological processes of breast cancer, and affect the prognosis of patients with breast cancer. The present study used the Gene Expression Omnibus (GEO)2R tool to detect miR-100 expression in breast cancer tissues obtained from GEO breast cancer-related datasets. Bioinformatics analysis revealed that miR-100 expression was downregulated in different stages, grades and lymph node metastasis stages of breast cancer, and patients with high miR-100 expression had a more favorable prognosis. Based on these analyses, Cell Counting Kit-8, wound healing and Transwell assays were performed, and the results demonstrated that overexpression of miR-100 inhibited the proliferation, migration and invasion of breast cancer cells. To verify the tumor-suppressive effect of miR-100 in breast cancer, the LinkedOmics and PITA databases were used to assess the association between miR-100 and forkhead box A1 (FOXA1). The results demonstrated that miR-100 had binding sites within the FOXA1 gene, and FOXA1 expression was negatively associated with miR-100 expression in breast cancer tissues. Similarly, a negative association was observed between miR-100 and FOXA1 expression, using the StarBase V3.0 database. The association between miR-100 and FOXA1 was further verified via reverse transcription-quantitative PCR and western blot analyses, and the dual-luciferase reporter assay. The results demonstrated that miR-100 targeted the 3′-untranslated region of FOXA1 in breast cancer cells. Furthermore, rescue experiments were performed to confirm whether miR-100 exerts its antitumor effects by regulating FOXA1. The results demonstrated that overexpression of FOXA1 promoted the proliferation, migration and invasion of breast cancer cells; thus, the antitumor effects of miR-100 in breast cancer were reversed following overexpression of FOXA1. Taken together, the results of the present study suggest that miR-100 inhibits the proliferation, migration and invasion of breast cancer cells by targeting FOXA1 expression. These results may provide a novel insight and an experimental basis for identifying effective therapeutic targets of high specificity for breast cancer.
Collapse
Affiliation(s)
- Haihui Xie
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China.,Clinical Research Center for Prevention and Treatment of Breast & Thyroid Disease in Hunan Province, Hengyang, Hunan 421001, P.R. China
| | - Ruobing Xiao
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China.,Clinical Research Center for Prevention and Treatment of Breast & Thyroid Disease in Hunan Province, Hengyang, Hunan 421001, P.R. China
| | - Yaolin He
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lingzhi He
- Department of Preventive Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, P.R. China
| | - Changjun Xie
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Juan Chen
- Department of Radiation Oncology, The Second Affiliated Hospital University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yan Hong
- Department of Preventive Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
5
|
Chung YS, Jin HL, Jeong KW. Cell-specific expression of ENACα gene by FOXA1 in the glucocorticoid receptor pathway. Int J Immunopathol Pharmacol 2021; 34:2058738420946192. [PMID: 32838581 PMCID: PMC7450284 DOI: 10.1177/2058738420946192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction: The glucocorticoid receptor (GR) is one of the most widely studied
ligand-dependent nuclear receptors. The combination of transcriptional
regulatory factors required for the expression of individual genes targeted
by GR varies across cell types; however, the mechanisms underlying this cell
type–specific regulation of gene expression are not yet clear. Methods: Here, we investigated genes regulated by GR in two different cell lines, A549
and ARPE-19, and examined how gene expression varied according to the effect
of pioneer factors using RNA-seq and RT-qPCR. Results: Our RNA-seq results identified 19 and 63 genes regulated by GR that are
ARPE-19-specific and A549-specific, respectively, suggesting that GR induces
the expression of different sets of genes in a cell type–specific manner.
RT-qPCR confirmed that the epithelial sodium channel
(ENACα) gene is an ARPE-19 cell-specific GR target gene,
whereas the FK506 binding protein 5 (FKBP5) gene was A549
cell-specific. There was a significant decrease in ENACα
expression in FOXA1-deficient ARPE-19 cells, suggesting that FOXA1 might
function as a pioneer factor enabling the selective expression of
ENACα in ARPE-19 cells but not in A549 cells. Conclusion: These findings indicate that ENACα expression in ARPE-19
cells is regulated by FOXA1 and provide insights into the molecular
mechanisms of cell type–specific expression of GR-regulated genes.
Collapse
Affiliation(s)
- Young Sun Chung
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hong Lan Jin
- College of Pharmacy, Yanbian University, Yanji, People's Republic of China
| | - Kwang Won Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
6
|
Identification of SRGAP2 as a potential oncogene and a prognostic biomarker in hepatocellular carcinoma. Life Sci 2021; 277:119592. [PMID: 33984363 DOI: 10.1016/j.lfs.2021.119592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the common malignancies worldwide. Slit-Robo GTPase-activating proteins (SRGAPs) have been shown to regulate the occurrence and development of various tumors. However, their specific roles in HCC remain elusive. METHODS The expression pattern, genetic alteration and prognostic value of SRGAPs in HCC are analyzed by bioinformatics tools. The biological functions of SRGAP2 in HCC cells are demonstrated by in vitro experiments. The high-throughput RNA sequencing is conducted to explore the underlying molecular mechanisms of SRGAP2 in HCC cells. RESULTS The expression levels of SRGAP1 and SRGAP2 are significantly elevated in HCC tissues compared to the normal both in Oncomine and TCGA datasets, and SRGAP2 are dramatically upregulated both in mRNA and protein levels. Moreover, higher SRGAP2 is significantly related to the clinical stages of HCC. Meanwhile, SRGAP2 might be an independent prognostic indicator, as it correlates negatively with the clinical outcomes of HCC patients. Further SRGAP2-silencing experiments imply that SRGAP2 might remarkably promote the migration and invasion of HCC cells in an EMT-independent pattern. Based on the high-throughput RNA sequencing of SRGAP2-knockdown HCC cells, enrichment and network analyses demonstrate that SRGAP2 is closely associated with cellular metabolic signaling. CONCLUSIONS Our study firstly illustrates the crucial role of SRGAP2 in the metastasis of HCC and explores its underlying molecular mechanisms. We identify SRGAP2 as a promising prognostic biomarker and a novel therapeutic target for HCC patients.
Collapse
|
7
|
Cui X, Jing X, Liu J, Bi X, Wu X. miR‑132 is upregulated in polycystic ovarian syndrome and inhibits granulosa cells viability by targeting Foxa1. Mol Med Rep 2020; 22:5155-5162. [PMID: 33174054 PMCID: PMC7646966 DOI: 10.3892/mmr.2020.11590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/15/2020] [Indexed: 11/24/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine metabolic disorders characterized by hyperandrogenism, polycystic ovaries and ovulatory dysfunction. Several studies have suggested that the aberrant expression of microRNAs (miRNAs/miRs) plays an important role in the pathogenesis of PCOS; however, the role and underlying mechanisms of miR-132 in the development of PCOS remain unclear. In the present study, the expression of miR-132 in granulosa cells (GCs) derived from 26 patients with PCOS and 30 healthy controls was detected by reverse transcription-quantitative PCR (RT-qPCR). The apoptosis of GCs was examined using a TUNEL assay. The human ovarian granulosa-like tumor cell line, KGN, was cultured for Cell Counting Kit-8 assays following the overexpression or knockdown of miR-132. TargetScan was applied to identify the potential targets of miR-132, which was further verified by a luciferase assay, RT-qPCR and western blotting. The expression of miR-132 was decreased in GCs from patients with PCOS. Moreover, the GCs of patients with PCOS exhibited significantly increased apoptotic nuclei. Furthermore, the overexpression of miR-132 inhibited the viability of KGN cells. In addition, the results verified that miR-132 directly targeted forkhead box protein A1 (Foxa1), the knockdown of which suppressed KGN cell viability. On the whole, the findings of the present study demonstrated that miR-132 inhibited cell viability and induced apoptosis by directly interacting with Foxa1. Thus, miR-132 may be a potential target for the treatment of patients with PCOS.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Shanxi Women and Infants Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xuan Jing
- Department of Clinical Laboratory, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Junfen Liu
- Reproductive Medicine Center, Shanxi Women and Infants Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xingyu Bi
- Reproductive Medicine Center, Shanxi Women and Infants Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Shanxi Women and Infants Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
8
|
Ottley EC, Pell R, Brazier B, Hollidge J, Kartsonaki C, Browning L, O'Neill E, Kiltie AE. Greater utility of molecular subtype rather than epithelial-to-mesenchymal transition (EMT) markers for prognosis in high-risk non-muscle-invasive (HGT1) bladder cancer. J Pathol Clin Res 2020; 6:238-251. [PMID: 32374509 PMCID: PMC7578305 DOI: 10.1002/cjp2.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 01/21/2023]
Abstract
Approximately 75% of bladder cancers are non-muscle invasive (NMIBC). Of these, up to 53% of cases progress to life-threatening muscle-invasive bladder cancer (MIBC). Patients with high-grade stage T1 (HGT1) NMIBC frequently undergo radical cystectomy (RC), although this represents overtreatment for many. Identification of progressors versus non-progressors could spare unnecessary treatment. Recent studies have confirmed that urothelial carcinoma is composed of two main molecular subtypes, basal and luminal, with 12% of basal tumours exhibiting epithelial-to-mesenchymal transition (EMT). Levels of immune cell infiltration have been shown to be subtype-specific. Here, we performed immunohistochemistry (IHC) for 11 antibodies relating to molecular subtypes or EMT in 26 cases of HGT1 urothelial carcinoma cases with 6 matched samples subsequently obtained at cystectomy (n = 6; 1 muscle-invasive, 5 non-muscle-invasive; 3 = pTis, 1 = pT1, 1 = pTa) and at recurrence (n = 2, pT2). RNAScope was also conducted in a subset. Expression patterns in HGT1 specimens versus MIBC (pT2+) were examined, and correlated with disease-specific survival (DSS). Levels of stromal tumour-infiltrating lymphocytes (sTILs) were assessed manually to determine whether lymphocyte infiltration was associated with DSS and whether differences existed between HGT1 and MIBC. Molecular subtype markers demonstrated increased prognostic potential compared to the EMT markers assessed. Increased expression of the luminal markers FOXA1 and SCUBE2, were found to be significantly associated with better DFS. No EMT markers were significantly associated with DFS. In areas of non-invasive papillary urothelial carcinoma, but not invasive carcinoma, sTIL levels were found to be significantly associated with DFS. While differences were observed between HGT1 cases that progressed versus those that did not, a larger cohort study is required for validation of these findings. Taken together, an emphasis on molecular subtype markers, rather than EMT markers, may be preferable when studying biomarkers of HGT1 urothelial carcinoma in the future.
Collapse
Affiliation(s)
- Edward C Ottley
- CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Robert Pell
- CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Benedict Brazier
- CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Julianne Hollidge
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | | | - Lisa Browning
- Department of Cellular Pathology, and the NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
| | - Eric O'Neill
- CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Anne E Kiltie
- CRUK/MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Transcriptional factors (TFs) play a central role in governing gene expression under physiological conditions including the processes of embryonic development, metabolic homeostasis and response to extracellular stimuli. Conceivably, the aberrant dysregulations of TFs would dominantly result in various human disorders including tumorigenesis, diabetes and neurodegenerative diseases. Serving as the most evolutionarily reserved TFs, Fox family TFs have been explored to exert distinct biological functions in neoplastic development, by manipulating diverse gene expression. Recently, among the Fox family members, the pilot roles of FoxAs attract more attention due to their functions as both pioneer factor and transcriptional factor in human tumorigenesis, particularly in the sex-dimorphism tumors. Therefore, the pathological roles of FoxAs in tumorigenesis have been well-explored in modulating inflammation, immune response and metabolic homeostasis. In this review, we comprehensively summarize the impressive progression of FoxA functional annotation, clinical relevance, upstream regulators and downstream effectors, as well as valuable animal models, and highlight the potential strategies to target FoxAs for cancer therapies.
Collapse
Affiliation(s)
- Bing Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
10
|
Zhang YW, Ma J, Shi CT, Han W, Gao XJ, Zhou MH, Ding HZ, Wang HN. Roles and correlation of FOXA1 and ZIC1 in breast cancer. Curr Probl Cancer 2020; 44:100559. [PMID: 32115254 DOI: 10.1016/j.currproblcancer.2020.100559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 01/23/2023]
Abstract
The aim of this study was to evaluate the prognostic role of Forkhead box A1 (FOXA1) in breast cancer and determine the relationship between FOXA1 and zinc finger of the cerebellum 1 (ZIC1). BCIP, GEPIA, and Oncomine databases were used to detect expression of FOXA1 and assess prognostic roles of FOXA1 and ZIC1 in invasive breast tumors. A total of 113 female invasive breast cancer cases were collected to investigate FOXA1 and ZIC1 expression via immunohistochemistry. Twenty pairs of frozen-thawed tumors were used to select reliable indicators via western blotting and real-time quantitative polymerase chain reaction. In addition, Kaplan-Meier curves and Cox regression analysis were performed to analyze the overall survival (OS) and relapse-free survival. Multiple databases showed that FOXA1 expression was elevated in invasive breast cancer and negatively related to ZIC1. BCIP database also displayed a poor prognosis of high FOXA1 and low ZIC1. FOXA1 was positively associated with tumor size, grading, lymph node metastasis, and Tumor Node Metastasis (TNM) staging, while ZIC1 expression was negatively related to grading, lymph node metastasis, and TNM staging. In Kaplan-Meier and Cox regression analysis, FOXA1 negative group and ZIC1 positive group had better OS rate and recurrence-free survival rate. In addition, a joint evaluation showed that "FOXA1- ZIC1+" had the highest OS and relapse-free survival, but "FOXA1+ ZIC1-" had the lowest ones. FOXA1 was negatively related to ZIC1 in breast cancer and they had different roles in clinicopathology and prognosis. Combined examination of FOXA1 and ZIC1 could bring more benefit to breast cancer patients.
Collapse
Affiliation(s)
- Yu-Wei Zhang
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Jun Ma
- Department of Urology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Chun-Tao Shi
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi, Jiangsu, China
| | - Wei Han
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Xiao-Jiao Gao
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Ming-Hui Zhou
- Centralab, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Hou-Zhong Ding
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Hao-Nan Wang
- Oncology Department, Wuxi Fifth People's Hospital, Wuxi, Jiangsu, China.
| |
Collapse
|