1
|
Zhou H, Zou J, Han J, Zhou A, Huang S. P4HA3 promotes colon cancer cell escape from macrophage phagocytosis by increasing phagocytosis immune checkpoint CD47 expression. Mol Cell Biochem 2024; 479:3355-3374. [PMID: 38347264 DOI: 10.1007/s11010-024-04927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/05/2024] [Indexed: 10/26/2024]
Abstract
Cancer immunotherapies have greatly changed the prospects for the therapy of many malignancies, including colon cancer. Macrophages as the effectors of cancer immunotherapy provide considerable promise for cancer treatment. Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) plays a cancer-promoting role in a variety of cancers, including colon cancer. In the present work, we provided evidence for the first time that P4HA3 promoted colon cancer cell escape from macrophage phagocytosis, and preliminarily explored its possible molecular mechanism. Immunohistochemistry was used to detect the expression of P4HA3 in tissues. Bioinformatics methods were used to analyze the tumor public databases (including TCGA database and GEO database). Macrophage phagocytosis assay and flow cytometric analysis were used to detect the phagocytic capacity of macrophages. Western blot and qRT-PCR were used to detect the expression of related markers (such as P4HA3, CD47, CD24, IL-34, and M-CSF). First, we found that P4HA3 was significantly and highly expressed in both colon cancer tissues and cells, and that P4HA3 had a positive correlation with lymph node metastasis, Dukes stage and also strongly correlated with poorer survival. Subsequently, we found that P4HA3 was strongly associated with the macrophage infiltration level in colon cancer. Immediately we also found that decreasing P4HA3 expression promoted macrophage phagocytosis in colon cancer cells, whereas P4HA3 overexpression produced the opposite effect. Finally, we demonstrated that P4HA3 promoted the expression of cluster of differentiation 47 (CD47) in colon cancer cells. Moreover, P4HA3 caused colon cancer cells to secrete Interleukin 34 (IL34) and Macrophage colony stimulating factor (M-CSF), which further induced macrophages to differentiate to M2 type and thereby contributed to the progression of colon cancer. We have demonstrated that P4HA3-driven CD47 overexpression may act as an escape mechanism, causing colon cancer cells to evade phagocytosis from macrophages.
Collapse
Affiliation(s)
- Hailang Zhou
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, 223400, Jiangsu, People's Republic of China
- The Institute of Life Sciences, Jiangsu College of Nursing, Huaian, 223300, Jiangsu, People's Republic of China
| | - Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Jingli Han
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, 223400, Jiangsu, People's Republic of China
| | - Aijun Zhou
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, 223400, Jiangsu, People's Republic of China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Clinical Medicine, Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, People's Republic of China.
| | - Shu Huang
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, 223400, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Han S, Song X, Liu J, Zhou J, Wu Z, Song H, Tao J, Wang J. Analysis of metastasis‑related risk factors and clinical relevance in adult soft‑tissue sarcoma. Oncol Lett 2024; 28:515. [PMID: 39247492 PMCID: PMC11378013 DOI: 10.3892/ol.2024.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/19/2024] [Indexed: 09/10/2024] Open
Abstract
Metastasis occurs in nearly 50% of cases of adult soft-tissue sarcoma (ASTS), leading to a dismal prognosis, with a 2-year survival rate of ~30%. Consequently, a prognostic model that incorporates metastatic characteristics may be instrumental in predicting survival time and in crafting optimal personalized therapeutic strategies for patients with ASTS. In the present study, a prognostic prediction model for ASTS was developed by examining genes that are differentially expressed between non-metastatic and metastatic patients in the Gene Expression Omnibus dataset. The prognostic model, which includes five featured genes [actin γ2 (ACTG2), apolipoprotein D, coatomer protein complex subunit γ2 imprinted transcript 1, collagen type VI α6 chain and osteomodulin], was further validated in patients with ASTS from the Cancer Genome Atlas dataset. Based on these five-gene signatures, patients were categorized into high- and low-risk groups. Functional and pathway analyses revealed disparities in stemness, extracellular matrix and cell adhesion-related pathways between the two risk groups, particularly noting the activation of the PI3K-Akt pathway in high-risk cases. Analysis of immune infiltration also revealed variations in immune microenvironment changes between the two risk groups. Immunohistochemical staining substantiated the prognostic significance of these gene signatures in a specific sarcoma subtype. Additionally, wound-healing and Transwell assays demonstrated that inhibition of ACTG2 by shRNAs curbed cell migration and invasion in a sarcoma HOS cell line, underscoring its role in sarcoma metastasis. In conclusion, the present study successfully developed and validated a metastasis-based prognosis prediction model. This model not only reliably forecasts the survival of patients with ASTS, but also may pave the way for further investigation into the processes underlying sarcoma metastasis, ultimately aiding in the design of tailored therapeutic regimens.
Collapse
Affiliation(s)
- Shuai Han
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Xin Song
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Jialiang Liu
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Jingfen Zhou
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Zhipeng Wu
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Haihan Song
- Central Laboratory of Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Jun Tao
- Department of Orthopedics, Weihai Central Hospital, Qingdao University, Shandong 264499, P.R. China
| | - Jian Wang
- Department of Orthopedics, Shanghai Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| |
Collapse
|
3
|
Paul D, Sinnarasan VSP, Das R, Sheikh MMR, Venkatesan A. Machine learning approach to predict blood-secretory proteins and potential biomarkers for liver cancer using omics data. J Proteomics 2024; 309:105298. [PMID: 39216516 DOI: 10.1016/j.jprot.2024.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Identifying non-invasive blood-based biomarkers is crucial for early detection and monitoring of liver cancer (LC), thereby improving patient outcomes. This study leveraged computational approaches to predict potential blood-based biomarkers for LC. Machine learning (ML) models were developed using selected features from blood-secretory proteins collected from the curated databases. The logistic regression (LR) model demonstrated the optimal performance. Transcriptome analysis across 7 LC cohorts revealed 231 common differentially expressed genes (DEGs). The encoded proteins of these DEGs were compared with the ML dataset, revealing 29 proteins overlapping with the blood-secretory dataset. The LR model also predicted 29 additional proteins as blood-secretory with the remaining protein-coding genes. As a result, 58 potential blood-secretory proteins were obtained. Among the top 20 genes, 13 common hub genes were identified. Further, area under the receiver operating characteristic curve (ROC AUC) analysis was performed to assess the genes as potential diagnostic blood biomarkers. Six genes, ESM1, FCN2, MDK, GPC3, CTHRC1 and COL6A6, exhibited an AUC value higher than 0.85 and were predicted as blood-secretory. This study highlights the potential of an integrative computational approach for discovering non-invasive blood-based biomarkers in LC, facilitating for further validation and clinical translation. SIGNIFICANCE: Liver cancer is one of the leading causes of premature death worldwide, with its prevalence and mortality rates projected to increase. Although current diagnostic methods are highly sensitive, they are invasive and unsuitable for repeated testing. Blood biomarkers offer a promising non-invasive alternative, but their wide dynamic range of protein concentration poses experimental challenges. Therefore, utilizing available omics data to develop a diagnostic model could provide a potential solution for accurate diagnosis. This study developed a computational method integrating machine learning and bioinformatics analysis to identify potential blood biomarkers. As a result, ESM1, FCN2, MDK, GPC3, CTHRC1 and COL6A6 biomarkers were identified, holding significant promise for improving diagnosis and understanding of liver cancer. The integrated method can be applied to other cancers, offering a possible solution for early detection and improved patient outcomes.
Collapse
Affiliation(s)
- Dahrii Paul
- Department of Bioinformatics, Pondicherry University, Puducherry 605014, India
| | | | - Rajesh Das
- Department of Bioinformatics, Pondicherry University, Puducherry 605014, India
| | | | - Amouda Venkatesan
- Department of Bioinformatics, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
4
|
Wang Q, Meng D, Shen S, Cao Y, Zhang P, Liu Y, Du L, Li H, Shao C, Dong Q. P4HA3 promotes head and neck squamous cell carcinoma progression via the WNT/β-catenin signaling pathway. Pathol Res Pract 2024; 260:155481. [PMID: 39053135 DOI: 10.1016/j.prp.2024.155481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Here, we explored the role of Prolyl 4-Hydroxylase Subunit Alpha 3 (P4HA3), the most recently identified member of the prolyl-4-hydroxylase (P4H) family, in head and neck squamous cell carcinoma (HNSCC) progression. P4HA3 is upregulated during cancer progression; however, its specific role in HNSCC progression remains elusive. Thus, this study aimed to elucidate the regulatory function of P4HA3 in HNSCC development and progression and to describe the underlying mechanisms. Initially, we analyzed the correlation between the expression of P4HA3 and the WNT pathway genes and clinicopathologic features in HNSCC based on microarray data from The Cancer Genome Atlas (TCGA). Next, we used Gene Oncology (GO) functional data to describe several potentially associated pathways in HNSCC. Then, we knocked down P4HA3 in SCC15 and SCC25 cells, two classic HNSCC cell lines, and assessed the resulting changes using RT-qPCR. Furthermore, we used Western blot to evaluate the regulatory role of P4HA3 in the epithelial-to-mesenchymal transition (EMT) and the WNT/β-catenin signaling pathway. To explore the effect of P4HA3 knockdown on tumor progression, in vivo experiments were conducted using a murine model. Immunohistochemistry assays were then employed to identify proteins associated with EMT and the WNT/β-catenin signaling pathway in tumor tissues. Upregulated P4HA3 in HNSCC patient tumor tissues was positively correlated with poor prognosis. Notably, P4HA3 knockdown significantly inhibited the proliferative and invasive abilities of HNSCC. The levels of genes and proteins associated with EMT and the WNT/β-catenin signaling pathway were also markedly reduced by P4HA3 knockdown. Importantly, the in vivo experiments demonstrated that P4HA3 can promote subcutaneous tumorigenesis in nude mice and knockdown of P4HA3 induce a significant ihibitation of EMT and WNT/β-catenin pathway detected by immunohistochemistry assay in tumor tissues. In summary, we demonstrated that P4HA3 is a promising diagnostic and therapeutic biomarker for HNSCC. As an oncogene, P4HA3 increases HNSCC proliferation by inducing the EMT and activating the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Quannian Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Danyang Meng
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Si Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yang Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Pengcheng Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Ying Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lianqun Du
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hua Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300050, China.
| | - Changli Shao
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China.
| | - Qingyang Dong
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
5
|
Guo X, Zhang Y, Peng L, Wang Y, He CW, Li K, Hao K, Li K, Wang Z, Huang H, Miao X. Collagen synthase P4HA3 as a novel biomarker for colorectal cancer correlates with prognosis and immune infiltration. Heliyon 2024; 10:e31695. [PMID: 38832271 PMCID: PMC11145334 DOI: 10.1016/j.heliyon.2024.e31695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Objective In this study, we aimed to determine whether proly4-hydroxylase-III (P4HA3) could be used as a biomarker for the diagnosis of colorectal cancer (CRC) as well as for determining prognosis. Methods We used The Cancer Genome Atlas (TCGA) database to analyze P4HA3 expression in CRC and further investigated the association between P4HA3 and clinicopathological parameters, immune infiltration, and prognosis of patients with CRC. Enrichment analysis was conducted to investigate the potential biological role of P4HA3 in CRC. To verify the results of TCGA analysis, we performed immunohistochemical staining of 180 clinical CRC tissue samples to probe into the relationship of P4HA3 expression with lymphocyte infiltration and immune checkpoints expression. Results The expression of P4HA3 was significantly higher in CRC tissues and associated with a higher degree of malignancy and poorer prognosis in CRC. The results of enrichment analysis indicated that P4HA3 may be associated with the epithelial-mesenchymal transition process and the immune response. Immunohistochemical staining results showed that high P4HA3 expression was associated with high infiltration levels of CD8+ and Foxp3+ TILs and high PD-1/PD- L1 expression. Lastly, patients with CRC co-expressing P4HA3 and PD-1 had a significantly worse prognosis. Conclusion High expression of P4HA3 is associated with adverse clinical features and immune cell infiltration in CRC, and has the potential to serve as a biomarker for predicting CRC prognosis.
Collapse
Affiliation(s)
- Xiaohuan Guo
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zhang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Lina Peng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yaling Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Cheng-Wen He
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Kaixuan Li
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ke Hao
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Kaiqiang Li
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Zhen Wang
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Haishan Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaolin Miao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
6
|
Li X, Jin Y, Xue J. Unveiling Collagen's Role in Breast Cancer: Insights into Expression Patterns, Functions and Clinical Implications. Int J Gen Med 2024; 17:1773-1787. [PMID: 38711825 PMCID: PMC11073151 DOI: 10.2147/ijgm.s463649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
Collagen, the predominant protein constituent of the mammalian extracellular matrix (ECM), comprises a diverse family of 28 members (I-XXVIII). Beyond its structural significance, collagen is implicated in various diseases or cancers, notably breast cancer, where it influences crucial cellular processes including proliferation, metastasis, apoptosis, and drug resistance, intricately shaping cancer progression and prognosis. In breast cancer, distinct collagens exhibit differential expression profiles, with some showing heightened or diminished levels in cancerous tissues or cells compared to normal counterparts, suggesting specific and pivotal biological functions. In this review, we meticulously analyze the expression of individual collagen members in breast cancer, utilizing Transcripts Per Million (TPM) data sourced from the GEPIA2 database. Through this analysis, we identify collagens that deviate from normal expression patterns in breast cancer, providing a comprehensive overview of their expression dynamics, functional roles, and underlying mechanisms. Our findings shed light on recent advancements in understanding the intricate interplay between these aberrantly expressed collagens and breast cancer. This exploration aims to offer valuable insights for the identification of potential biomarkers and therapeutic targets, thereby advancing the prospects of more effective interventions in breast cancer treatment.
Collapse
Affiliation(s)
- Xia Li
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Yue Jin
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Jian Xue
- Department of Emergency Medicine, Yizheng People’s Hospital, Yangzhou, People’s Republic of China
| |
Collapse
|
7
|
Greco F, Panunzio A, Tafuri A, Bernetti C, Pagliarulo V, Zobel BB, Scardapane A, Mallio CA. CT-Based Radiogenomics of P4HA3 Expression in Clear Cell Renal Cell Carcinoma. Acad Radiol 2024; 31:902-908. [PMID: 37537130 DOI: 10.1016/j.acra.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
RATIONALE AND OBJECTIVES The sequencing of the renal cell carcinoma (RCC) genome identified several mutations with prognostic significance. Genomic analysis, collected in The Cancer Genome Atlas Research Network, revealed several clear cell renal cell carcinoma (ccRCC) gene mutations and gene expressions. Radiogenomics is a new branch of diagnostic imaging based on the association between imaging phenotypes and genomics of diseases. P4HA3 expression has recently been shown to correlate with increased aggressiveness of ccRCC, with poor prognosis, proliferation, migration, invasion, and metastases, suggesting P4HA3 as a prognostic marker and therapeutic target in ccRCC. The aim of this study is to investigate the computed tomography (CT) imaging phenotype of P4HA3 expression in ccRCC patients. MATERIALS AND METHODS In this retrospective study we enrolled 196 ccRCC patients divided into two groups: ccRCC patients with P4HA3 expression (n = 13) and ccRCC patients without P4HA3 expression (n = 183). Several imaging features were evaluated on preoperative CT scan. The statistical significance threshold was set at P < .05. RESULTS A statistically significant association was found with larger primary tumor size (P = .033), tumor infiltration (P = .023), ill-defined tumor margins (P = .025), and advanced tumor stage American Joint Committee of Cancer (P = .014). CONCLUSION This study demonstrates CT imaging features associated with P4HA3 expression in ccRCC. These results could contribute to better understand P4HA3 expression with a noninvasive approach and could be applied to the development of targeted therapies.
Collapse
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella della Salute Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi, 2, 73100 Lecce, Italy (F.G.).
| | - Andrea Panunzio
- Department of Urology, "Vito Fazzi" Hospital, Lecce, Italy (A.P., A.T., V.P.)
| | - Alessandro Tafuri
- Department of Urology, "Vito Fazzi" Hospital, Lecce, Italy (A.P., A.T., V.P.)
| | - Caterina Bernetti
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy (C.B., B.B.Z., C.A.M.); Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy (C.B., B.B.Z., C.A.M.)
| | - Vincenzo Pagliarulo
- Department of Urology, "Vito Fazzi" Hospital, Lecce, Italy (A.P., A.T., V.P.)
| | - Bruno Beomonte Zobel
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy (C.B., B.B.Z., C.A.M.); Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy (C.B., B.B.Z., C.A.M.)
| | - Arnaldo Scardapane
- Dipartimento Interdisciplinare di Medicina, Sezione di Diagnostica per immagini, Università degli Studi di Bari "Aldo Moro", Bari, Italy (A.S.)
| | - Carlo Augusto Mallio
- Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Roma, Italy (C.B., B.B.Z., C.A.M.); Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy (C.B., B.B.Z., C.A.M.)
| |
Collapse
|
8
|
Zhang X, Xun X, Meng D, Li M, Chang L, Shi J, Ding W, Sun Y, Wang H, Bao Z, Hu X. Transcriptome Analysis Reveals the Genes Involved in Oxidative Stress Responses of Scallop to PST-Producing Algae and a Candidate Biomarker for PST Monitoring. Antioxidants (Basel) 2023; 12:1150. [PMID: 37371880 DOI: 10.3390/antiox12061150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/13/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Paralytic shellfish toxins (PST) could be accumulated in bivalves and cause safety problems. To protect public health, bivalves are examined for PST contamination before entering the market, usually by high-performance liquid chromatography (HPLC) or LC-tandem mass spectrometry (LC-MS/MS) in the lab, which needs PST standards not all available and is time-consuming for large sample sizes. To detect PST toxicity in bivalves rapidly and sensitively, a biomarker gene is highly demanded, but the related study is very limited. In this study, we fed a commercially important bivalve, Patinopecten yessoensis, with the PST-producing dinoflagellate Alexandrium catenella. After 1, 3, and 5 days of exposure, both PST concentrations and toxicity levels in the digestive gland continuously increased. Transcriptome analysis revealed that the differentially expressed genes were significantly enriched in oxidation-reduction process, which included the cytochrome P450 genes (CYPs), type I iodothyronine deiodinase (IOD1s), peroxidasin (PXDN), and acyl-Coenzyme A oxidase 1 (ACOX1) at day 1 and a superoxide dismutase (SOD) at day 5, highlighting the crucial roles of these genes in response to oxidative stress induced by PST. Among the 33 continuously upregulated genes, five showed a significant correlation between gene expression and PST concentration, with the highest correlation present in PyC1QL4-1, the gene encoding Complement C1Q-like protein 4, C1QL4. In addition, the correlation between PyC1QL4-1 expression and PST toxicity was also the highest. Further analysis in another aquaculture scallop (Chlamys farreri) indicated that the expression of CfC1QL4-1, the homolog of PyC1QL4-1, also exhibited significant correlations with both PST toxicity and concentration. Our results reveal the gene expression responses of scallop digestive glands to PST-producing algae and indicate that the C1QL4-1 gene might be a potential biomarker for PST monitoring in scallops, which may provide a convenient way for the early warning and sensitive detection of PST contamination in the bivalves.
Collapse
Affiliation(s)
- Xiangchao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Deting Meng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lirong Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiaoxia Shi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yue Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Huizhen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
9
|
Liu J, Lu H, Hu S, Wang F, Tang X, Wan H, Luo F. Transcriptomic profiles of age-related genes in female trachea and bronchus. Front Genet 2023; 14:1120350. [PMID: 36968579 PMCID: PMC10031059 DOI: 10.3389/fgene.2023.1120350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 03/10/2023] Open
Abstract
Background: Studies demonstrated that age-related cellular and functional changes of airway significantly contribute to the pathogenesis of many airway diseases. However, our understanding on the age-related molecular alterations of human airway remains inadequate.Methods: Airway (trachea and bronchus) brushing specimens were collected from 14 healthy, female non-smokers with ages ranging from 20 to 60 years. Bulk RNA sequencing was performed on all the specimens (n = 28). Airway cell types and their relative proportions were estimated using CIBERSORTx. The cell type proportions were compared between the younger (age 20–40) and elder group (age 40–60) in the trachea and bronchus respectively. The linear association between cell type proportion and age was assessed using the Pearson correlation coefficient. Differentially expressed genes (DEGs) between the two age groups were identified using DESeq2. Three kinds of enrichment analysis of the age-related DEGs were performed, including Gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and disease enrichment analysis.Results: Sixteen and thirteen cell types were separately identified in tracheal and bronchial brushings, with the airway epithelial cells (including suprabasal, submucosal gland (SMG) goblet, serous, secretory, multiciliated, cycling.basal, basal cells) accounting for 85.1% in the trachea and 92.5% in the bronchus. The lymphatic cell and NK cells had a higher abundance ratio in the trachea, compared with the bronchus. The proportion of basal cells was negatively related to age both in the trachea and bronchus. Thirty-one and fifty-two age-related DEGs (p < 0.1) were identified in the trachea and bronchus, respectively. Among them, five common DEGs (CXCL2, CXCL8, TCIM, P4HA3, AQP10) were identified. Pathway enrichment analysis showed both tracheal and bronchial age-related DEGs were primarily involved in immune regulatory signaling pathways (TNF, NF-kappa B, IL-17 et al.). Disease enrichment analysis suggested that tracheal age-related DEGs significantly related to asthmatic pulmonary eosinophilia, and chronic airflow obstruction et al., and that bronchial age-related DEGs were enriched in airflow obstruction, bronchiectasis, pulmonary emphysema, and low respiratory tract infection et al.Conclusion: We found the proportion of basal cells decreased with age in both the trachea and bronchus, suggesting a weakening of their self-renew ability with age. We identified transcriptomic signature genes associated with the early aging process of the human trachea and bronchus, and provided evidence to support that changes in their immune regulatory function may play critical roles in age-related airway diseases.
Collapse
Affiliation(s)
- Jia Liu
- Clinical Research Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyan Lu
- Clinical Research Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Silu Hu
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Faping Wang
- Clinical Research Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Tang
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huajing Wan
- Clinical Research Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Huajing Wan, ; Fengming Luo,
| | - Fengming Luo
- Clinical Research Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Huajing Wan, ; Fengming Luo,
| |
Collapse
|
10
|
Saksis R, Rogoza O, Niedra H, Megnis K, Mandrika I, Balcere I, Steina L, Stukens J, Breiksa A, Nazarovs J, Sokolovska J, Konrade I, Peculis R, Rovite V. Transcriptome of GH-producing pituitary neuroendocrine tumours and models are significantly affected by somatostatin analogues. Cancer Cell Int 2023; 23:25. [PMID: 36774501 PMCID: PMC9922463 DOI: 10.1186/s12935-023-02863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
Pituitary neuroendocrine tumours (PitNETs) are neoplasms of the pituitary that overproduce hormones or cause unspecific symptoms due to mass effect. Growth hormone overproducing GH-producing PitNETs cause acromegaly leading to connective tissue, metabolic or oncologic disorders. The medical treatment of acromegaly is somatostatin analogues (SSA) in specific cases combined with dopamine agonists (DA), but almost half of patients display partial or full SSA resistance and potential causes of this are unknown. In this study we investigated transcriptomic landscape of GH-producing PitNETs on several levels and functional models-tumour tissue of patients with and without SSA preoperative treatment, tumour derived pituispheres and GH3 cell line incubated with SSA to study effect of medication on gene expression. MGI sequencing platform was used to sequence total RNA from PitNET tissue, pituispheres, mesenchymal stromal stem-like cells (MSC), and GH3 cell cultures, and data were analysed with Salmon-DeSeq2 pipeline. We observed that the GH-producing PitNETs have distinct changes in growth hormone related pathways related to its functional status alongside inner cell signalling, ion transport, cell adhesion and extracellular matrix characteristic patterns. In pituispheres model, treatment regimens (octreotide and cabergoline) affect specific cell proliferation (MKI67) and core functionality pathways (RYR2, COL8A2, HLA-G, ARFGAP1, TGFBR2). In GH3 cells we observed that medication did not have transcriptomic effects similar to preoperative treatment in PitNET tissue or pituisphere model. This study highlights the importance of correct model system selection for cell transcriptomic profiling and data interpretation that could be achieved in future by incorporating NGS methods and detailed cell omics profiling in PitNET model research.
Collapse
Affiliation(s)
- Rihards Saksis
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Olesja Rogoza
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Helvijs Niedra
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Kaspars Megnis
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Ilona Mandrika
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Inga Balcere
- grid.488518.80000 0004 0375 2558Riga East Clinical University Hospital, Hipokrata Str 2, Riga, 1038 Latvia ,grid.17330.360000 0001 2173 9398Riga Stradins University, Dzirciema Str. 16, Riga, 1007 Latvia
| | - Liva Steina
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia ,grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Janis Stukens
- grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Austra Breiksa
- grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Jurijs Nazarovs
- grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Jelizaveta Sokolovska
- grid.9845.00000 0001 0775 3222Faculty of Medicine, University of Latvia, Raina Blvd 19, Riga, 1586 Latvia
| | - Ilze Konrade
- grid.488518.80000 0004 0375 2558Riga East Clinical University Hospital, Hipokrata Str 2, Riga, 1038 Latvia ,grid.17330.360000 0001 2173 9398Riga Stradins University, Dzirciema Str. 16, Riga, 1007 Latvia
| | - Raitis Peculis
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067, Latvia.
| |
Collapse
|
11
|
Zhang Z, Zhang Y, Zhang R. P4HA3 promotes clear cell renal cell carcinoma progression via the PI3K/AKT/GSK3β pathway. Med Oncol 2023; 40:70. [PMID: 36588128 DOI: 10.1007/s12032-022-01926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma. P4HA3 is a key enzyme in collagen biosynthesis and has emerged as important molecules in regulation of proliferation, invasion, and metastasis in various tumor types. The role of P4HA3 in the development of ccRCC has remained to be elucidated. Genes expression, prognostic, and enrichment analyses were carried out with bioinformatics analysis. The efficiency of P4HA3 knockdown was confirmed by real-time quantitative PCR and Western blotting. The cellular functions were analyzed by CCK-8, EdU, wound healing, and transwell assays. The levels of related proteins expression were analyzed by Western blotting. P4HA3 was highly expressed in ccRCC compared with normal tissue samples from the TCGA database. Kaplan-Meier curves results showed that the expression level of P4HA3 was significantly negatively correlated with overall survival of patients. P4HA3 expression knockdown inhibited the proliferation, migration, and invasion of ccRCC cells, as demonstrated by in vitro experiments. In addition, GSEA results revealed that P4HA3 may be related to EMT and involved in the PI3K-AKT-GSK3β pathway in ccRCC; this was tentatively confirmed through Western blotting. P4HA3 may induce ccRCC progression via the PI3K-AKT-GSK3β signaling pathway and could represent a potential therapeutic target.
Collapse
Affiliation(s)
- Zhechuan Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, China
- The Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Yuanfeng Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, China.
| | - Ronggui Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, China.
- Department of Urology, Chongqing University Central Hospital, Chongqing University, 1 Jiankang Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
12
|
Wu Y, Zhang B, Nong J, Rodrìguez RA, Guo W, Liu Y, Zhao S, Wei R. Systematic pan-cancer analysis of the potential tumor diagnosis and prognosis biomarker P4HA3. Front Genet 2023; 14:1045061. [PMID: 37035741 PMCID: PMC10073565 DOI: 10.3389/fgene.2023.1045061] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose: Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) is implicated in several cancers' development. However, P4HA3 has not been reported in other cancers, and the exact mechanism of action is currently unknown. Materials and methods: First, the expression profile of P4HA3 was analyzed using a combination of the University of California Santa Cruz (UCSC) database, Cancer Cell Line Encyclopedia (CCLE) database, and Genotype-Tissue Expression (GTEx) database. UniCox and Kaplan-Meier were used to analyze the predictive value of P4HA3. The expression of P4HA3 was analyzed in clinical staging, immune subtypes, and Molecular subtypes. Secondly, the correlation of P4HA3 with immunomodulatory genes, immune checkpoint genes, RNA modification genes, immune cell infiltration, cancer-related functional status, tumor stemness index, DNA mismatch repair (MMR) genes and DNA Methyltransferase was examined. The role of P4HA3 in DNA methylation, copy number variation (CNV), mutational status, tumor mutational burden (TMB), and microsatellite instability (MSI) was also analyzed. In addition, gene set enrichment analysis (GSEA) was used to explore the potential functional mechanisms of P4HA3 in pan-cancer. Finally, P4HA3-related drugs were searched in CellMiner, Genomics of Drug Sensitivity in Cancer (GDSC), and Cancer Therapeutics Response Portal (CTRP) databases. Results: P4HA3 is significantly overexpressed in most cancers and is associated with poor prognosis. P4HA3 is strongly associated with clinical cancer stage, immune subtypes, molecular subtypes, immune regulatory genes, immune checkpoint genes, RNA modifier genes, immune cell infiltration, cancer-related functional status, tumor stemness index, MMR Gene, DNA Methyltransferase, DNA methylation, CNV, mutational status, TMB, and MSI are closely related. Available enrichment analysis revealed that P4HA3 is associated with the epithelial-mesenchymal transition and immune-related pathways. There are currently 20 drugs associated with P4HA3. Conclusion: In human pan-cancer, P4HA3 is associated with poor patient prognosis and multiple immune cells and may be a novel immunotherapeutic target. It may act on tumor progression through the epithelial-mesenchymal transition (EMT) pathway.
Collapse
Affiliation(s)
- Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bo Zhang
- Department of Trauma Hand Surgery, The Second Nanning People’s Hospital, Nanning, Guangxi, China
| | - Juan Nong
- Department of Joint Surgery, The Second Nanning People’s Hospital, Nanning, Guangxi, China
| | | | - Wenliang Guo
- Department of Rehabilitation Medicine, Guigang City People’s Hospital, Guigang, China
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shijian Zhao
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Kunming Medical University (Fuwai Yunnan Cardiovascular Hospital), Kunming, Yunnan, China
- *Correspondence: Ruqiong Wei, ; Shijian Zhao,
| | - Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Ruqiong Wei, ; Shijian Zhao,
| |
Collapse
|
13
|
Li X, Li Z, Gu S, Zhao X. A pan-cancer analysis of collagen VI family on prognosis, tumor microenvironment, and its potential therapeutic effect. BMC Bioinformatics 2022; 23:390. [PMID: 36167487 PMCID: PMC9513866 DOI: 10.1186/s12859-022-04951-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Collagen VI family (COL6A) is a major member of extracellular matrix protein. There is accumulating evidence that COL6A is involved in tumorigenesis and tumor progression. In this study, we performed a systematic analysis of COL6A in pan-cancer based on their molecular features and clinical significance. Methods Based on updated public databases, we integrated several bioinformatics analysis methods to investigate the expression levels of COL6A as well as the relationship between their expression and patient survival, immune subtypes, tumor microenvironment, stemness scores, drug sensitivity, and DNA methylation. Results The expression levels of COL6A members varied in different cancers, suggesting their expression was cancer-dependent. Among COL6A members, COL6A1/2/3 were predicted poor prognosis in specific cancers. Furthermore, COL6A1/2/3 expression levels revealed a clear correlation with immune subtypes, and COL6A1/2/3 were associated with tumor purity, that is, gene expression levels were generally higher in tumors with higher stromal scores and immune scores. COL6A1/2/3 had a significantly negative correlation with RNA stemness scores, and meanwhile they were also related to DNA stemness scores in different degrees. In addition, the expression of COL6A1/2/3 was significantly related to drug sensitivity of cancer cells. Finally, our study revealed that COL6A1/2/3 expression was mainly negatively correlated with gene methylation, and the methylation levels showed remarkable differences in various cancers. Conclusions These findings highlight both the similarities and differences in the molecular characteristics of COL6A members in pan-cancer, and provide comprehensive insights for further investigation into the mechanism of COL6A. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04951-0.
Collapse
Affiliation(s)
- Xiang Li
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, NO.277, West Yanta Road, Xi'an, 710061, Shaanxi, China.,Department of Second Medical Oncology, The 3201 Affiliated Hospital of Xi'an Jiaotong University, Hanzhong, Shaanxi, China
| | - Zeng Li
- Department of Second Medical Oncology, The 3201 Affiliated Hospital of Xi'an Jiaotong University, Hanzhong, Shaanxi, China
| | - Shanzhi Gu
- Department of Forensic Medicine, Xi'an Jiaotong University, NO.76, West Yanta Road, Xi'an, 710061, Shaanxi, China.
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, NO.277, West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
14
|
Zhuang L, Li C, Hu X, Yang Q, Pei X, Jin G. High expression of P4HA3 in obesity: a potential therapeutic target for type 2 diabetes. Braz J Med Biol Res 2022; 55:e11741. [PMID: 35976267 PMCID: PMC9377532 DOI: 10.1590/1414-431x2022e11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
The aims of the present study were to evaluate the expression of prolyl 4-hydroxylase subunit alpha 3 (P4HA3) in adipocytes and adipose tissue and to explore its effect on obesity and type 2 diabetes mellitus (T2DM). We initially demonstrated that P4HA3 was significantly upregulated in the subcutaneous adipose tissue of obesity and T2DM patients, and its functional roles in adipocyte differentiation and insulin resistance were investigated using in vitro and in vivo models. The knockdown of P4HA3 inhibited adipocyte differentiation and improved insulin resistance in 3T3-L1 cells. In C57BL/6J db/db mice fed with a high fat diet (HFD), silencing P4HA3 significantly decreased fasting blood glucose and triglycerides (TG) levels, with concomitant decrease of body weight and adipose tissue weight. Further analysis showed that P4HA3 knockdown was correlated with the augmented IRS-1/PI3K/Akt/FoxO1 signaling pathway in the adipose and hepatic tissues of obese mice, which could improve hepatic glucose homeostasis and steatosis of mice. Together, our study suggested that the dysregulation of P4HA3 may contribute to the development of obesity and T2DM.
Collapse
Affiliation(s)
- Langen Zhuang
- Department of Endocrinology, The First Affiliated Hospital of
Bengbu Medical College, Bengbu, Anhui, China
| | - Can Li
- Shangyi Health Check-up Centre, Zibo, Shandong, China
| | - Xiaolei Hu
- Department of Endocrinology, The First Affiliated Hospital of
Bengbu Medical College, Bengbu, Anhui, China
| | - Qingqing Yang
- Department of Endocrinology, The First Affiliated Hospital of
Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaoyan Pei
- Department of Endocrinology, The First Affiliated Hospital of
Bengbu Medical College, Bengbu, Anhui, China
| | - Guoxi Jin
- Department of Endocrinology, The First Affiliated Hospital of
Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
15
|
Wang F, Yang L, Xiao M, Zhang Z, Shen J, Anuchapreeda S, Tima S, Chiampanichayakul S, Xiao Z. PD-L1 regulates cell proliferation and apoptosis in acute myeloid leukemia by activating PI3K-AKT signaling pathway. Sci Rep 2022; 12:11444. [PMID: 35794161 PMCID: PMC9259561 DOI: 10.1038/s41598-022-15020-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/16/2022] [Indexed: 01/02/2023] Open
Abstract
As immune checkpoint inhibitors (ICIs) continue to advance, more evidence has emerged that anti-PD-1/PD-L1 immunotherapy is an effective treatment against cancers. Known as the programmed death ligand-1 (PD-L1), this co-inhibitory ligand contributes to T cell exhaustion by interacting with programmed death-1 (PD-1) receptor. However, cancer-intrinsic signaling pathways of the PD-L1 molecule are not well elucidated. Therefore, the present study aimed to evaluate the regulatory network of PD-L1 and lay the basis of successful use of anti-PD-L1 immunotherapy in acute myeloid leukemia (AML). Data for AML patients were extracted from TCGA and GTEx databases. The downstream signaling pathways of PD-L1 were identified via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The key PD-L1 related genes were selected by weighted gene co-expression network analysis (WGCNA), MCC algorithm and Molecular Complex Detection (MCODE). The CCK-8 assay was used to assess cell proliferation. Flow cytometry was used to determine cell apoptosis and cell cycle. Western blotting was used to identify the expression of the PI3K-AKT signaling pathway. PD-L1 was shown to be elevated in AML patients when compared with the control group, and high PD-L1 expression was associated with poor overall survival rate. The ECM-receptor interaction, as well as the PI3K-AKT signaling pathway, were important PD-L1 downstream pathways. All three analyses found eight genes (ITGA2B, ITGB3, COL6A5, COL6A6, PF4, NMU, AGTR1, F2RL3) to be significantly associated with PD-L1. Knockdown of PD-L1 inhibited AML cell proliferation, induced cell apoptosis and G2/M cell cycle arrest. Importantly, PD-L1 knockdown reduced the expression of PI3K and p-AKT, but PD-L1 overexpression increased their expression. The current study elucidates the main regulatory network and downstream targets of PD-L1 in AML, assisting in the understanding of the underlying mechanism of anti-PD-1/PD-L1 immunotherapy and paving the way for clinical application of ICIs in AML.
Collapse
Affiliation(s)
- Fang Wang
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhuo Zhang
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, Thailand
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, Thailand
| | - Sawitree Chiampanichayakul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand. .,Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai, Thailand.
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China. .,South Sichuan Institute of Translational Medicine, Luzhou, China.
| |
Collapse
|
16
|
Niu X, Ren L, Wang S, Gao D, Ma M, Hu A, Qi H, Zhang S. High Prolyl 4-Hydroxylase Subunit Alpha 3 Expression as an Independent Prognostic Biomarker and Correlated With Immune Infiltration in Gastric Cancer. Front Genet 2022; 13:952335. [PMID: 35846138 PMCID: PMC9283575 DOI: 10.3389/fgene.2022.952335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Gastric cancer (GC) has a high mortality rate and is particularly prevalent in China. The extracellular matrix protein, prolyl 4-hydroxylase subunit alpha 3 (P4HA3), has been implicated in various cancers. We aimed to assess the diagnostic and prognostic value of P4HA3 in GC and investigate its correlation with immune cell infiltration. Methods: The present study used microarray data from the Cancer Genome Atlas (TCGA) to analyze the association of P4HA3 expression with clinicopathological features. Data from the Gene Expression Omnibus (GEO) were used for validation. Receiver operating characteristic (ROC) and Kaplan–Meier curves were constructed to determine the diagnostic and prognostic value of P4HA3 in GC. Univariate and multivariate regression analyses were performed to assess the impact of P4HA3 on overall survival (OS) rates. A protein–protein interaction (PPI) network was generated and functional enrichment evaluated. Single-sample gene set enrichment analysis (ssGSEA) was conducted to correlate P4HA3 expression with immune cell infiltration. The correlation between P4HA3 and immune check point genes was studied. Results: P4HA3 was over-expressed in GC, along with 15 other types of cancer, including breast invasive carcinoma and cholangiocarcinoma. P4HA3 showed high diagnostic and prognostic value in GC and was an independent prognostic factor. P4HA3, TNM (tumor, node, metastases) stage, pathological stage and age all correlated with OS rates. Genes related to P4HA3 were enriched in the lumen of the endoplasmic reticulum and included procollagen-proline 3-dioxygenase activity. P4HA3 expression correlated with numbers of macrophages, natural killer (NK) cells, immature dendritic cells (iDC), mast cells, eosinophils, effective memory T cells (Tem), T-helper 1 (Th1) cells and dendritic cells (DC). P4HA3 was positively correlated with hepatitis A virus cellular receptor 2 (HAVCR2) and programmed cell death 1 ligand 2 (PDCD1LG2). Conclusion: P4HA3 is a potential independent biomarker for prognosis of GC and may be an immunotherapy target in the treatment of GC.
Collapse
Affiliation(s)
- Xiaoji Niu
- Department of Gastroenterology of Traditional Chinese Medicine, Qinghai Province Hospital of Traditional Chinese Medicine, Xining, China
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liman Ren
- Department of Endocrinology, Qinghai Province Hospital of Traditional Chinese Medicine, Xining, China
| | - Shoumei Wang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Gao
- Department of Gastroenterology of Traditional Chinese Medicine, Qinghai Province Hospital of Traditional Chinese Medicine, Xining, China
| | - Mingyue Ma
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aiyan Hu
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjun Qi
- Department of Gastroenterology of Traditional Chinese Medicine, Qinghai Province Hospital of Traditional Chinese Medicine, Xining, China
- *Correspondence: Hongjun Qi, ; Shuhui Zhang,
| | - Shuhui Zhang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hongjun Qi, ; Shuhui Zhang,
| |
Collapse
|
17
|
Oliveira HA, Bueno AC, Pugliesi RS, da Silva Júnior RMP, de Castro M, Martins CS. PI3K inhibition by BKM120 results in anti-proliferative effects on corticotroph tumor cells. J Endocrinol Invest 2022; 45:999-1009. [PMID: 34988938 DOI: 10.1007/s40618-021-01735-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Cushing's disease is associated with significant morbidity; thus, additional tumor-directed drugs with the potential to exert antineoplastic effects on corticotroph adenoma cells are desired. The phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) pathway, which plays regulatory role in cell survival and proliferation, is activated in pituitary adenomas. The present study evaluated the effects of BKM120 (Buparlisib), an oral PI3K inhibitor, on cell viability, apoptosis, cell cycle phase distribution, and ACTH production in mouse corticotroph tumor cells. METHODS AtT-20/D16v-F2 mouse pituitary corticotroph tumor cells were treated with increasing concentrations of BKM120 or vehicle. Cell viability was measured using an MTS-based assay. Apoptosis was evaluated by Annexin V staining. Cell cycle analysis was performed by propidium iodide DNA staining and flow cytometry. Gene expression of cell cycle regulators (Cdkn1b, Ccnd1, Ccne1, Cdk2, Cdk4, Myc, and Rb1) was assessed by qPCR. Protein expression of p27, total and phosphorylated Akt was assessed by Western blot. ACTH levels were measured in the culture supernatants by chemiluminescent immunometric assay. RESULTS Treatment with BKM120 decreased AtT-20/D16v-F2 cell viability, induced a G0/G1 cell cycle arrest, reduced the phosphorylation of Akt at Serine 473, and increased p27 expression. Furthermore, BKM120 treatment diminished ACTH levels in the cell culture supernatants. CONCLUSION In vitro inhibition of PI3K/AKT pathway by BKM120 resulted in anti-proliferative effects on corticotroph tumor cells, decreasing cell viability and ACTH production. These encouraging findings shape the path for further experiments with the inhibition of PI3K/AKT pathway in Cushing's disease.
Collapse
Affiliation(s)
- H A Oliveira
- Molecular Biology Laboratory, Endocrinology Division, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo. Av Bandeirantes, 3900 Bloco G, Ribeirão Preto, SP, 14049-900, Brazil
| | - A C Bueno
- Departments of Pediatrics of Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R S Pugliesi
- Molecular Biology Laboratory, Endocrinology Division, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo. Av Bandeirantes, 3900 Bloco G, Ribeirão Preto, SP, 14049-900, Brazil
| | - R M P da Silva Júnior
- Molecular Biology Laboratory, Endocrinology Division, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo. Av Bandeirantes, 3900 Bloco G, Ribeirão Preto, SP, 14049-900, Brazil
| | - M de Castro
- Molecular Biology Laboratory, Endocrinology Division, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo. Av Bandeirantes, 3900 Bloco G, Ribeirão Preto, SP, 14049-900, Brazil
| | - C S Martins
- Molecular Biology Laboratory, Endocrinology Division, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo. Av Bandeirantes, 3900 Bloco G, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
18
|
Lin A, Zhou N, Zhu W, Zhang J, Wei T, Guo L, Luo P, Zhang J. Genomic and immunological profiles of small-cell lung cancer between East Asians and Caucasian. Cancer Cell Int 2022; 22:173. [PMID: 35488336 PMCID: PMC9052616 DOI: 10.1186/s12935-022-02588-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2022] Open
Abstract
The characterization of immunological and genomic differences in small-cell lung cancer (SCLC) between East Asian (EA) and Caucasian patients can reveal important clinical therapies for EA patients with SCLC. By sequencing and analyzing a molecular and immunological dataset of 98-SCLC patients of EA ancestry, immunogenicity, including DNA damage repair alterations and tumor mutation burden (TMB), was found to be significantly higher in the EA cohort than in the Caucasian cohort. The epithelial-mesenchymal transition (EMT) was the signaling signature with the predominant frequency of mutations across all patients in the EA cohort. Analysis of tumor-infiltrated immune cells revealed that resting lymphocytes were significantly enriched in the EA cohort. Compound-targeting analysis showed that topoisomerase inhibitors might be capable of targeting TP53 and RB1 comutations in EA SCLC patients. EA SCLC patients who harbored COL6A6 mutations had poor survival, while Caucasian SCLC patients with OTOF, ANKRD30B, and TECPR2 mutations were identified to have a shorter survival.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Ningning Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Jiexia Zhang
- Department of Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
19
|
miR-1266-3p Suppresses Epithelial-Mesenchymal Transition in Colon Cancer by Targeting P4HA3. Anal Cell Pathol (Amst) 2022; 2022:1542117. [PMID: 35433237 PMCID: PMC9010195 DOI: 10.1155/2022/1542117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have been conducted to demonstrate that miRNA is strongly related to colon cancer progression. Nevertheless, there are few studies regarding the function for miR-1266-3p in colon cancer, and the molecular mechanism remains poorly know. Our study was designed to examine the level of miR-1266-3p expression among the colon cancer tissue and cell and to study the role and regulatory mechanism for miR-1266-3p among colon cancer's malignant biologic behavior. First, we found that miR-1266-3p expression was distinctly lower in colonic carcinoma tissues and cells than in nontumor ones, and the prognosis of low miR-1266-3p patients was distinctly worse than that of high miR-1266-3p patients. Second, we predicted that the target gene of miR-1266-3p was prolyl 4-hydroxylase subunit alpha 3 (P4HA3) through bioinformatics, and the targeting relationship between the two was verified by a dual luciferase assay report. Furthermore, miR-1266-3p inhibited the growth and metastasis of colon cancer in vitro as well as in vivo, and this effect could be alleviated by overexpressing P4HA3. Even more importantly, our study demonstrated that miR-1266-3p inhibited epithelial-mesenchymal transition (EMT) by targeting P4HA3. In conclusion, miR-1266-3p could inhibit growth, metastasis, and EMT in colon cancer by targeting P4HA3. Our discoveries might offer a novel target for colon cancer diagnosis and treatment.
Collapse
|
20
|
Liang L, Li J, Yu J, Liu J, Xiu L, Zeng J, Wang T, Li N, Wu L. Establishment and validation of a novel invasion-related gene signature for predicting the prognosis of ovarian cancer. Cancer Cell Int 2022; 22:118. [PMID: 35292033 PMCID: PMC8922755 DOI: 10.1186/s12935-022-02502-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is an invasive gynaecologic cancer with a high cancer-related death rate. The purpose of this study was to establish an invasion-related multigene signature to predict the prognostic risk of OC. METHODS We extracted 97 invasion-related genes from The Cancer Genome Atlas (TCGA) database. Then, the ConsensusClusterPlus and limma packages were used to calculate differentially expressed genes (DEGs). To calculate the immune scores of the molecular subtypes, we used ESTIMATE to evaluate the stromal score, immune score and ESTIMATE score. MCP-counter and the GSVA package ssgsea were used to evaluate the types of infiltrating immune cells. Survival and nomogram analyses were performed to explore the prognostic value of the signature. Finally, qPCR, immunohistochemistry staining and functional assays were used to evaluate the expression and biological abilities of the signature genes in OC. RESULTS Based on the consistent clustering of invasion-related genes, cases in the OC datasets were divided into two subtypes. A significant difference was observed in prognosis between the two subtypes. Most genes were highly expressed in the C1 group. Based on the C1 group genes, we constructed an invasion-related 6-gene prognostic risk model. Furthermore, to verify the signature, we used the TCGA-test and GSE32062 and GSE17260 chip datasets for testing and finally obtained a good risk prediction effect in those datasets. Moreover, the results of the qPCR and immunohistochemistry staining assays revealed that KIF26B, VSIG4 and COL6A6 were upregulated and that FOXJ1, MXRA5 and CXCL9 were downregulated in OC tissues. The functional study showed that the expression of KIF26B, VSIG4, COL6A6, FOXJ1, MXRA5 and CXCL9 can regulate the migration and invasion abilities of OC cells. CONCLUSION We developed a 6-gene prognostic stratification system (FOXJ1, MXRA5, KIF26B, VSIG4, CXCL9 and COL6A6) that is independent of clinical features. These results suggest that the signature could potentially be used to evaluate the prognostic risk of OC patients.
Collapse
Affiliation(s)
- Leilei Liang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Yu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Liu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Xiu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Zeng
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tiantian Wang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Lingying Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
21
|
Qiao H, Feng Y, Tang H. COL6A6 inhibits the proliferation and metastasis of non-small cell lung cancer through the JAK signalling pathway. Transl Cancer Res 2022; 10:4514-4522. [PMID: 35116307 PMCID: PMC8798920 DOI: 10.21037/tcr-21-2002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/16/2021] [Indexed: 12/19/2022]
Abstract
Background Collagen type VI alpha 6 chain (COL6A6) plays a vital role in maintaining cell structural integrity and regulating cell function. It has been proven to be a tumor suppressor gene and molecular therapeutic target. However, the mechanism of COL6A6 in non-small cell lung cancer (NSCLC) has not been elucidated. The purpose of this study was to investigate the relationship between COL6A6 and NSCLC. Methods We analyzed the expression of COL6A6 in NSCLC using public databases and verified the findings in NSCLC tissues and cells. The protein expression of COL6A6 was evaluated by Western blot. The CCK8 and Transwell assays were used to assess the invasion ability of NSCLC cells after COL6A6 knockdown. At the same time, we discussed the role of the JAK signalling pathway that may be related to COL6A6. Results Bioinformatics analysis showed that COL6A6 expression was downregulated in NSCLC, and its high expression was associated with a better prognosis of NSCLC. In vitro, the expression of COL6A6 in NSCLC tissues was significantly lower than that in adjacent tissues. Furthermore, COL6A6 knockout accelerated the proliferation, invasion, and migration of NSCLC cells and activated the JAK signalling pathway. Conclusions Our study illustrates that COL6A6 is a tumor suppressor gene in NSCLC and is involved in NSCLC tumorigenesis by regulating the JAK signalling pathway. Therefore, COL6A6 holds promise as a molecular therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Han Qiao
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Feng
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Huaping Tang
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Zhou H, Zou J, Shao C, Zhou A, Yu J, Chen S, Xu C. Prolyl 4-hydroxylase subunit alpha 3 facilitates human colon cancer growth and metastasis through the TGF-β/Smad signaling pathway. Pathol Res Pract 2022; 230:153749. [PMID: 34959098 DOI: 10.1016/j.prp.2021.153749] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) has been known to be associated with a variety of human cancers. However, the role of P4HA3 on colon cancer growth and metastasis is unclear. In this study, we investigated the effect of P4HA3 on the growth and metastasis of colon cancer and its possible molecular mechanism. First of all, we demonstrated that P4HA3 expression was greatly higher in cells and tissues of colon cancer than that in non-tumor tissues and cells, and the prognosis of patients who had higher P4HA3 was distinctively poorer than patients who had lower level of P4HA3. Second, it was shown that P4HA3 knockdown strongly inhibited the migration, proliferation and invasion ability of colon cancer cells. However, P4HA3 over-expression accelerated the abilities. Meanwhile, P4HA3 could promote subcutaneous tumorigenesis in nude mice in vivo. In addition, P4HA3 knockdown significantly decreased mesenchymal markers Vimentin, N-cadherin and Snail expression and increased epithelial marker E-cadherin expression. And conversely, over-expression of P4HA3 produced the opposite effects. In the current study, there was further evidence that down-regulating P4HA3 significantly reduced both TGF-β and its following molecules including p-Smad2 as well as p-Smad3. However, overexpression of P4HA3 showed the opposite effect. In conclusion, this study shows that P4HA3 promotes the human colon cancer growth and metastasis by affecting TGF-β/Smad signaling pathway. P4HA3 may become a new target for early diagnosis, treatment and prognosis assessment of colon cancer.
Collapse
Affiliation(s)
- Hailang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China; Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, Jiangsu 223400, PR China
| | - Junwei Zou
- Department of General Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, PR China
| | - Changjiang Shao
- Department of Gastroenterology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222006, PR China
| | - Aijun Zhou
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, Jiangsu 223400, PR China
| | - Jiufeng Yu
- Department of Traditional Chinese Medicine, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, Jiangsu 223400, PR China
| | - Song Chen
- The Institute of Life Sciences, Jiangsu College of Nursing,Huaian, Jiangsu 223300, PR China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
23
|
Liu N, Jiang F, Chen Z. A Preliminary Study on the Pathogenesis of Colorectal Cancer by Constructing a Hsa-circRNA-0067835-miRNA-mRNA Regulatory Network. Onco Targets Ther 2021; 14:4645-4658. [PMID: 34511934 PMCID: PMC8418363 DOI: 10.2147/ott.s319300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background Increasing evidence shows that circular RNAs (circRNAs) play a key role in the development of colorectal cancer (CRC). An interesting candidate RNA in this context is hsa-circRNA-0067835 (circIFT80), but its network of actions is still unclear. Methods Big data mining technology was used to explore the downstream microRNAs (miRNA) and messenger RNAs (mRNA) of the circIFT80 network. A regulatory network, comprising circIFT80 and its corresponding miRNAs and mRNAs, was derived to preliminarily explore the potential mechanism of circIFT80 in CRC. Finally, the proposed regulatory network was experimentally verified at the cellular level. Results A total of 6 miRNAs were screened, of which hsa-miR-197-3p, hsa-miR-370-3p and hsa-miR-377-5p may be the most potential downstream miRNAs of hsa-circRNA-0067835 in CRC. A total of 74 up-regulated genes with opposite miRNA expression were selected for subsequent verification. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases revealed that the target genes occurred more frequently in cancer-related pathways. In addition, protein-protein interaction (PPI) analysis of the target genes revealed a set of involved genes from which the hubTop 10 genes were selected for further analysis. Moreover, circRNA-miRNA-hubTop 10 mRNA networks were constructed. According to this analysis, circIFT80 simultaneously regulates hsa-miR-197-3p, hsa-miR-370-3p, and hsa-miR-377-5p, among which hsa-miR-370-3p seems to be associated with further genes that may be relevant to CRC development. Therefore, the proposed circIFT80/hsa-miR-370-3p/WNT7B, SLC1A5, RCBTB1 and COL6A6 signal axes were subjected to experimental verification. It could be shown that circIFT80 was up-regulated in CRC tissues. The circIFT80 was able to inhibit apoptosis and promote proliferation, migration and invasion. Moreover, circIFT80 inhibited the expression of hsa-miR-370-3p and promoted the expression of COL6A6, RCBTB1, SLC1A5 and WNT7B in CRC cell lines. Dual luciferase reporter assays further validated that circIFT80 is able to bind to hsa-miR-370-3p which in turn targets WNT7B. Conclusion The circIFT80 may play a role in carcinogenesis through the new circIFT80/hsa-miR-370-3p/WNT7B signal axis. These findings may provide potential biomarkers and therapeutic targets for the treatment of CRC.
Collapse
Affiliation(s)
- Ning Liu
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Fan Jiang
- Department of the Center of Gerontology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| | - Zhiju Chen
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, People's Republic of China
| |
Collapse
|
24
|
Tong Y, Sun P, Yong J, Zhang H, Huang Y, Guo Y, Yu J, Zhou S, Wang Y, Wang Y, Ji Q, Wang Y, Chang C. Radiogenomic Analysis of Papillary Thyroid Carcinoma for Prediction of Cervical Lymph Node Metastasis: A Preliminary Study. Front Oncol 2021; 11:682998. [PMID: 34268116 PMCID: PMC8276635 DOI: 10.3389/fonc.2021.682998] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Background Papillary thyroid carcinoma (PTC) is characterized by frequent metastases to cervical lymph nodes (CLNs), and the presence of lymph node metastasis at diagnosis has a significant impact on the surgical approach. Therefore, we established a radiomic signature to predict the CLN status of PTC patients using preoperative thyroid ultrasound, and investigated the association between the radiomic features and underlying molecular characteristics of PTC tumors. Methods In total, 270 patients were enrolled in this prospective study, and radiomic features were extracted according to multiple guidelines. A radiomic signature was built with selected features in the training cohort and validated in the validation cohort. The total protein extracted from tumor samples was analyzed with LC/MS and iTRAQ technology. Gene modules acquired by clustering were chosen for their diagnostic significance. A radiogenomic map linking radiomic features to gene modules was constructed with the Spearman correlation matrix. Genes in modules related to metastasis were extracted for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and a protein-protein interaction (PPI) network was built to identify the hub genes in the modules. Finally, the screened hub genes were validated by immunohistochemistry analysis. Results The radiomic signature showed good performance for predicting CLN status in training and validation cohorts, with area under curve of 0.873 and 0.831 respectively. A radiogenomic map was created with nine significant correlations between radiomic features and gene modules, and two of them had higher correlation coefficient. Among these, MEmeganta representing the upregulation of telomere maintenance via telomerase and cell-cell adhesion was correlated with ‘Rectlike’ and ‘deviation ratio of tumor tissue and normal thyroid gland’ which reflect the margin and the internal echogenicity of the tumor, respectively. MEblue capturing cell-cell adhesion and glycolysis was associated with feature ‘minimum calcification area’ which measures the punctate calcification. The hub genes of the two modules were identified by protein-protein interaction network. Immunohistochemistry validated that LAMC1 and THBS1 were differently expressed in metastatic and non-metastatic tissues (p=0.003; p=0.002). And LAMC1 was associated with feature ‘Rectlike’ and ‘deviation ratio of tumor and normal thyroid gland’ (p<0.001; p<0.001); THBS1 was correlated with ‘minimum calcification area’ (p<0.001). Conclusions The radiomic signature proposed here has the potential to noninvasively predict the CLN status in PTC patients. Merging imaging phenotypes with genomic data could allow noninvasive identification of the molecular properties of PTC tumors, which might support clinical decision making and personalized management.
Collapse
Affiliation(s)
- Yuyang Tong
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Surgical Oncology, The Ohio State University, Columbus, OH, United States
| | - Peixuan Sun
- Diagnostic Imaging Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Yong
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, Finland.,Turku Biosciences Center, University of Turku and Åbo Akademi University, Turku, Finland
| | - Yunxia Huang
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Guo
- Department of Electronic Engineering, Fudan University and Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Jinhua Yu
- Department of Electronic Engineering, Fudan University and Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Shichong Zhou
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yulong Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University and Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Cai Chang
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Guo J, Fang Q, Liu Y, Xie W, Li C, Zhang Y. Screening and Identification of Key Microenvironment-Related Genes in Non-functioning Pituitary Adenoma. Front Genet 2021; 12:627117. [PMID: 33986766 PMCID: PMC8110910 DOI: 10.3389/fgene.2021.627117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/08/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose Non-functioning pituitary adenoma (NFPA) is a very common type of intracranial tumor, which can be locally invasive and can have a high recurrence rate. The tumor microenvironment (TME) shows a high correlation with tumor pathogenesis and prognosis. The current study aimed to identify microenvironment-related genes in NFPAs and assess their prognostic value. Methods 73 NFPA tumor samples were collected from Beijing Tiantan Hospital and transcriptional expression profiles were obtained through microarray analysis. The immune and stromal scores of each sample were calculated through the ESTIMATE algorithm, and the patients were divided into high and low immune/stromal score groups. Intersection differentially expressed genes (DEGs) were then obtained to construct a protein–protein interaction (PPI) network. Potential functions and pathways of intersection DEGs were then analyzed through Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. The prognostic value of these genes was evaluated. The quantitative real-time polymerase chain reaction in another set of NFPA samples was used to confirm the credibility of the bioinformatics analysis. Results The immune/stromal scores were significantly correlated with cavernous sinus (CS) invasion. The Kaplan–Meier curve indicated that the high immune score group was significantly related to poor recurrence-free survival. We identified 497 intersection DEGs based on the high vs. low immune/stromal score groups. Function enrichment analyses of 497 DEGs and hub genes from the PPI network showed that these genes are mainly involved in the immune/inflammatory response, T cell activation, and the phosphatidylinositol 3 kinase-protein kinase B signaling pathway. Among the intersection DEGs, 88 genes were further verified as significantly expressed between the CS invasive group and the non-invasive group, and five genes were highly associated with NFPA prognosis. Conclusion We screened out a series of critical genes associated with the TME in NFPAs. These genes may play a fundamental role in the development and prognosis of NFPA and may yield new therapeutic targets.
Collapse
Affiliation(s)
- Jing Guo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qiuyue Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yulou Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
26
|
Ma Y, Qiu M, Guo H, Chen H, Li J, Li X, Yang F. Comprehensive Analysis of the Immune and Prognostic Implication of COL6A6 in Lung Adenocarcinoma. Front Oncol 2021; 11:633420. [PMID: 33747955 PMCID: PMC7968342 DOI: 10.3389/fonc.2021.633420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Collagen type VI alpha 6 chain (COL6A6), a novel collagen, has been considered as a tumor suppressor and therapeutic target in several tumors. However, the functional role of COL6A6 in immune cell infiltration and prognostic value in lung adenocarcinoma (LUAD) remains unknown. Here, we evaluated COL6A6 expression and its impact on survival among LUAD patients from The Cancer Genome Atlas (TCGA) and several other databases. COL6A6 was downregulated in LUAD tissues compared to normal tissues at both mRNA and protein levels. COL6A6 expression was negatively associated with pathological stage, tumor stage, and lymph node metastasis. High COL6A6 expression was a favorable prognostic factor in LUAD. Next, we explored the associations between COL6A6 expression and immune cell infiltration. COL6A6 expression was positively associated with the infiltration of B cells, T cells, neutrophils and dendritic cells. Additionally, the immune cell infiltration levels were associated with COL6A6 gene copy number in LUAD. Consistently, gene set enrichment analysis showed that various immune pathways were enriched in the LUAD samples with high COL6A6 expression, including pathways related to T cell activation and T cell receptor signaling. The impacts of COL6A6 on immune activity were further assessed by enrichment analysis of 50 COL6A6-associated immunomodulators. Thereafter, using Cox regression, we identified a seven-gene risk prediction signature based on the COL6A6-associated immunomodulators. The resulting risk score was an independent prognostic predictor in LUAD. Receiver operating characteristic curve analysis confirmed that the seven-gene signature had good prognostic accuracy in the TCGA-LUAD cohort and a Gene Expression Omnibus dataset. Finally, we constructed a clinical nomogram to predict long-term survival probabilities, and calibration curves verified its accuracy. Our findings highlight that COL6A6 is involved in tumor immunity, suggesting COL6A6 may be a potential immunotherapeutic target in LUAD. The proposed seven-gene signature is a promising prognostic biomarker in LUAD.
Collapse
Affiliation(s)
- Yi Ma
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Haifa Guo
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Haiming Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Jiawei Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Xiao Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
27
|
Saksis R, Silamikelis I, Laksa P, Megnis K, Peculis R, Mandrika I, Rogoza O, Petrovska R, Balcere I, Konrade I, Steina L, Stukens J, Breiksa A, Nazarovs J, Sokolovska J, Pirags V, Klovins J, Rovite V. Medication for Acromegaly Reduces Expression of MUC16, MACC1 and GRHL2 in Pituitary Neuroendocrine Tumour Tissue. Front Oncol 2021; 10:593760. [PMID: 33680922 PMCID: PMC7928352 DOI: 10.3389/fonc.2020.593760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Acromegaly is a disease mainly caused by pituitary neuroendocrine tumor (PitNET) overproducing growth hormone. First-line medication for this condition is the use of somatostatin analogs (SSAs), that decrease tumor mass and induce antiproliferative effects on PitNET cells. Dopamine agonists (DAs) can also be used if SSA treatment is not effective. This study aimed to determine differences in transcriptome signatures induced by SSA/DA therapy in PitNET tissue. We selected tumor tissue from twelve patients with somatotropinomas, with half of the patients receiving SSA/DA treatment before surgery and the other half treatment naive. Transcriptome sequencing was then carried out to identify differentially expressed genes (DEGs) and their protein–protein interactions, using pathway analyses. We found 34 upregulated and six downregulated DEGs in patients with SSA/DA treatment. Three tumor development promoting factors MUC16, MACC1, and GRHL2, were significantly downregulated in therapy administered PitNET tissue; this finding was supported by functional studies in GH3 cells. Protein–protein interactions and pathway analyses revealed extracellular matrix involvement in the antiproliferative effects of this type of the drug treatment, with pronounced alterations in collagen regulation. Here, we have demonstrated that somatotropinomas can be distinguished based on their transcriptional profiles following SSA/DA therapy, and SSA/DA treatment does indeed cause changes in gene expression. Treatment with SSA/DA significantly downregulated several factors involved in tumorigenesis, including MUC16, MACC1, and GRHL2. Genes that were upregulated, however, did not have a direct influence on antiproliferative function in the PitNET cells. These findings suggested that SSA/DA treatment acted in a tumor suppressive manner and furthermore, collagen related interactions and pathways were enriched, implicating extracellular matrix involvement in this anti-tumor effect of drug treatment.
Collapse
Affiliation(s)
- Rihards Saksis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Pola Laksa
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Raitis Peculis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ilona Mandrika
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Olesja Rogoza
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Inga Balcere
- Riga East Clinical University Hospital, Riga, Latvia.,Riga Stradins University, Riga, Latvia
| | - Ilze Konrade
- Riga East Clinical University Hospital, Riga, Latvia.,Riga Stradins University, Riga, Latvia
| | - Liva Steina
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Janis Stukens
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Austra Breiksa
- Pauls Stradins Clinical University Hospital, Riga, Latvia
| | | | | | - Valdis Pirags
- Pauls Stradins Clinical University Hospital, Riga, Latvia.,University of Latvia Faculty of Medicine, Riga, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
28
|
Wuniqiemu T, Qin J, Teng F, Nabijan M, Cui J, Yi L, Tang W, Zhu X, Abduwaki M, Nurahmat M, Wei Y, Dong JC. Quantitative proteomic profiling of targeted proteins associated with Loki Zupa Decoction Treatment in OVA-Induced asthmatic mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113343. [PMID: 32991972 DOI: 10.1016/j.jep.2020.113343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Loki Zupa (LKZP) decoction is one of the herbal prescriptions in traditional Uyghur medicine, which is commonly used for treating airway abnormality. However, underlying pathological mechanism and pathways involved has not been well studied. OBJECTIVES In this paper, we aim to further confirmed the anti-inflammatory and anti-fibrotic role of LKZP decoction in airway, and uncover the passible mechanism involved via comprehensive quantitative proteomic DIA-MS analysis. MATERIALS AND METHODS Mice asthmatic model was established with sensitizing and challenging with OVA. Lung function, pathological status, and inflammatory cytokines were assessed. Total of nine lung tissues were analyzed using proteomic DIA-MS analysis and 18 lung tissues were subjected to PRM validation. RESULTS Total of 704 differentially expressed proteins (DEPs) (363 up regulated, 341 down regulated) were quantified in comparison of asthmatic and healthy mice, while 152 DEPs (91 up regulated, 61 down regulated) were quantified in LKZP decoction treated compared to asthmatic mice. Total of 21 proteins were overlapped between three groups. ECM-receptor interaction was significantly enriched and commonly shared between downregulated DEPs in asthma and upregulated DEPs in LKZP decoction treated mice. Total of 20 proteins were subjected to parallel reaction monitoring (PRM) analysis and 16 of which were quantified. At last, two proteins, RMB 10 and COL6A6, were validated with significant difference (P < 0.001) in protein abundance. CONCLUSIONS Our results suggest that attenuated airway inflammation and fibrosis caused by LKZP decoction may associated with ECM-receptor interaction and RMB 10 and COL6A6 may be targeted by LKZP decoction in OVA-induced asthmatic mice.
Collapse
Affiliation(s)
- Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Mohammadtursun Nabijan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Muhammadjan Abduwaki
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Mammat Nurahmat
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jing Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Guo J, Fang Q, Liu Y, Xie W, Zhang Y, Li C. Identifying critical protein-coding genes and long non-coding RNAs in non-functioning pituitary adenoma recurrence. Oncol Lett 2021; 21:264. [PMID: 33664827 PMCID: PMC7882882 DOI: 10.3892/ol.2021.12525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Non-functioning pituitary adenoma (NFPA) is a very common type of intracranial tumor. Monitoring and predicting the postoperative recurrence of NFPAs is difficult, as these adenomas do not present with serum hormone hypersecretion. Long non-coding RNAs (lncRNAs) and protein-coding genes (PCGs) play critical roles in the development and progression of numerous tumors. However, the complex network of RNA interactions related to the mechanisms underlying the postoperative recurrence of NFPA is still unclear. In the present study, 73 patients with NFPA were investigated using high-throughput sequencing and follow-up investigations. In total, 6 of these patients with recurrence within 1 year after surgery were selected as the fast recurrence group, and 6 patients with recurrence 5 years after surgery were selected as the slow recurrence group. By performing differential expression analysis of the fast recurrence and slow recurrence groups, a set of differentially expressed PCGs and lncRNAs were obtained (t-test, P<0.05). Next, protein-protein interaction coregulatory networks and lncRNA-mRNA coexpression networks were identified. In addition, the hub lncRNA-mRNA modules related to NFPA recurrence were further screened and transcriptome expression markers for NFPA regression were identified (log-rank test, P<0.05). Finally, the ability of the hub and module genes to predict recurrence and progression-free survival in patients with NFPA was evaluated. To confirm the credibility of the bioinformatic analyses, nucleolar protein 6 and LL21NC02-21A1.1 were randomly selected from among the genes with prognostic significance for validation by reverse transcription-quantitative PCR in another set of NFPA samples (n=9). These results may be helpful for evaluating the slow and rapid recurrence of NFPA after surgery and exploring the mechanisms underlying NFPA recurrence. Future effective biomarkers and therapeutic targets may also be revealed.
Collapse
Affiliation(s)
- Jing Guo
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Qiuyue Fang
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Yulou Liu
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Weiyan Xie
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China
| | - Yazhuo Zhang
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China.,Cell laboratory, Beijing Institute for Brain Disorders Brain Tumor Center, Beijing 100070, P.R. China.,Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases, Beijing 100070, P.R. China
| | - Chuzhong Li
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, P.R. China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China.,Cell laboratory, Beijing Institute for Brain Disorders Brain Tumor Center, Beijing 100070, P.R. China.,Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases, Beijing 100070, P.R. China
| |
Collapse
|
30
|
Cancer-Associated Fibroblast Subgroups Showing Differential Promoting Effect on HNSCC Progression. Cancers (Basel) 2021; 13:cancers13040654. [PMID: 33562096 PMCID: PMC7915931 DOI: 10.3390/cancers13040654] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary It is generally accepted that fibroblasts represent a heterogeneous population of cells with different functions depending on the cell type. Although numerous reports have stated that cancer-associated fibroblast (CAF) promotes cancer progression, few studies have shown that they inhibit cancer progression. We propose that CAFs derived from some HNSCC patients is less effective in promoting cancer progression than CAFs from other patients and that specific collagen proteins may be involved in this process. Abstract Background: The critical effect of the tumor microenvironment on cancer progression is well recognized. Recent research suggests that the cancer-promoting properties of the tumor stroma may be attributed to fibroblasts. However, the effect of cancer-associated fibroblast (CAF) on the progression of head and neck squamous cell carcinoma (HNSCC) is not well known. Methods: From the immunohistochemical analysis of head and neck squamous cell carcinoma (HNSCC) tissues, we divided CAF into two groups depending on the presence or absence of a well-demarcated boundary between epithelial cancer cells and the surrounding extracellular matrix (ECM). Primary culture of CAF was performed, followed by co-transplantation with HNSCC cells into mice oral mucosa, and the tumorigenesis was compared. The mRNA expression patterns between these two CAF groups were compared using DNA microarray analysis. Results: CAFs from cancer tissues that showed no demarcation between ECM and epithelial cancer cells (CAF-Promote) tended to stimulate Matrigel invasion of HNSCC cells. Conversely, CAFs from cancer tissues that showed a boundary with epithelial cancer cells (CAF-Delay) caused no remarkable increase in Matrigel invasion. Compared with CAF-P, CAF-D is less effective in promoting FaDu tumorigenicity in the mouse model. In DNA microarray analysis, COL3A1 and COL6A6 showed particularly high expression in the CAF-D group. Conclusions: These cancer stroma-derived collagen proteins might delay the HNSCC progression. These findings are expected to provide vital information for predicting HNSCC prognosis and developing drug targets in the future.
Collapse
|
31
|
Gil J, Jordà M, Soldevila B, Puig-Domingo M. Epithelial-Mesenchymal Transition in the Resistance to Somatostatin Receptor Ligands in Acromegaly. Front Endocrinol (Lausanne) 2021; 12:646210. [PMID: 33790868 PMCID: PMC8006574 DOI: 10.3389/fendo.2021.646210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/22/2021] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a dynamic process by which epithelial cells loss their phenotype and acquire mesenchymal traits, including increased migratory and invasive capacities. EMT is involved in physiological processes, such as embryogenesis and wound healing, and in pathological processes such as cancer, playing a pivotal role in tumor progression and metastasis. Pituitary tumors, although typically benign, can be locally invasive. Different studies have shown the association of EMT with increased tumor size and invasion in pituitary tumors, and in particular with a poor response to Somatostatin Receptor Ligands (SRLs) treatment in GH-producing pituitary tumors, the main cause of acromegaly. This review will summarize the current knowledge regarding EMT and SRLs resistance in acromegaly and, based on this relation, will suggest new biomarkers and possible therapies to SRLs resistant tumors.
Collapse
Affiliation(s)
- Joan Gil
- Endocrine Tumours Lab, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Mireia Jordà
- Endocrine Tumours Lab, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- *Correspondence: Manel Puig-Domingo, ; Mireia Jordà,
| | - Berta Soldevila
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Manel Puig-Domingo
- Endocrine Tumours Lab, Program of Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
- *Correspondence: Manel Puig-Domingo, ; Mireia Jordà,
| |
Collapse
|
32
|
Huang N, Zhao G, Yang Q, Tan J, Tan Y, Zhang J, Cheng Y, Chen J. Intracellular and extracellular S100A9 trigger epithelial-mesenchymal transition and promote the invasive phenotype of pituitary adenoma through activation of AKT1. Aging (Albany NY) 2020; 12:23114-23128. [PMID: 33203795 PMCID: PMC7746360 DOI: 10.18632/aging.104072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 05/06/2023]
Abstract
Pituitary adenoma (PA) is mostly benign intracranial tumor, but it also displays invasive growth characteristics and provokes challenging clinical conditions. S100A9 protein enhances tumor progression. In this study, we firstly demonstrated that both intracellular and extracellular S100A9 promoted the expression of Vimentin and Intercellular cell adhesion molecule-1 (ICAM-1), coupled with reduced E-cadherin in PA. As a result, PA acquired the phenotype of Epithelial-Mesenchymal Transition (EMT), leading to proliferation, cell cycle progression, migration and invasion. In addition, we indicated S100A9-induced EMT was mediated by activation of AKT1. Furthermore, immunohistochemistry showed that S100A9 expression was higher in invasive PA than that in non-invasive PA. These data extended our understanding for the effects of S100A9 on PA invasion and contributed to further development of a promising therapeutic target for invasive PA.
Collapse
Affiliation(s)
- Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guanjian Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiahe Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|