1
|
Tian Y, Shao S, Feng H, Zeng R, Li S, Zhang Q. Targeting senescent cells in atherosclerosis: Pathways to novel therapies. Ageing Res Rev 2024; 101:102502. [PMID: 39278272 DOI: 10.1016/j.arr.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Targeting senescent cells has recently emerged as a promising strategy for treating age-related diseases, such as atherosclerosis, which significantly contributes to global cardiovascular morbidity and mortality. This review elucidates the role of senescent cells in the development of atherosclerosis, including persistently damaging DNA, inducing oxidative stress and secreting pro-inflammatory factors known as the senescence-associated secretory phenotype. Therapeutic approaches targeting senescent cells to mitigate atherosclerosis are summarized in this review, which include the development of senotherapeutics and immunotherapies. These therapies are designed to either remove these cells or suppress their deleterious effects. These emerging therapies hold potential to decelerate or even alleviate the progression of AS, paving the way for new avenues in cardiovascular research and treatment.
Collapse
Affiliation(s)
- Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Sihang Shao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Haibo Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China.
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou 635000, China.
| |
Collapse
|
2
|
Spina JS, Carr TL, Phillips LA, Knight HL, Crosbie NE, Lloyd SM, Jhala MA, Lam TJ, Karman J, Clements ME, Day TA, Crane JD, Housley WJ. Modulating in vitro lung fibroblast activation via senolysis of senescent human alveolar epithelial cells. Aging (Albany NY) 2024; 16:10694-10723. [PMID: 38976646 PMCID: PMC11272128 DOI: 10.18632/aging.205994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/18/2024] [Indexed: 07/10/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related disease with poor prognosis and limited therapeutic options. Activation of lung fibroblasts and differentiation to myofibroblasts are the principal effectors of disease pathology, but damage and senescence of alveolar epithelial cells, specifically type II (ATII) cells, has recently been identified as a potential trigger event for the progressive disease cycle. Targeting ATII senescence and the senescence-associated secretory phenotype (SASP) is an attractive therapeutic strategy; however, translatable primary human cell models that enable mechanistic studies and drug development are lacking. Here, we describe a novel system of conditioned medium (CM) transfer from bleomycin-induced senescent primary alveolar epithelial cells (AEC) onto normal human lung fibroblasts (NHLF) that demonstrates an enhanced fibrotic transcriptional and secretory phenotype compared to non-senescent AEC CM treatment or direct bleomycin damage of the NHLFs. In this system, the bleomycin-treated AECs exhibit classical hallmarks of cellular senescence, including SASP and a gene expression profile that resembles aberrant epithelial cells of the IPF lung. Fibroblast activation by CM transfer is attenuated by pre-treatment of senescent AECs with the senolytic Navitoclax and AD80, but not with the standard of care agent Nintedanib or senomorphic JAK-targeting drugs (e.g., ABT-317, ruxolitinib). This model provides a relevant human system for profiling novel senescence-targeting therapeutics for IPF drug development.
Collapse
Affiliation(s)
- Joseph S. Spina
- AbbVie Bioresearch Center, Worcester, MA 01605, USA
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | - Jozsef Karman
- AbbVie Bioresearch Center, Worcester, MA 01605, USA
- Current address: Merck, Cambridge, MA 02141, USA
| | | | - Tovah A. Day
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Justin D. Crane
- Department of Biology, Northeastern University, Boston, MA 02115, USA
- Current address: Pfizer Inc., Cambridge, MA 02139, USA
| | | |
Collapse
|
3
|
Godoy MCXD, Monteiro GA, Moraes BHD, Macedo JA, Gonçalves GMS, Gambero A. Addition of Polyphenols to Drugs: The Potential of Controlling "Inflammaging" and Fibrosis in Human Senescent Lung Fibroblasts In Vitro. Int J Mol Sci 2024; 25:7163. [PMID: 39000270 PMCID: PMC11241747 DOI: 10.3390/ijms25137163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The combination of a polyphenol, quercetin, with dasatinib initiated clinical trials to evaluate the safety and efficacy of senolytics in idiopathic pulmonary fibrosis, a lung disease associated with the presence of senescent cells. Another approach to senotherapeutics consists of controlling inflammation related to cellular senescence or "inflammaging", which participates, among other processes, in establishing pulmonary fibrosis. We evaluate whether polyphenols such as caffeic acid, chlorogenic acid, epicatechin, gallic acid, quercetin, or resveratrol combined with different senotherapeutics such as metformin or rapamycin, and antifibrotic drugs such as nintedanib or pirfenidone, could present beneficial actions in an in vitro model of senescent MRC-5 lung fibroblasts. A senescent-associated secretory phenotype (SASP) was evaluated by the measurement of interleukin (IL)-6, IL-8, and IL-1β. The senescent-associated β-galactosidase (SA-β-gal) activity and cellular proliferation were assessed. Fibrosis was evaluated using a Picrosirius red assay and the gene expression of fibrosis-related genes. Epithelial-mesenchymal transition (EMT) was assayed in the A549 cell line exposed to Transforming Growth Factor (TGF)-β in vitro. The combination that demonstrated the best results was metformin and caffeic acid, by inhibiting IL-6 and IL-8 in senescent MRC-5 cells. Metformin and caffeic acid also restore cellular proliferation and reduce SA-β-gal activity during senescence induction. The collagen production by senescent MRC-5 cells was inhibited by epicatechin alone or combined with drugs. Epicatechin and nintedanib were able to control EMT in A549 cells. In conclusion, caffeic acid and epicatechin can potentially increase the effectiveness of senotherapeutic drugs in controlling lung diseases whose pathophysiological component is the presence of senescent cells and fibrosis.
Collapse
Affiliation(s)
- Maria Carolina Ximenes de Godoy
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, Campinas 13034-685, SP, Brazil
| | - Gabriela Arruda Monteiro
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, Campinas 13034-685, SP, Brazil
| | - Bárbara Hakim de Moraes
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, Campinas 13034-685, SP, Brazil
| | - Juliana Alves Macedo
- Department of Food and Nutrition, School of Food Engineering, State University of Campinas, Campinas 13083-862, SP, Brazil
| | - Gisele Mara Silva Gonçalves
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, Campinas 13034-685, SP, Brazil
| | - Alessandra Gambero
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, Campinas 13034-685, SP, Brazil
| |
Collapse
|
4
|
Zhang M, Xue X, Lou Z, Lin Y, Li Q, Huang C. Exosomes from senescent epithelial cells activate pulmonary fibroblasts via the miR-217-5p/Sirt1 axis in paraquat-induced pulmonary fibrosis. J Transl Med 2024; 22:310. [PMID: 38532482 PMCID: PMC10964553 DOI: 10.1186/s12967-024-05094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Paraquat (PQ) is a widely used and highly toxic herbicide that poses a significant risk to human health. The main consequence of PQ poisoning is pulmonary fibrosis, which can result in respiratory failure and potentially death. Our research aims to uncover a crucial mechanism in which PQ poisoning induces senescence in epithelial cells, ultimately regulating the activation of pulmonary fibroblasts through the exosomal pathway. METHODS Cellular senescence was determined by immunohistochemistry and SA-β-Gal staining. The expression of miRNAs was measured by qPCR. Pulmonary fibroblasts treated with specific siRNA of SIRT1 or LV-SIRT1 were used to analysis senescent exosomes-mediated fibroblasts activation. Luciferase reporter assay and western blot were performed to elucidated the underlying molecular mechanisms. The effects of miR-217-5p antagomir on pulmonary fibrosis were assessed in PQ-poisoned mice models. RESULTS Impairing the secretion of exosomes effectively mitigates the harmful effects of senescent epithelial cells on pulmonary fibroblasts, offering protection against PQ-induced pulmonary fibrosis in mice. Additionally, we have identified a remarkable elevation of miR-217-5p expression in the exosomes of PQ-treated epithelial cells, which specifically contributes to fibroblasts activation via targeted inhibition of SIRT1, a protein involved in cellular stress response. Remarkably, suppression of miR-217-5p effectively impaired senescent epithelial cells-induced fibroblasts activation. Further investigation has revealed that miR-217-5p attenuated SIRT1 expression and subsequently resulted in enhanced acetylation of β-catenin and Wnt signaling activation. CONCLUSION These findings highlight a potential strategy for the treatment of pulmonary fibrosis induced by PQ poisoning. Disrupting the communication between senescent epithelial cells and pulmonary fibroblasts, particularly by targeting the miR-217-5p/SIRT1/β-catenin axis, may be able to alleviate the effects of PQ poisoning on the lungs.
Collapse
Affiliation(s)
- Min Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Xiang Xue
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Zhenshuai Lou
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Yanhong Lin
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Qian Li
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Changbao Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China.
| |
Collapse
|
5
|
Gonzalez-Meljem JM, Martinez-Barbera JP. Implications of cellular senescence in paediatric pituitary tumours. EBioMedicine 2024; 99:104905. [PMID: 38043401 PMCID: PMC10730348 DOI: 10.1016/j.ebiom.2023.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
The long-standing view of senescent cells as passive and dysfunctional biological remnants has recently shifted into a new paradigm where they are main players in the development of many diseases, including cancer. The senescence programme represents a first line of defence that prevents tumour cell growth but also leads to the secretion of multiple pro-inflammatory and pro-tumourigenic factors that fuel tumour initiation, growth, and progression. Here, we review the main molecular features and biological functions of senescent cells in cancer, including the outcomes of inducing or targeting senescence. We discuss evidence on the role of cellular senescence in pituitary tumours, with an emphasis on adamantinomatous craniopharyngioma (ACP) and pituitary adenomas. Although senescence has been proposed to be a tumour-preventing mechanism in pituitary adenomas, research in ACP has shown that senescent cells are tumour-promoting in both murine models and human tumours. Future studies characterizing the impact of targeting senescent cells may result in novel therapies against pituitary tumours.
Collapse
Affiliation(s)
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, UK.
| |
Collapse
|
6
|
Wan R, Wang L, Zhu M, Li W, Duan Y, Yu G. Cellular Senescence: A Troy Horse in Pulmonary Fibrosis. Int J Mol Sci 2023; 24:16410. [PMID: 38003600 PMCID: PMC10671822 DOI: 10.3390/ijms242216410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by myofibroblast abnormal activation and extracellular matrix deposition. However, the pathogenesis of PF remains unclear, and treatment options are limited. Epidemiological studies have shown that the average age of PF patients is estimated to be over 65 years, and the incidence of the disease increases with age. Therefore, PF is considered an age-related disease. A preliminary study on PF patients demonstrated that the combination therapy of the anti-senescence drugs dasatinib and quercetin improved physical functional indicators. Given the global aging population and the role of cellular senescence in tissue and organ aging, understanding the impact of cellular senescence on PF is of growing interest. This article systematically summarizes the causes and signaling pathways of cellular senescence in PF. It also objectively analyzes the impact of senescence in AECs and fibroblasts on PF development. Furthermore, potential intervention methods targeting cellular senescence in PF treatment are discussed. This review not only provides a strong theoretical foundation for understanding and manipulating cellular senescence, developing new therapies to improve age-related diseases, and extending a healthy lifespan but also offers hope for reversing the toxicity caused by the massive accumulation of senescence cells in humans.
Collapse
Affiliation(s)
- Ruyan Wan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Miaomiao Zhu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Wenwen Li
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Yudi Duan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
7
|
Mishra G, Coyne LP, Chen XJ. Adenine nucleotide carrier protein dysfunction in human disease. IUBMB Life 2023; 75:911-925. [PMID: 37449547 PMCID: PMC10592433 DOI: 10.1002/iub.2767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Adenine nucleotide translocase (ANT) is the prototypical member of the mitochondrial carrier protein family, primarily involved in ADP/ATP exchange across the inner mitochondrial membrane. Several carrier proteins evolutionarily related to ANT, including SLC25A24 and SLC25A25, are believed to promote the exchange of cytosolic ATP-Mg2+ with phosphate in the mitochondrial matrix. They allow a net accumulation of adenine nucleotides inside mitochondria, which is essential for mitochondrial biogenesis and cell growth. In the last two decades, mutations in the heart/muscle isoform 1 of ANT (ANT1) and the ATP-Mg2+ transporters have been found to cause a wide spectrum of human diseases by a recessive or dominant mechanism. Although loss-of-function recessive mutations cause a defect in oxidative phosphorylation and an increase in oxidative stress which drives the pathology, it is unclear how the dominant missense mutations in these proteins cause human diseases. In this review, we focus on how yeast was productively used as a model system for the understanding of these dominant diseases. We also describe the relationship between the structure and function of ANT and how this may relate to various pathologies. Particularly, mutations in Aac2, the yeast homolog of ANT, were recently found to clog the mitochondrial protein import pathway. This leads to mitochondrial precursor overaccumulation stress (mPOS), characterized by the toxic accumulation of unimported mitochondrial proteins in the cytosol. We anticipate that in coming years, yeast will continue to serve as a useful model system for the mechanistic understanding of mitochondrial protein import clogging and related pathologies in humans.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Liam P Coyne
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
8
|
Stanel SC, Callum J, Rivera-Ortega P. Genetic and environmental factors in interstitial lung diseases: current and future perspectives on early diagnosis of high-risk cohorts. Front Med (Lausanne) 2023; 10:1232655. [PMID: 37601795 PMCID: PMC10435297 DOI: 10.3389/fmed.2023.1232655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Within the wide scope of interstitial lung diseases (ILDs), familial pulmonary fibrosis (FPF) is being increasingly recognized as a specific entity, with earlier onset, faster progression, and suboptimal responses to immunosuppression. FPF is linked to heritable pathogenic variants in telomere-related genes (TRGs), surfactant-related genes (SRGs), telomere shortening (TS), and early cellular senescence. Telomere abnormalities have also been identified in some sporadic cases of fibrotic ILD. Air pollution and other environmental exposures carry additive risk to genetic predisposition in pulmonary fibrosis. We provide a perspective on how these features impact on screening strategies for relatives of FPF patients, interstitial lung abnormalities, ILD multi-disciplinary team (MDT) discussion, and disparities and barriers to genomic testing. We also describe our experience with establishing a familial interstitial pneumonia (FIP) clinic and provide guidance on how to identify patients with telomere dysfunction who would benefit most from genomic testing.
Collapse
Affiliation(s)
- Stefan Cristian Stanel
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jack Callum
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Pilar Rivera-Ortega
- Interstitial Lung Disease Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
9
|
Parimon T, Chen P, Stripp BR, Liang J, Jiang D, Noble PW, Parks WC, Yao C. Senescence of alveolar epithelial progenitor cells: a critical driver of lung fibrosis. Am J Physiol Cell Physiol 2023; 325:C483-C495. [PMID: 37458437 PMCID: PMC10511168 DOI: 10.1152/ajpcell.00239.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Pulmonary fibrosis comprises a range of chronic interstitial lung diseases (ILDs) that impose a significant burden on patients and public health. Among these, idiopathic pulmonary fibrosis (IPF), a disease of aging, is the most common and most severe form of ILD and is treated largely by lung transplantation. The lack of effective treatments to stop or reverse lung fibrosis-in fact, fibrosis in most organs-has sparked the need to understand causative mechanisms with the goal of identifying critical points for potential therapeutic intervention. Findings from many groups have indicated that repeated injury to the alveolar epithelium-where gas exchange occurs-leads to stem cell exhaustion and impaired alveolar repair that, in turn, triggers the onset and progression of fibrosis. Cellular senescence of alveolar epithelial progenitors is a critical cause of stemness failure. Hence, senescence impairs repair and thus contributes significantly to fibrosis. In this review, we discuss recent evidence indicating that senescence of epithelial progenitor cells impairs alveolar homeostasis and repair creating a profibrotic environment. Moreover, we discuss the impact of senescent alveolar epithelial progenitors, alveolar type 2 (AT2) cells, and AT2-derived transitional epithelial cells in fibrosis. Emerging evidence indicates that transitional epithelial cells are prone to senescence and, hence, are a new player involved in senescence-associated lung fibrosis. Understanding the complex interplay of cell types and cellular regulatory factors contributing to alveolar epithelial progenitor senescence will be crucial to developing targeted therapies to mitigate their downstream profibrotic sequelae and to promote normal alveolar repair.NEW & NOTEWORTHY With an aging population, lung fibrotic diseases are becoming a global health burden. Dysfunctional repair of the alveolar epithelium is a key causative process that initiates lung fibrosis. Normal alveolar regeneration relies on functional progenitor cells; however, the senescence of these cells, which increases with age, hinders their ability to contribute to repair. Here, we discuss studies on the control and consequence of progenitor cell senescence in fibrosis and opportunities for research.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Barry R Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jiurong Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Dianhua Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Paul W Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - William C Parks
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Changfu Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
10
|
Hernandez-Gonzalez F, Prats N, Ramponi V, López-Domínguez JA, Meyer K, Aguilera M, Muñoz Martín MI, Martínez D, Agusti A, Faner R, Sellarés J, Pietrocola F, Serrano M. Human senescent fibroblasts trigger progressive lung fibrosis in mice. Aging (Albany NY) 2023; 15:6641-6657. [PMID: 37393107 PMCID: PMC10415539 DOI: 10.18632/aging.204825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023]
Abstract
Cell senescence has recently emerged as a potentially relevant pathogenic mechanism in fibrosing interstitial lung diseases (f-ILDs), particularly in idiopathic pulmonary fibrosis. We hypothesized that senescent human fibroblasts may suffice to trigger a progressive fibrogenic reaction in the lung. To address this, senescent human lung fibroblasts, or their secretome (SASP), were instilled into the lungs of immunodeficient mice. We found that: (1) human senescent fibroblasts engraft in the lungs of immunodeficient mice and trigger progressive lung fibrosis associated to increasing levels of mouse senescent cells, whereas non-senescent fibroblasts do not trigger fibrosis; (2) the SASP of human senescent fibroblasts is pro-senescence and pro-fibrotic both in vitro when added to mouse recipient cells and in vivo when delivered into the lungs of mice, whereas the conditioned medium (CM) from non-senescent fibroblasts lacks these activities; and, (3) navitoclax, nintedanib and pirfenidone ameliorate lung fibrosis induced by senescent human fibroblasts in mice, albeit only navitoclax displayed senolytic activity. We conclude that human senescent fibroblasts, through their bioactive secretome, trigger a progressive fibrogenic reaction in the lungs of immunodeficient mice that includes the induction of paracrine senescence in the cells of the host, supporting the concept that senescent cells actively contribute to disease progression in patients with f-ILDs.
Collapse
Affiliation(s)
- Fernanda Hernandez-Gonzalez
- Department of Pulmonology, Respiratory Institute, Hospital Clinic, Barcelona 08036, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Valentina Ramponi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - José Alberto López-Domínguez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Kathleen Meyer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - María Isabel Muñoz Martín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Daniel Martínez
- Department of Pathology, Hospital Clinic, Barcelona 08036, Spain
| | - Alvar Agusti
- Department of Pulmonology, Respiratory Institute, Hospital Clinic, Barcelona 08036, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid 28029, Spain
- School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Rosa Faner
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid 28029, Spain
- School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Jacobo Sellarés
- Department of Pulmonology, Respiratory Institute, Hospital Clinic, Barcelona 08036, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid 28029, Spain
- School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 14183, Sweden
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
- Altos Labs, Cambridge Institute of Science, Cambridge, United Kingdom
| |
Collapse
|
11
|
Noonin C, Itsaranawet T, Thongboonkerd V. Calcium oxalate crystal-induced secretome derived from proximal tubular cells, not that from distal tubular cells, induces renal fibroblast activation. Eur J Med Res 2023; 28:150. [PMID: 37031165 PMCID: PMC10082508 DOI: 10.1186/s40001-023-01109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Kidney stone disease (KSD) is commonly accompanied with renal fibrosis, characterized by accumulation and reorganization of extracellular matrix (ECM). During fibrogenesis, resident renal fibroblasts are activated to become myofibroblasts that actively produce ECM. However, such fibroblast-myofibroblast differentiation in KSD remained unclear. Our present study thus examined effects of secreted products (secretome) derived from proximal (HK-2) vs. distal (MDCK) renal tubular cells exposed to calcium oxalate monohydrate (COM) crystals on activation of renal fibroblasts (BHK-21). METHODS HK-2 and MDCK cells were treated with 100 µg/ml COM crystals under serum-free condition for 16 h. In parallel, the cells maintained in serum-free medium without COM treatment served as the control. Secretome derived from culture supernatant of each sample was mixed (1:1) with fresh serum-free medium and then used for BHK-21 culture for another 24 h. RESULTS Analyses revealed that COM-treated-HK-2 secretome significantly induced proliferation, caused morphological changes, increased spindle index, and upregulated fibroblast-activation markers (F-actin, α-SMA and fibronectin) in BHK-21 cells. However, COM-treated-MDCK secretome had no significant effects on these BHK-21 parameters. Moreover, level of transforming growth factor-β1 (TGF-β1), a profibrotic factor, significantly increased in the COM-treated-HK-2 secretome but not in the COM-treated-MDCK secretome. CONCLUSIONS These data indicate, for the first time, that proximal and distal tubular epithelial cells exposed to COM crystals send different messages to resident renal fibroblasts. Only the secretome derived from proximal tubular cells, not that from the distal cells, induces renal fibroblast activation after their exposure to COM crystals. Such differential effects are partly due to TGF-β1 secretion, which is induced by COM crystals only in proximal tubular cells.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand
| | - Tanakorn Itsaranawet
- Biological Sciences Program, Mahidol University International College, Nakhon Pathom, 73170, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand.
| |
Collapse
|
12
|
Zhang X, Hu X, Zhang Y, Liu B, Pan H, Liu Z, Yao Z, Zhu Q, Wu C, Shen T. Impaired autophagy-accelerated senescence of alveolar type II epithelial cells drives pulmonary fibrosis induced by single-walled carbon nanotubes. J Nanobiotechnology 2023; 21:69. [PMID: 36849924 PMCID: PMC9970859 DOI: 10.1186/s12951-023-01821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND The rapid increase in production and application of carbon nanotubes (CNTs) has led to wide public concerns in their potential risks to human health. Single-walled CNTs (SWCNTs), as an extensively applied type of CNTs, have shown strong capacity to induce pulmonary fibrosis in animal models, however, the intrinsic mechanisms remain uncertain. RESULTS In vivo experiments, we showed that accelerated senescence of alveolar type II epithelial cells (AECIIs) was associated with pulmonary fibrosis in SWCNTs-exposed mice, as well as SWCNTs-induced fibrotic lungs exhibited impaired autophagic flux in AECIIs in a time dependent manner. In vitro, SWCNTs exposure resulted in profound dysfunctions of MLE-12 cells, characterized by impaired autophagic flux and accelerated cellular senescence. Furthermore, the conditioned medium from SWCNTs-exposed MLE-12 cells promoted fibroblast-myofibroblast transdifferentiation (FMT). Additionally, restoration of autophagy flux with rapamycin significantly alleviated SWCNTs-triggered senescence and subsequent FMT whereas inhibiting autophagy using 3-MA aggravated SWCNTs-triggered senescence in MLE-12 cells and FMT. CONCLUSION SWCNTs trigger senescence of AECIIs by impairing autophagic flux mediated pulmonary fibrosis. The findings raise the possibility of senescence-related cytokines as potential biomarkers for the hazard of CNTs exposure and regulating autophagy as an appealing target to halt CNTs-induced development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Xinxin Hu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yuqing Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Bin Liu
- Department of Medical Aspects of Specific Environments, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Haihong Pan
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zikai Liu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zhuomeng Yao
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Qixing Zhu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Heath and Medical Sciences, University of Surrey, Surrey, Guildford, UK
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
13
|
Cellular and Molecular Mechanisms in Idiopathic Pulmonary Fibrosis. Adv Respir Med 2023; 91:26-48. [PMID: 36825939 PMCID: PMC9952569 DOI: 10.3390/arm91010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
The respiratory system is a well-organized multicellular organ, and disruption of cellular homeostasis or abnormal tissue repair caused by genetic deficiency and exposure to risk factors lead to life-threatening pulmonary disease including idiopathic pulmonary fibrosis (IPF). Although there is no clear etiology as the name reflected, its pathological progress is closely related to uncoordinated cellular and molecular signals. Here, we review the advances in our understanding of the role of lung tissue cells in IPF pathology including epithelial cells, mesenchymal stem cells, fibroblasts, immune cells, and endothelial cells. These advances summarize the role of various cell components and signaling pathways in the pathogenesis of idiopathic pulmonary fibrosis, which is helpful to further study the pathological mechanism of the disease, provide new opportunities for disease prevention and treatment, and is expected to improve the survival rate and quality of life of patients.
Collapse
|
14
|
Tu M, Wei T, Jia Y, Wang Y, Wu J. Molecular mechanisms of alveolar epithelial cell senescence and idiopathic pulmonary fibrosis: a narrative review. J Thorac Dis 2023; 15:186-203. [PMID: 36794134 PMCID: PMC9922607 DOI: 10.21037/jtd-22-886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022]
Abstract
Background and Objective Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial pneumonia of unknown etiology. An increasing number of studies have reported that the incidence of IPF increases with age. Simultaneously, the number of senescent cells increased in IPF. Epithelial cell senescence, an important component of epithelial cell dysfunction, plays a key role in IPF pathogenesis. This article summarizes the molecular mechanisms associated with alveolar epithelial cell senescence and recent advances in the applications of drugs targeting pulmonary epithelial cell senescence to explore novel therapeutic approaches for the treatment of pulmonary fibrosis. Methods All literature published in English on PubMed, Web of Science, and Google Scholar were electronically searched online using the following keyword combinations: aging, alveolar epithelial cell, cell senescence, idiopathic pulmonary fibrosis, WNT/β-catenin, phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB). Key Content and Findings We focused on signaling pathways associated with alveolar epithelial cell senescence in IPF, including WNT/β-catenin, PI3K/Akt, NF-κB, and mTOR signaling pathways. Some of these signaling pathways are involved in alveolar epithelial cell senescence by affecting cell cycle arrest and secretion of senescence-associated secretory phenotype-associated markers. We also found that changes in lipid metabolism in alveolar epithelial cells can be induced by mitochondrial dysfunction, both of which contribute to cellular senescence and development of IPF. Conclusions Decreasing senescent alveolar epithelial cells may be a promising strategy for the treatment of IPF. Therefore, further investigations into new treatments of IPF by applying inhibitors of relevant signaling pathways, as well as senolytic drugs, are warranted.
Collapse
Affiliation(s)
- Mingjin Tu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Ting Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Yufang Jia
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China;,Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Jun Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
15
|
Huang C, Xue X, Gong N, Jiang J. Ginsenoside Rg1 suppresses paraquat-induced epithelial cell senescence by enhancing autophagy in an ATG12-dependent manner. ENVIRONMENTAL TOXICOLOGY 2022; 37:2302-2313. [PMID: 35657166 DOI: 10.1002/tox.23597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Paraquat (PQ), as a widely used herbicide, is highly toxic to human. PQ-induced pulmonary fibrosis is the main reason for respiratory failure and death. In PQ-poisoned mice, we find abundant senescent epithelial cells in the lung tissues, which can contribute to the activation of pulmonary fibroblasts. Ginsenoside Rg1 (Rg1), the main active component of ginseng, possess beneficial properties against aging. In our work, we aimed to investigate the potential protective effects of Rg1 on PQ-induced pulmonary fibrosis and the underlying mechanism. In vivo, the treatment of Rg1 can attenuate PQ-induced pulmonary fibrosis and decrease senescence and senescence associated secretory phenotype (SASP) expression. In vitro, Rg1 can effectively eliminate senescent cells via apoptosis, but not normal cells. In addition, we demonstrate that Rg1 can enhance autophagy activity via inducing the expression of ATG12. Inhibition of autophagy via 3-MA or transfection of the siRNA targeting ATG12 can impair the antiaging effect of Rg1. Taken together, our data implicates that Rg1 can protect pulmonary epithelial cells from PQ-induced cellular senescence in an ATG12 dependent manner, which may provide a preventive and therapeutic strategy for PQ poisoning-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Changbao Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, PR China
| | - Xiang Xue
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, PR China
| | - Nengkai Gong
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, PR China
| | - Jinghan Jiang
- Department of General Practice Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, PR China
| |
Collapse
|
16
|
Piceatannol-mediated JAK2/STAT3 signaling pathway inhibition contributes to the alleviation of oxidative injury and collagen synthesis during pulmonary fibrosis. Int Immunopharmacol 2022; 111:109107. [PMID: 35932616 DOI: 10.1016/j.intimp.2022.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
Abstract
Pulmonary fibrosis (PF) is characterized by oxidative injury and excessive collagen synthesis in lung fibroblasts, causing impaired pulmonary function and chronic lung injury. Piceatannol, a dietary polyphenol, possesses vital pharmacological effects in metabolic disorders, cancers, cardiovascular disease and infectious disease; however, its role in PF is still not completely elucidated. Mice (8 to 10 weeks old) were administered bleomycin (BLM) intratracheally (2 U/kg) to establish an in vivo PF model. Murine primary lung fibroblasts were isolated and stimulated with TGF-β (10 ng/mL) for 48 h to induce its activation. Meanwhile, mice or primary lung fibroblasts were treated with different doses of piceatannol to observe its protective roles. Pulmonary function and arterial blood gas were detected to assess pulmonary physiological status. Collagen deposition and the mRNA levels of profibrotic genes were determined by H&E staining and RT-PCR. Meanwhile, the protein and mRNA markers, as well as end-product of oxidative stress were detected in vivo and in vitro. The results showed that pulmonary function was significantly impaired in BLM-induced mice, accompanied by elevated oxidative stress and excessive collagen synthesis. Piceatannol significantly improved pulmonary function and decreased oxidative injury as well as collagen synthesis in mice with PF. Mechanically, piceatannol treatment significantly inhibited the activation of JAK2/STAT3 signaling pathway in BLM-induced mice and TGF-β-induced lung fibroblasts. Additional findings also demonstrated that coumermycin A1 (C-A1), an agonist of JAK2, could abolish the effects of piceatannol on TGF-β-induced lung fibroblasts and reactivated the phosphorylation STAT3. Taken together, our study demonstrated that piceatannol could protect against oxidative injury and collagen synthesis during PF in a JAK2/STAT3 signaling pathway-dependent manner.
Collapse
|
17
|
Liu L, Wei Y, Giunta S, He Q, Xia S. Potential Role of Cellular Senescence in Pulmonary Arterial Hypertension. Clin Exp Pharmacol Physiol 2022; 49:1042-1049. [PMID: 35748218 DOI: 10.1111/1440-1681.13696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and chronic lung vasculature disease characterized by pulmonary vasculature remodeling, including abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) and dysfunctional endothelial cells (ECs). Remodeling of the pulmonary vasculature occurs from maturity to senescence, and it has become apparent that cellular senescence plays a central role in the pathogenesis of various degenerative vascular diseases and pulmonary pathologies. Cellular senescence represents a state of stable proliferative arrest accompanied by the senescence-associated secretory phenotype (SASP), which entails the copious secretion of proinflammatory signals in the tissue microenvironment. Evidences show that in PAH patients, higher levels of cytokines, chemokines, and inflammatory mediators can be detected and correlate with clinical outcome. Moreover, senescent cells accrue with age in epithelial, endothelial, fibroblastic, and immunological compartments within human lungs, and evidence showed that ECs and PASMCs in lungs from patients with chronic obstructive pulmonary disease were characterized by a higher number of senescent cells. However, there is little evidence uncovering the molecular pulmonary vasculature senescence in PAH. Herein, we review the cellular senescence in pulmonary vascular remodeling, and emphasize its importance in PAH. We further introduce some signaling pathways which might be involved in vasculature senescence and PAH, with the intent to discuss the possibility of the PAH therapy via targeting cellular senescence and reduce PAH progression and mortality.
Collapse
Affiliation(s)
- Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China
| | - Yaqin Wei
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, PR China
| | - Sergio Giunta
- Casa di Cura Prof. Nobili-GHC Garofalo Health Care, Bologna, Italy
| | - Qinghu He
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China.,Hunan University of Medicine, Huaihua, PR China
| | - Shijin Xia
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
18
|
KLF4 regulates TERT expression in alveolar epithelial cells in pulmonary fibrosis. Cell Death Dis 2022; 13:435. [PMID: 35508454 PMCID: PMC9068714 DOI: 10.1038/s41419-022-04886-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) was considered as a telomere-mediated disease. TERT and TERC correlated with telomere length. Although telomerase gene mutations were associated with IPF, majority patients did not carry mutations. The mechanism by which telomerase expression was regulated in IPF are still unclear. In this study, we aimed to delineate the mechanisms that how TERT protein expression were regulated in alveolar epithelial cells (AECs) in pulmonary fibrosis. Here, we found that P16, P21 and fibrosis markers (αSMA and Collagen-I) were prominently increased in lung tissues of IPF patients and bleomycin-induced mouse models, while the expression of KLF4 and TERT were decreased in AECs. In vivo experiments, AAV-6 vectors mediated KLF4 over-expression with specific SP-C promoter was constructed. Over-expression of KLF4 in AECs could protect TERT expression and suppress the development of pulmonary fibrosis in bleomycin-induced mouse models. In the mechanism exploration of TERT regulation, KLF4 and TERT were both down-regulated in bleomycin-induced senescent MLE-12 and BEAS-2B cells. Compared with control group, small-interfering RNA targeting KLF4 significantly reduced the TERT expression and telomerase activity, while overexpression of KLF4 can increased the expression of TERT and telomerase activity in senescent AECs. Furthermore, ChIP showed that KLF4 protein could bind to the TERT promoter region in MLE-12 cells, suggesting that KLF4 could implicate in pathogenesis of lung fibrosis through regulating TERT transcription in AECs. Taken together, this study identified that KLF4 might be a promising potential target for further understanding the mechanism and developing novel strategy for the treatment of lung fibrosis in IPF.
Collapse
|
19
|
Ding L, Tang S, Tang W, Mosley DD, Yu A, Sil D, Romanova S, Bailey KL, Knoell DL, Wyatt TA, Oupický D. Perfluorocarbon Nanoemulsions Enhance Therapeutic siRNA Delivery in the Treatment of Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103676. [PMID: 34994102 PMCID: PMC8922118 DOI: 10.1002/advs.202103676] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Local pulmonary administration of therapeutic siRNA represents a promising approach to the treatment of lung fibrosis, which is currently hampered by inefficient delivery. Development of perfluorooctylbromide (PFOB) nanoemulsions as a way of improving the efficiency of pulmonary polycation-based delivery of siRNA is reported. The results show that the polycation/siRNA/PFOB nanoemulsions are capable of efficiently silencing the expression of STAT3 and inhibiting chemokine receptor CXCR4-two validated targets in pulmonary fibrosis. Both in vitro and in vivo results demonstrate that the nanoemulsions improve mucus penetration and facilitate effective cellular delivery of siRNA. Pulmonary treatment of mice with bleomycin-induced pulmonary fibrosis shows strong inhibition of the progression of the disease and significant prolongation of animal survival. Overall, the study points to a promising local treatment strategy of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ling Ding
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siyuan Tang
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Weimin Tang
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Deanna D. Mosley
- Department of Internal MedicineDivision of Pulmonary and Critical Care and SleepUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Ao Yu
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Diptesh Sil
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Svetlana Romanova
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Kristina L. Bailey
- Department of Internal MedicineDivision of Pulmonary and Critical Care and SleepUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Daren L. Knoell
- Department of Pharmacy Practice and ScienceCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Todd A. Wyatt
- Department of Internal MedicineDivision of Pulmonary and Critical Care and SleepUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of EnvironmentalAgricultural and Occupational HealthUniversity of Nebraska Medical CenterOmahaNE68198USA
- Research ServiceDepartment of Veterans Affairs Omaha‐Western Iowa Health Care SystemOmahaNE68105USA
| | - David Oupický
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Nebraska Medical CenterOmahaNE68198USA
| |
Collapse
|
20
|
He J, Li X. Identification and Validation of Aging-Related Genes in Idiopathic Pulmonary Fibrosis. Front Genet 2022; 13:780010. [PMID: 35211155 PMCID: PMC8863089 DOI: 10.3389/fgene.2022.780010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Aging plays a significant role in the occurrence and development of idiopathic pulmonary fibrosis (IPF). In this study, we aimed to identify and verify potential aging-associated genes involved in IPF using bioinformatic analysis. The mRNA expression profile dataset GSE150910 available in the Gene Expression Omnibus (GEO) database and R software were used to identify the differentially expressed aging-related genes involved in IPF. Hub gene expression was validated by other GEO datasets. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on differentially expressed aging-related genes. Subsequently, aging-related genes were further screened using three techniques (least absolute shrinkage and selection operator (LASSO) regression, support vector machine, and random forest), and the receiver operating characteristic curves were plotted based on screening results. Finally, real-time quantitative polymerase chain reaction (qRT-PCR) was performed to verify the RNA expression of the six differentially expressed aging-related genes using the blood samples of patients with IPF and healthy individuals. Sixteen differentially expressed aging-related genes were detected, of which the expression of 12 were upregulated and four were downregulated. GO and KEGG enrichment analyses indicated the presence of several enriched terms related to senescence and apoptotic mitochondrial changes. Further screening by LASSO regression, support vector machine, and random forest identified six genes (IGF1, RET, IGFBP2, CDKN2A, JUN, and TFAP2A) that could serve as potential diagnostic biomarkers for IPF. Furthermore, qRT-PCR analysis indicated that among the above-mentioned six aging-related genes, only the expression levels of IGF1, RET, and IGFBP2 in patients with IPF and healthy individuals were consistent with the results of bioinformatic analysis. In conclusion, bioinformatics analysis identified 16 potential aging-related genes associated with IPF, and clinical sample validation suggested that among these, IGF1, RET, and IGFBP2 might play a role in the incidence and prognosis of IPF. Our findings may help understand the pathogenesis of IPF.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoyan Li
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
21
|
Jing X, Sun W, Yang X, Huang H, Wang P, Luo Q, Xia S, Fang C, Zhang Q, Guo J, Xu Z. CCAAT/enhancer-binding protein (C/EBP) homologous protein promotes alveolar epithelial cell senescence via the nuclear factor-kappa B pathway in pulmonary fibrosis. Int J Biochem Cell Biol 2021; 143:106142. [DOI: 10.1016/j.biocel.2021.106142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023]
|
22
|
Niklander SE, Lambert DW, Hunter KD. Senescent Cells in Cancer: Wanted or Unwanted Citizens. Cells 2021; 10:cells10123315. [PMID: 34943822 PMCID: PMC8699088 DOI: 10.3390/cells10123315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023] Open
Abstract
Over recent decades, the field of cellular senescence has attracted considerable attention due to its association with aging, the development of age-related diseases and cancer. Senescent cells are unable to proliferate, as the pathways responsible for initiating the cell cycle are irreversibly inhibited. Nevertheless, senescent cells accumulate in tissues and develop a pro-inflammatory secretome, known as the senescence-associated secretory phenotype (SASP), which can have serious deleterious effects if not properly regulated. There is increasing evidence suggesting senescent cells contribute to different stages of carcinogenesis in different anatomical sites, mainly due to the paracrine effects of the SASP. Thus, a new therapeutic field, known as senotherapeutics, has developed. In this review, we aim to discuss the molecular mechanisms underlying the senescence response and its relationship with cancer development, focusing on the link between senescence-related inflammation and cancer. We will also discuss different approaches to target senescent cells that might be of use for cancer treatment.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patologia y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar 2520000, Chile
- Correspondence: ; Tel.: +56-(32)2845108
| | - Daniel W. Lambert
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Oral Biology and Pathology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
23
|
Kricker JA, Page CP, Gardarsson FR, Baldursson O, Gudjonsson T, Parnham MJ. Nonantimicrobial Actions of Macrolides: Overview and Perspectives for Future Development. Pharmacol Rev 2021; 73:233-262. [PMID: 34716226 DOI: 10.1124/pharmrev.121.000300] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macrolides are among the most widely prescribed broad spectrum antibacterials, particularly for respiratory infections. It is now recognized that these drugs, in particular azithromycin, also exert time-dependent immunomodulatory actions that contribute to their therapeutic benefit in both infectious and other chronic inflammatory diseases. Their increased chronic use in airway inflammation and, more recently, of azithromycin in COVID-19, however, has led to a rise in bacterial resistance. An additional crucial aspect of chronic airway inflammation, such as chronic obstructive pulmonary disease, as well as other inflammatory disorders, is the loss of epithelial barrier protection against pathogens and pollutants. In recent years, azithromycin has been shown with time to enhance the barrier properties of airway epithelial cells, an action that makes an important contribution to its therapeutic efficacy. In this article, we review the background and evidence for various immunomodulatory and time-dependent actions of macrolides on inflammatory processes and on the epithelium and highlight novel nonantibacterial macrolides that are being studied for immunomodulatory and barrier-strengthening properties to circumvent the risk of bacterial resistance that occurs with macrolide antibacterials. We also briefly review the clinical effects of macrolides in respiratory and other inflammatory diseases associated with epithelial injury and propose that the beneficial epithelial effects of nonantibacterial azithromycin derivatives in chronic inflammation, even given prophylactically, are likely to gain increasing attention in the future. SIGNIFICANCE STATEMENT: Based on its immunomodulatory properties and ability to enhance the protective role of the lung epithelium against pathogens, azithromycin has proven superior to other macrolides in treating chronic respiratory inflammation. A nonantibiotic azithromycin derivative is likely to offer prophylactic benefits against inflammation and epithelial damage of differing causes while preserving the use of macrolides as antibiotics.
Collapse
Affiliation(s)
- Jennifer A Kricker
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Clive P Page
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Fridrik Runar Gardarsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Olafur Baldursson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Thorarinn Gudjonsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Michael J Parnham
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| |
Collapse
|
24
|
Burgoyne RA, Fisher AJ, Borthwick LA. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 2021; 10:cells10102763. [PMID: 34685744 PMCID: PMC8534416 DOI: 10.3390/cells10102763] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.
Collapse
Affiliation(s)
- Rachel Ann Burgoyne
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andrew John Fisher
- Regenerative Medicine, Stem Cells and Transplantation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Lee Anthony Borthwick
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: ; Tel.: +44-191-208-3112
| |
Collapse
|
25
|
Tan W, Wang Y, Chen Y, Chen C. Cell tracing reveals the transdifferentiation fate of mouse lung epithelial cells during pulmonary fibrosis in vivo. Exp Ther Med 2021; 22:1188. [PMID: 34475978 PMCID: PMC8406816 DOI: 10.3892/etm.2021.10622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and devastating interstitial lung disease. The origin of myofibroblasts is still to be elucidated and the existence of epithelial-mesenchymal transition (EMT) in IPF remains controversial. Hence, it is important to clarify the origin of fibroblasts by improving modeling and labeling methods and analyzing the differentiation pathway of alveolar epithelial cells (AEC) in pulmonary fibrosis with cell tracking technology. In the present study, adult transgenic mice with SPC-rtTA+/-/tetO7-CMV-Cre+/-/mTmG+/- were induced with doxycycline for 15 days. The gene knockout phenomenon occurred in type II AECs in the lung and the reporter gene cell membrane-localized enhanced green fluorescence protein (mEGFP) was expressed in the cell membrane. The expression of Cre recombinase and SPC was analyzed using immunohistochemical (IHC) staining to detect the labeling efficiency. A repetitive intraperitoneal bleomycin-induced pulmonary fibrosis model was established, and the mice were sacrificed on day 28. The co-localization of mEGFP and mesenchymal markers α-smooth muscle actin (α-SMA) and S100 calcium binding protein A4 (S100A4) were detected by multiple IHC staining. The results revealed that Cre was expressed in the airway and AECs in the lung tissue of adult transgenic mice with SPC-rtTA+/-/tetO7-CMV-Cre+/-/mTmG+/- induced by doxycycline; the labeling efficiency in the peripheral lung tissue was 63.27±7.51%. mEGFP was expressed on the membrane of type II AECs and their differentiated form of type I AECs. Expression of mEGFP was mainly observed in the fibrotic region in bleomycin-induced pulmonary fibrosis; 1.94±0.08% of α-SMA-positive cells were mEGFP-positive and 9.68±2.06% of S100A4-positive cells were mEGFP-positive in bleomycin-induced pulmonary fibrosis. In conclusion, the present results suggested that while EMT contributes to the pathogenesis of pulmonary fibrosis, it is not the major causative factor of this condition.
Collapse
Affiliation(s)
- Wei Tan
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yaru Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yuhua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Cheng Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology of The Ministry of Public Health, Key Laboratory of Medical Cell Biology of The Ministry of Education, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
26
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
27
|
Schuliga M, Read J, Knight DA. Ageing mechanisms that contribute to tissue remodeling in lung disease. Ageing Res Rev 2021; 70:101405. [PMID: 34242806 DOI: 10.1016/j.arr.2021.101405] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Age is a major risk factor for chronic respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and certain phenotypes of asthma. The recent COVID-19 pandemic also highlights the increased susceptibility of the elderly to acute respiratory distress syndrome (ARDS), a diffuse inflammatory lung injury with often long-term effects (ie parenchymal fibrosis). Collectively, these lung conditions are characterized by a pathogenic reparative process that, rather than restoring organ function, contributes to structural and functional tissue decline. In the ageing lung, the homeostatic control of wound healing following challenge or injury has an increased likelihood of being perturbed, increasing susceptibility to disease. This loss of fidelity is a consequence of a diverse range of underlying ageing mechanisms including senescence, mitochondrial dysfunction, proteostatic stress and diminished autophagy that occur within the lung, as well as in other tissues, organs and systems of the body. These ageing pathways are highly interconnected, involving localized and systemic increases in inflammatory mediators and damage associated molecular patterns (DAMPs); along with corresponding changes in immune cell function, metabolism and composition of the pulmonary and gut microbiomes. Here we comprehensively review the roles of ageing mechanisms in the tissue remodeling of lung disease.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Jane Read
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Wicher SA, Roos BB, Teske JJ, Fang YH, Pabelick C, Prakash YS. Aging increases senescence, calcium signaling, and extracellular matrix deposition in human airway smooth muscle. PLoS One 2021; 16:e0254710. [PMID: 34324543 PMCID: PMC8321097 DOI: 10.1371/journal.pone.0254710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Lung function declines as people age and their lungs become stiffer. With an increasing elderly population, understanding mechanisms that contribute to these structural and functional changes in the aging lung is important. Part of the aging process is characterized by thicker, more fibrotic airways, and senile emphysema caused by changes in lung parenchyma. There is also senescence, which occurs throughout the body with aging. Here, using human airway smooth muscle (ASM) cells from patients in different age groups, we explored senescence pathways and changes in intracellular calcium signaling and extracellular matrix (ECM) deposition to elucidate potential mechanisms by which aging leads to thicker and stiffer lungs. Senescent markers p21, γH2AX, and β-gal, and some senescence-associated secretory proteins (SASP) increased with aging, as shown by staining and biochemical analyses. Agonist-induced intracellular Ca2+ responses, measured using fura-2 loaded cells and fluorescence imaging, increased with age. However, biochemical analysis showed that expression of the following markers decreased with age: M3 muscarinic receptor, TRPC3, Orai1, STIM1, SERCA2, MMP2 and MMP9. In contrast, collagen III, and fibronectin deposition increased with age. These data show that senescence increases in the aging airways that is associated with a stiffer but surprisingly greater intracellular calcium signaling as a marker for contractility. ASM senescence may enhance fibrosis in a feed forward loop promoting remodeling and altered calcium storage and buffering.
Collapse
Affiliation(s)
- Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jacob J. Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Christina Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
29
|
Tan Q, Liang N, Zhang X, Li J. Dynamic Aging: Channeled Through Microenvironment. Front Physiol 2021; 12:702276. [PMID: 34366891 PMCID: PMC8334186 DOI: 10.3389/fphys.2021.702276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Aging process is a complicated process that involves deteriorated performance at multiple levels from cellular dysfunction to organ degeneration. For many years research has been focused on how aging changes things within cell. However, new findings suggest that microenvironments, circulating factors or inter-tissue communications could also play important roles in the dynamic progression of aging. These out-of-cell mechanisms pass on the signals from the damaged aging cells to other healthy cells or tissues to promote systematic aging phenotypes. This review discusses the mechanisms of how senescence and their secretome, NAD+ metabolism or circulating factors change microenvironments to regulate systematic aging, as well as the potential therapeutic strategies based on these findings for anti-aging interventions.
Collapse
Affiliation(s)
- Qing Tan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Liang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqian Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Gasotransmitter CO Attenuates Bleomycin-Induced Fibroblast Senescence via Induction of Stress Granule Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9926284. [PMID: 34306316 PMCID: PMC8263219 DOI: 10.1155/2021/9926284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is recognized as a phenomenon wherein a proliferative cell undergoes a permanent growth arrest. The accumulation of senescent cells over time can become harmful and result in diseases and physiological decline. Plasminogen activator inhibitor (PAI-1) is considered as a critical marker and mediator of cellular senescence. The formation of stress granules (SGs) could prevent senescence through the sequestration of PAI-1, and we previously suggested that exogenous carbon monoxide (CO) could induce SG assembly via integrated stress response (ISR). Although CO is known to possess anti-inflammatory, antioxidative, and antiapoptotic properties, whether it exerts antisenescent effect is still not well defined. Here, to address whether CO-induced SGs could protect against cellular senescence, we first treated lung fibroblasts with bleomycin (BLM) to establish DNA damage-induced cellular senescence, and observed a significant increase of several hallmarks of senescence through SA-β-gal staining, immunofluorescence, qRT-PCR, and Western blot assay. However, pre- and posttreatment of CO could remarkably attenuate these senescent phenotypes. According to our immunofluorescence results, CO-induced SGs could inhibit BLM-induced cellular senescence via sequestration of PAI-1, while it was abolished after the cotreatment of ISR inhibitor (ISRIB) due to the inhibition of SG assembly. Overall, our results proposed a novel role of CO in suppressing bleomycin-induced lung fibroblast senescence through the assembly of SGs.
Collapse
|
31
|
Idiopathic pulmonary fibrosis and systemic sclerosis: pathogenic mechanisms and therapeutic interventions. Cell Mol Life Sci 2021; 78:5527-5542. [PMID: 34145462 PMCID: PMC8212897 DOI: 10.1007/s00018-021-03874-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/07/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022]
Abstract
Fibrotic diseases take a very heavy toll in terms of morbidity and mortality equal to or even greater than that caused by metastatic cancer. In this review, we examine the pathogenesis of fibrotic diseases, mainly addressing triggers for induction, processes that lead to progression, therapies and therapeutic trials. For the most part, we have focused on two fibrotic diseases with lung involvement, idiopathic pulmonary fibrosis, in which the contribution of inflammatory mechanisms may be secondary to non-immune triggers, and systemic sclerosis in which the contribution of adaptive immunity may be predominant.
Collapse
|
32
|
Selvarani R, Mohammed S, Richardson A. Effect of rapamycin on aging and age-related diseases-past and future. GeroScience 2021; 43:1135-1158. [PMID: 33037985 PMCID: PMC8190242 DOI: 10.1007/s11357-020-00274-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
In 2009, rapamycin was reported to increase the lifespan of mice when implemented later in life. This observation resulted in a sea-change in how researchers viewed aging. This was the first evidence that a pharmacological agent could have an impact on aging when administered later in life, i.e., an intervention that did not have to be implemented early in life before the negative impact of aging. Over the past decade, there has been an explosion in the number of reports studying the effect of rapamycin on various diseases, physiological functions, and biochemical processes in mice. In this review, we focus on those areas in which there is strong evidence for rapamycin's effect on aging and age-related diseases in mice, e.g., lifespan, cardiac disease/function, central nervous system, immune system, and cell senescence. We conclude that it is time that pre-clinical studies be focused on taking rapamycin to the clinic, e.g., as a potential treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Ramasamy Selvarani
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sabira Mohammed
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
33
|
Kim S, Kim C. Transcriptomic Analysis of Cellular Senescence: One Step Closer to Senescence Atlas. Mol Cells 2021; 44:136-145. [PMID: 33795532 PMCID: PMC8019598 DOI: 10.14348/molcells.2021.2239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Senescent cells that gradually accumulate during aging are one of the leading causes of aging. While senolytics can improve aging in humans as well as mice by specifically eliminating senescent cells, the effect of the senolytics varies in different cell types, suggesting variations in senescence. Various factors can induce cellular senescence, and the rate of accumulation of senescent cells differ depending on the organ. In addition, since the heterogeneity is due to the spatiotemporal context of senescent cells, in vivo studies are needed to increase the understanding of senescent cells. Since current methods are often unable to distinguish senescent cells from other cells, efforts are being made to find markers commonly expressed in senescent cells using bulk RNA-sequencing. Moreover, single-cell RNA (scRNA) sequencing, which analyzes the transcripts of each cell, has been utilized to understand the in vivo characteristics of the rare senescent cells. Recently, transcriptomic cell atlases for each organ using this technology have been published in various species. Novel senescent cells that do not express previously established marker genes have been discovered in some organs. However, there is still insufficient information on senescent cells due to the limited throughput of the scRNA sequencing technology. Therefore, it is necessary to improve the throughput of the scRNA sequencing technology or develop a way to enrich the rare senescent cells. The in vivo senescent cell atlas that is established using rapidly developing single-cell technologies will contribute to the precise rejuvenation by specifically removing senescent cells in each tissue and individual.
Collapse
Affiliation(s)
- Sohee Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Chuna Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| |
Collapse
|
34
|
Selman M, Pardo A. When things go wrong: exploring possible mechanisms driving the progressive fibrosis phenotype in interstitial lung diseases. Eur Respir J 2021; 58:13993003.04507-2020. [PMID: 33542060 DOI: 10.1183/13993003.04507-2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Interstitial lung diseases (ILDs) comprise a large and heterogeneous group of disorders of known and unknown aetiology characterised by diffuse damage of the lung parenchyma. In recent years it has become evident that patients with different types of ILD are at risk of developing progressive pulmonary fibrosis, known as progressive fibrosing ILD (PF-ILD). This is a phenotype that behaves similar to idiopathic pulmonary fibrosis, the archetypical example of progressive fibrosis. PF-ILD is not a distinct clinical entity but describes a group of ILDs with similar clinical behaviour. This phenotype may occur in diseases displaying distinct aetiologies and different biopathology during their initiation and development. Importantly, these entities may have the potential for improvement or stabilisation prior to entering the progressive fibrosing phase. The crucial questions are: 1) why does a subset of patients develop a progressive and irreversible fibrotic phenotype even with appropriate treatment? and 2) what are the possible pathogenic mechanisms driving progression? Here, we provide a framework highlighting putative mechanisms underlying progression, including genetic susceptibility, ageing, epigenetics, structural fibrotic distortion, aberrant composition and stiffness of the extracellular matrix, and the emergence of distinct pro-fibrotic cell subsets. Understanding the cellular and molecular mechanisms behind PF-ILD will provide the basis for identifying risk factors and appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
35
|
Hou J, Ji Q, Ji J, Ju S, Xu C, Yong X, Xu X, Muddassir M, Chen X, Xie J, Han X. Co-delivery of siPTPN13 and siNOX4 via (myo)fibroblast-targeting polymeric micelles for idiopathic pulmonary fibrosis therapy. Am J Cancer Res 2021; 11:3244-3261. [PMID: 33537085 PMCID: PMC7847691 DOI: 10.7150/thno.54217] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: (Myo)fibroblasts are the ultimate effector cells responsible for the production of collagen within alveolar structures, a core phenomenon in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Although (myo)fibroblast-targeted therapy holds great promise for suppressing the progression of IPF, its development is hindered by the limited drug delivery efficacy to (myo)fibroblasts and the vicious circle of (myo)fibroblast activation and evasion of apoptosis. Methods: Here, a dual small interfering RNA (siRNA)-loaded delivery system of polymeric micelles is developed to suppress the development of pulmonary fibrosis via a two-arm mechanism. The micelles are endowed with (myo)fibroblast-targeting ability by modifying the Fab' fragment of the anti-platelet-derived growth factor receptor-α (PDGFRα) antibody onto their surface. Two different sequences of siRNA targeting protein tyrosine phosphatase-N13 (PTPN13, a promoter of the resistance of (myo)fibroblasts to Fas-induced apoptosis) and NADPH oxidase-4 (NOX4, a key regulator for (myo)fibroblast differentiation and activation) are loaded into micelles to inhibit the formation of fibroblastic foci. Results: We demonstrate that Fab'-conjugated dual siRNA-micelles exhibit higher affinity to (myo)fibroblasts in fibrotic lung tissue. This Fab'-conjugated dual siRNA-micelle can achieve remarkable antifibrotic effects on the formation of fibroblastic foci by, on the one hand, suppressing (myo)fibroblast activation via siRNA-induced knockdown of NOX4 and, on the other hand, sensitizing (myo)fibroblasts to Fas-induced apoptosis by siRNA-mediated PTPN13 silencing. In addition, this (myo)fibroblast-targeting siRNA-loaded micelle did not induce significant damage to major organs, and no histopathological abnormities were observed in murine models. Conclusion: The (myo)fibroblast-targeting dual siRNA-loaded micelles offer a potential strategy with promising prospects in molecular-targeted fibrosis therapy.
Collapse
|
36
|
Wu B, Tang L, Kapoor M. Fibroblasts and their responses to chronic injury in pulmonary fibrosis. Semin Arthritis Rheum 2020; 51:310-317. [PMID: 33440304 DOI: 10.1016/j.semarthrit.2020.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
The field of pulmonary fibrosis is rapidly expanding as new insights highlight novel mechanisms that influence fibroblast biology and likely promote aberrant and chronic activation of the tissue repair response. Current paradigms suggest repeated epithelial microinjury as a driver for pathology; however, the rapid expansion of pulmonary fibrosis research calls for an overview on how fibroblasts respond to both neighbouring cells and the injury microenvironment. This review seeks to highlight recent discoveries and identify areas that require further research regarding fibroblasts, and their role in pulmonary fibrosis.
Collapse
Affiliation(s)
- B Wu
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Surgery and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - L Tang
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Surgery and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - M Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Surgery and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
37
|
Huidobro C, Martín-Vicente P, López-Martínez C, Alonso-López I, Amado-Rodríguez L, Crespo I, M Albaiceta G. Cellular and molecular features of senescence in acute lung injury. Mech Ageing Dev 2020; 193:111410. [PMID: 33249191 DOI: 10.1016/j.mad.2020.111410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
A wide range of insults can trigger acute injury in the lungs, which eventually may lead to respiratory failure and death of patients. Current treatment relies mainly on supportive measures and mechanical ventilation. Even so, survivors frequently develop important sequels that compromise quality of life. In the search for new approaches to prevent and treat acute lung injury, many investigations have focused on molecular and cellular pathways which could exert a pathogenic role in this disease. Herein, we review recent findings in the literature suggesting that cellular senescence could be involved in lung injury and discuss the potential use of senotherapies to prevent disease progression.
Collapse
Affiliation(s)
- Covadonga Huidobro
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain.
| | - Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Calle Fernando Bongera s/n, 33006, Oviedo, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Calle Fernando Bongera s/n, 33006, Oviedo, Spain
| | - Inés Alonso-López
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Calle Fernando Bongera s/n, 33006, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Avenida de Roma s/n, 33011, Oviedo, Spain
| | - Irene Crespo
- Departamento de Biología Funcional. Universidad de Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Calle Fernando Bongera s/n, 33006, Oviedo, Spain; Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Avenida de Roma s/n, 33011, Oviedo, Spain; Departamento de Biología Funcional. Universidad de Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Spain
| |
Collapse
|
38
|
Molecular Mechanisms to Target Cellular Senescence in Hepatocellular Carcinoma. Cells 2020; 9:cells9122540. [PMID: 33255630 PMCID: PMC7761055 DOI: 10.3390/cells9122540] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer-related death and is the most common type of liver cancer. Due to the current paucity of drugs for HCC therapy there is a pressing need to develop new therapeutic concepts. In recent years, the role of Serum Response Factor (SRF) and its coactivators, Myocardin-Related Transcription Factors A and B (MRTF-A and -B), in HCC formation and progression has received considerable attention. Targeting MRTFs results in HCC growth arrest provoked by oncogene-induced senescence. The induction of senescence acts as a tumor-suppressive mechanism and therefore gains consideration for pharmacological interventions in cancer therapy. In this article, we describe the key features and the functional role of senescence in light of the development of novel drug targets for HCC therapy with a focus on MRTFs.
Collapse
|
39
|
Venosa A. Senescence in Pulmonary Fibrosis: Between Aging and Exposure. Front Med (Lausanne) 2020; 7:606462. [PMID: 33282895 PMCID: PMC7689159 DOI: 10.3389/fmed.2020.606462] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
To date, chronic pulmonary pathologies represent the third leading cause of death in the elderly population. Evidence-based projections suggest that >65 (years old) individuals will account for approximately a quarter of the world population before the turn of the century. Genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication, are described as the nine “hallmarks” that govern cellular fitness. Any deviation from the normal pattern initiates a complex cascade of events culminating to a disease state. This blueprint, originally employed to describe aberrant changes in cancer cells, can be also used to describe aging and fibrosis. Pulmonary fibrosis (PF) is the result of a progressive decline in injury resolution processes stemming from endogenous (physiological decline or somatic mutations) or exogenous stress. Environmental, dietary or occupational exposure accelerates the pathogenesis of a senescent phenotype based on (1) window of exposure; (2) dose, duration, recurrence; and (3) cells type being targeted. As the lung ages, the threshold to generate an irreversibly senescent phenotype is lowered. However, we do not have sufficient knowledge to make accurate predictions. In this review, we provide an assessment of the literature that interrogates lung epithelial, mesenchymal, and immune senescence at the intersection of aging, environmental exposure and pulmonary fibrosis.
Collapse
Affiliation(s)
- Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, UT, United States
| |
Collapse
|
40
|
Melo-Narváez MC, Stegmayr J, Wagner DE, Lehmann M. Lung regeneration: implications of the diseased niche and ageing. Eur Respir Rev 2020; 29:29/157/200222. [DOI: 10.1183/16000617.0222-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Most chronic and acute lung diseases have no cure, leaving lung transplantation as the only option. Recent work has improved our understanding of the endogenous regenerative capacity of the lung and has helped identification of different progenitor cell populations, as well as exploration into inducing endogenous regeneration through pharmaceutical or biological therapies. Additionally, alternative approaches that aim at replacing lung progenitor cells and their progeny through cell therapy, or whole lung tissue through bioengineering approaches, have gained increasing attention. Although impressive progress has been made, efforts at regenerating functional lung tissue are still ineffective. Chronic and acute lung diseases are most prevalent in the elderly and alterations in progenitor cells with ageing, along with an increased inflammatory milieu, present major roadblocks for regeneration. Multiple cellular mechanisms, such as cellular senescence and mitochondrial dysfunction, are aberrantly regulated in the aged and diseased lung, which impairs regeneration. Existing as well as new human in vitro models are being developed, improved and adapted in order to study potential mechanisms of lung regeneration in different contexts. This review summarises recent advances in understanding endogenous as well as exogenous regeneration and the development of in vitro models for studying regenerative mechanisms.
Collapse
|
41
|
Wang ZN, Tang XX. New Perspectives on the Aberrant Alveolar Repair of Idiopathic Pulmonary Fibrosis. Front Cell Dev Biol 2020; 8:580026. [PMID: 33117807 PMCID: PMC7561442 DOI: 10.3389/fcell.2020.580026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of unknown etiology and high mortality. Current therapeutic strategies have limited efficacy and the prognosis remains poor. Based on the histological observations of IPF lung tissues and experimental studies using lung fibrosis animal models, it is gradually accepted that impaired epithelial regeneration after lung injury is a critical mechanism underlying the pathogenesis of pulmonary fibrosis. The central role of AEC2 in this process has been well-elucidated, while the contribution of other lung progenitor/stem cells is less discussed. Recently, increasing studies have identified several non-AEC2 epithelial progenitor/stem cells with great plasticity to transform into mature AECs and reconstitute alveolar epithelium after lung injury. However, why these cells do not function as alternate stem cells to regenerate alveolar epithelium in IPF is still unknown. In this review, we discuss the contribution of lung epithelial progenitor/stem cells in the aberrant alveolar regeneration, and provide a novel perspective on the mechanism of IPF pathogenesis, in which non-AEC2 progenitors may play an essential role.
Collapse
Affiliation(s)
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
42
|
Uddin MA, Barabutis N. P53 in the impaired lungs. DNA Repair (Amst) 2020; 95:102952. [PMID: 32846356 PMCID: PMC7437512 DOI: 10.1016/j.dnarep.2020.102952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Our laboratory is focused on investigating the supportive role of P53 towards the maintenance of lung homeostasis. Acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, pulmonary fibrosis, bronchial asthma, pulmonary arterial hypertension, pneumonia and tuberculosis are respiratory pathologies, associated with dysfunctions of this endothelium defender (P53). Herein we review the evolving role of P53 towards the aforementioned inflammatory disorders, to potentially reveal new therapeutic possibilities in pulmonary disease.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA.
| |
Collapse
|
43
|
Cellular Senescence in the Lung: The Central Role of Senescent Epithelial Cells. Int J Mol Sci 2020; 21:ijms21093279. [PMID: 32384619 PMCID: PMC7247355 DOI: 10.3390/ijms21093279] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a key process in physiological dysfunction developing upon aging or following diverse stressors including ionizing radiation. It describes the state of a permanent cell cycle arrest, in which proliferating cells become resistant to growth-stimulating factors. Senescent cells differ from quiescent cells, which can re-enter the cell cycle and from finally differentiated cells: morphological and metabolic changes, restructuring of chromatin, changes in gene expressions and the appropriation of an inflammation-promoting phenotype, called the senescence-associated secretory phenotype (SASP), characterize cellular senescence. The biological role of senescence is complex, since both protective and harmful effects have been described for senescent cells. While initially described as a mechanism to avoid malignant transformation of damaged cells, senescence can even contribute to many age-related diseases, including cancer, tissue degeneration, and inflammatory diseases, particularly when senescent cells persist in damaged tissues. Due to overwhelming evidence about the important contribution of cellular senescence to the pathogenesis of different lung diseases, specific targeting of senescent cells or of pathology-promoting SASP factors has been suggested as a potential therapeutic approach. In this review, we summarize recent advances regarding the role of cellular (fibroblastic, endothelial, and epithelial) senescence in lung pathologies, with a focus on radiation-induced senescence. Among the different cells here, a central role of epithelial senescence is suggested.
Collapse
|