1
|
Dai R, Xu W, Zhu X, Sun R, Cheng L, Cui L, Qiu X, Wang Y, Sun Y. Acupuncture improves neuroendocrine defects in a preclinical rat model of reproductive aging. Life Sci 2024; 357:123102. [PMID: 39366551 DOI: 10.1016/j.lfs.2024.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/17/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
AIMS Clinical data supports electroacupuncture (EA) as an effective treatment for female reproductive disorders especially gonadotropin abnormalities. This study aims to detect the mechanism of EA that improves the neuroendocrine defects particularly the luteinizing hormone (LH) surge failure in early reproductive aging females. MATERIALS AND METHODS Middle-aged ovariectomized rats primed with hormone were treated by EA at acupoints CV4 and SP6 and undergone LH assay. Morphological experiments detected the activation of Kiss1 cells in the anteroventral periventricular nucleus (AVPV). Using targeted liquid chromatography with tandem mass spectrometry (LC-MS/MS) and RNA-sequencing, we determined the concentrations of neurotransmitter metabolites and transcriptomics in AVPV. KEY FINDINGS EA significantly increased c-Fos and c-Fos-positive Kiss1 cells in the middle-aged AVPV as well as the total and peak LH release. Targeted LC-MS/MS and RNA-sequencing of AVPV identified differential neurotransmitters in the middle-aged females including Acetylcholine chloride, 5-Hydroxyindole-3-aceticacid, Kynurenine, Histamine, L-Histidine and L-Glycine, while EA decreased the concentration of Acetylcholine chloride. Totally 1255 differentially expressed genes modulated by EA were strongly implicated in neurotransmitter transport and KEGG pathways involved neuroactive ligand-receptor interaction, glutamatergic and gamma-aminobutyric acid-mediated synapse. Specifically, the mRNAs associated with the LH surge such as hormone receptor Pgr, adrenoceptor Adra1a, neurotransmitter transporters Slc17a6 and Slc32a1, glutamate decarboxylase Gad2 and Kiss1 were markedly altered by EA. SIGNIFICANCE These findings showed that the age-related reduction of LH surge occurred via differential neurotransmitter metabolisms and altered transcriptions in AVPV, which proposed EA-based therapy for improving responsiveness of the hypothalamus to hormone in women with advanced age.
Collapse
Affiliation(s)
- Ruoxi Dai
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Wen Xu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Xiaojuan Zhu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Ruiqi Sun
- Department of Clinical Medicine, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Lin Cheng
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Liyuan Cui
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Xuemin Qiu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Yan Wang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Yan Sun
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China; The Academy of Integrative Medicine, Fudan University, Shanghai 200081, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease, Shanghai 200081, China.
| |
Collapse
|
2
|
Gozlan E, Lewit-Cohen Y, Frenkel D. Sex Differences in Astrocyte Activity. Cells 2024; 13:1724. [PMID: 39451242 PMCID: PMC11506538 DOI: 10.3390/cells13201724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Astrocytes are essential for maintaining brain homeostasis. Alterations in their activity have been associated with various brain pathologies. Sex differences were reported to affect astrocyte development and activity, and even susceptibility to different neurodegenerative diseases. This review aims to summarize the current knowledge on the effects of sex on astrocyte activity in health and disease.
Collapse
Affiliation(s)
- Elisa Gozlan
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
| | - Yarden Lewit-Cohen
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
| | - Dan Frenkel
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Naveed M, Smedlund K, Zhou QG, Cai W, Hill JW. Astrocyte involvement in metabolic regulation and disease. Trends Endocrinol Metab 2024:S1043-2760(24)00220-0. [PMID: 39214743 DOI: 10.1016/j.tem.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Astrocytes, the predominant glial cell type in the mammalian brain, influence a wide variety of brain parameters including neuronal energy metabolism. Exciting recent studies have shown that obesity and diabetes can impact on astrocyte function. We review evidence that dysregulation of astrocytic lipid metabolism and glucose sensing contributes to dysregulation of whole-body energy balance, thermoregulation, and insulin sensitivity. In addition, we consider the overlooked topic of the sex-specific roles of astrocytes and their response to hormonal fluctuations that provide insights into sex differences in metabolic regulation. Finally, we provide an update on potential ways to manipulate astrocyte function, including genetic targeting, optogenetic and chemogenetic techniques, transplantation, and tailored exosome-based therapies, which may lead to improved treatments for metabolic disease.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Kathryn Smedlund
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Weikang Cai
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
4
|
Bramwell LR, Frankum R, Harries LW. Repurposing Drugs for Senotherapeutic Effect: Potential Senomorphic Effects of Female Synthetic Hormones. Cells 2024; 13:517. [PMID: 38534362 DOI: 10.3390/cells13060517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Repurposing previously approved drugs may fast track the route to the clinic for potential senotherapeutics and improves the inefficiency of the clinical drug development pipeline. We performed a repurposing screen of 240 clinically approved molecules in human primary dermal fibroblasts for their effects on CDKN2A expression. Molecules demonstrating effects on CDKN2A expression underwent secondary screening for senescence-associated beta galactosidase (SAB) activity, based on effect size, direction, and/or molecule identity. Selected molecules then underwent a more detailed assessment of senescence phenotypes including proliferation, apoptosis, DNA damage, senescence-associated secretory phenotype (SASP) expression, and regulators of alternative splicing. A selection of the molecules demonstrating effects on senescence were then used in a new bioinformatic structure-function screen to identify common structural motifs. In total, 90 molecules displayed altered CDKN2A expression at one or other dose, of which 15 also displayed effects on SAB positivity in primary human dermal fibroblasts. Of these, 3 were associated with increased SAB activity, and 11 with reduced activity. The female synthetic sex hormones-diethylstilboestrol, ethynyl estradiol and levonorgestrel-were all associated with a reduction in aspects of the senescence phenotype in male cells, with no effects visible in female cells. Finally, we identified that the 30 compounds that decreased CDKN2A activity the most had a common substructure linked to this function. Our results suggest that several drugs licensed for other indications may warrant exploration as future senotherapies, but that different donors and potentially different sexes may respond differently to senotherapeutic compounds. This underlines the importance of considering donor-related characteristics when designing drug screening platforms.
Collapse
Affiliation(s)
- Laura R Bramwell
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter EX2 5DW, UK
| | - Ryan Frankum
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter EX2 5DW, UK
| | - Lorna W Harries
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter EX2 5DW, UK
| |
Collapse
|
5
|
De Luca SN, Vlahos R. Targeting accelerated pulmonary ageing to treat chronic obstructive pulmonary disease-induced neuropathological comorbidities. Br J Pharmacol 2024; 181:3-20. [PMID: 37828646 PMCID: PMC10952708 DOI: 10.1111/bph.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable health burden, ranking as the third leading cause of death worldwide, mainly driven by cigarette smoking. COPD is characterised by persistent airway inflammation, lung function decline and premature ageing with the presence of pulmonary senescent cells. This review proposes that cellular senescence, a state of stable cell cycle arrest linked to ageing, induced by inflammation and oxidative stress in COPD, extends beyond the lungs and affects the systemic circulation. This pulmonary senescent profile will reach other organs via extracellular vesicles contributing to brain inflammation and damage, and increasing the risk of neurological comorbidities, such as stroke, cerebral small vessel disease and Alzheimer's disease. The review explores the role of cellular senescence in COPD-associated brain conditions and investigates the relationship between cellular senescence and circadian rhythm in COPD. Additionally, it discusses potential therapies, including senomorphic and senolytic treatments, as novel strategies to halt or improve the progression of COPD.
Collapse
Affiliation(s)
- Simone N. De Luca
- Centre for Respiratory Science and Health, School of Health & Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Wickramasuriya N, Hawkins R, Atwood C, Butler T. The roles of GnRH in the human central nervous system. Horm Behav 2022; 145:105230. [PMID: 35809386 PMCID: PMC9990468 DOI: 10.1016/j.yhbeh.2022.105230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/04/2022]
Abstract
It is widely known that GnRH plays a role in facilitating reproductive function via the HPG axis, and this was once believed to be its only function. However, over the last several decades important neuromodulatory roles of GnRH in multiple brain functions have been elucidated. Multiple GnRH isoforms and receptors have been detected outside the HPG-axis across different species. In this review, we focus on the human CNS where GnRH I and II isoforms and a functional GnRH I receptor have been isolated. We first describe the traditional understanding of GnRH within the hypothalamus and the pituitary and current clinical use of GnRH analogues. We then review the location and function of GnRH-producing neurons and receptors located outside the HPG axis. We next review the GnRH I and II neuron location and quantity and GnRH I receptor gene expression throughout the human brain, using the Allen Brain Map Atlas. This analysis demonstrates a wide expression of GnRH throughout the brain, including prominent expression in the basal forebrain and cerebellum. Lastly, we examine the potential role of GnRH in aging and inflammation and its therapeutic potential for neurodegenerative disease and spinal cord lesions.
Collapse
Affiliation(s)
- Nimmi Wickramasuriya
- Weill Cornell Medicine, Department of Radiology, 1305 York Ave #3F, New York, NY 1002, USA
| | - Robert Hawkins
- Weill Cornell Medicine, Department of Radiology, 1305 York Ave #3F, New York, NY 1002, USA
| | - Craig Atwood
- University of Wisconsin, Department of Medicine, 2500 Overlook Tce, Madison, WI 53705, USA
| | - Tracy Butler
- Weill Cornell Medicine, Department of Radiology, 1305 York Ave #3F, New York, NY 1002, USA.
| |
Collapse
|
7
|
Sun Y, Li Q, Kirkland JL. Targeting senescent cells for a healthier longevity: the roadmap for an era of global aging. LIFE MEDICINE 2022; 1:103-119. [PMID: 36699942 PMCID: PMC9869767 DOI: 10.1093/lifemedi/lnac030] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Aging is a natural but relentless process of physiological decline, leading to physical frailty, reduced ability to respond to physical stresses (resilience) and, ultimately, organismal death. Cellular senescence, a self-defensive mechanism activated in response to intrinsic stimuli and/or exogenous stress, is one of the central hallmarks of aging. Senescent cells cease to proliferate, while remaining metabolically active and secreting numerous extracellular factors, a feature known as the senescence-associated secretory phenotype. Senescence is physiologically important for embryonic development, tissue repair, and wound healing, and prevents carcinogenesis. However, chronic accumulation of persisting senescent cells contributes to a host of pathologies including age-related morbidities. By paracrine and endocrine mechanisms, senescent cells can induce inflammation locally and systemically, thereby causing tissue dysfunction, and organ degeneration. Agents including those targeting damaging components of the senescence-associated secretory phenotype or inducing apoptosis of senescent cells exhibit remarkable benefits in both preclinical models and early clinical trials for geriatric conditions. Here we summarize features of senescent cells and outline strategies holding the potential to be developed as clinical interventions. In the long run, there is an increasing demand for safe, effective, and clinically translatable senotherapeutics to address healthcare needs in current settings of global aging.
Collapse
Affiliation(s)
- Yu Sun
- Correspondence: (Y.S.), (Q.L.), (J.L.K.)
| | | | | |
Collapse
|
8
|
Micro-computed tomography assessment of bone structure in aging mice. Sci Rep 2022; 12:8117. [PMID: 35581227 PMCID: PMC9114112 DOI: 10.1038/s41598-022-11965-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
High-resolution computed tomography (CT) is widely used to assess bone structure under physiological and pathological conditions. Although the analytic protocols and parameters for micro-CT (μCT) analyses in mice are standardized for long bones, vertebrae, and the palms in aging mice, they have not yet been established for craniofacial bones. In this study, we conducted a morphometric assessment of craniofacial bones, in comparison with long bones, in aging mice. Although age-related changes were observed in the microarchitecture of the femur, tibia, vertebra, and basisphenoid bone, and were more pronounced in females than in males, the microarchitecture of both the interparietal bone and body of the mandible, which develop by intramembranous ossification, was less affected by age and sex. By contrast, the condyle of the mandible was more affected by aging in males compared to females. Taken together, our results indicate that mouse craniofacial bones are uniquely affected by age and sex.
Collapse
|
9
|
Prevot V, Sharif A. The polygamous GnRH neuron: Astrocytic and tanycytic communication with a neuroendocrine neuronal population. J Neuroendocrinol 2022; 34:e13104. [PMID: 35233849 DOI: 10.1111/jne.13104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
To ensure the survival of the species, hypothalamic neuroendocrine circuits controlling fertility, which converge onto neurons producing gonadotropin-releasing hormone (GnRH), must respond to fluctuating physiological conditions by undergoing rapid and reversible structural and functional changes. However, GnRH neurons do not act alone, but through reciprocal interactions with multiple hypothalamic cell populations, including several glial and endothelial cell types. For instance, it has long been known that in the hypothalamic median eminence, where GnRH axons terminate and release their neurohormone into the pituitary portal blood circulation, morphological plasticity displayed by distal processes of tanycytes modifies their relationship with adjacent neurons as well as the spatial properties of the neurohemal junction. These alterations not only regulate the capacity of GnRH neurons to release their neurohormone, but also the activation of discrete non-neuronal pathways that mediate feedback by peripheral hormones onto the hypothalamus. Additionally, a recent breakthrough has demonstrated that GnRH neurons themselves orchestrate the establishment of their neuroendocrine circuitry during postnatal development by recruiting an entourage of newborn astrocytes that escort them into adulthood and, via signalling through gliotransmitters such as prostaglandin E2, modulate their activity and GnRH release. Intriguingly, several environmental and behavioural toxins perturb these neuron-glia interactions and consequently, reproductive maturation and fertility. Deciphering the communication between GnRH neurons and other neural cell types constituting hypothalamic neuroendocrine circuits is thus critical both to understanding physiological processes such as puberty, oestrous cyclicity and aging, and to developing novel therapeutic strategies for dysfunctions of these processes, including the effects of endocrine disruptors.
Collapse
Affiliation(s)
- Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| |
Collapse
|
10
|
Bouvier DS, Fixemer S, Heurtaux T, Jeannelle F, Frauenknecht KBM, Mittelbronn M. The Multifaceted Neurotoxicity of Astrocytes in Ageing and Age-Related Neurodegenerative Diseases: A Translational Perspective. Front Physiol 2022; 13:814889. [PMID: 35370777 PMCID: PMC8969602 DOI: 10.3389/fphys.2022.814889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
In a healthy physiological context, astrocytes are multitasking cells contributing to central nervous system (CNS) homeostasis, defense, and immunity. In cell culture or rodent models of age-related neurodegenerative diseases (NDDs), such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), numerous studies have shown that astrocytes can adopt neurotoxic phenotypes that could enhance disease progression. Chronic inflammatory responses, oxidative stress, unbalanced phagocytosis, or alteration of their core physiological roles are the main manifestations of their detrimental states. However, if astrocytes are directly involved in brain deterioration by exerting neurotoxic functions in patients with NDDs is still controversial. The large spectrum of NDDs, with often overlapping pathologies, and the technical challenges associated with the study of human brain samples complexify the analysis of astrocyte involvement in specific neurodegenerative cascades. With this review, we aim to provide a translational overview about the multi-facets of astrocyte neurotoxicity ranging from in vitro findings over mouse and human cell-based studies to rodent NDDs research and finally evidence from patient-related research. We also discuss the role of ageing in astrocytes encompassing changes in physiology and response to pathologic stimuli and how this may prime detrimental responses in NDDs. To conclude, we discuss how potentially therapeutic strategies could be adopted to alleviate or reverse astrocytic toxicity and their potential to impact neurodegeneration and dementia progression in patients.
Collapse
Affiliation(s)
- David S. Bouvier
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- *Correspondence: David S. Bouvier,
| | - Sonja Fixemer
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Systems Biology Group, Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Félicia Jeannelle
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Katrin B. M. Frauenknecht
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Institute of Neuropathology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Faculty of Science, Technology, and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Michel Mittelbronn,
| |
Collapse
|
11
|
Lei Z, Wu H, Yang Y, Hu Q, Lei Y, Liu W, Nie Y, Yang L, Zhang X, Yang C, Lin T, Tong F, Zhu J, Guo J. Dihydroartemisinin improves hypercholesterolemia in ovariectomized mice via enhancing vectorial transport of cholesterol and bile acids from blood to bile. Bioorg Med Chem 2022; 53:116520. [PMID: 34847494 DOI: 10.1016/j.bmc.2021.116520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
The increase of concentrations of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in the serum of postmenopausal women is the important risk factor of the high morbidity of cardiovascular diseases of old women worldwide. To test the anti-hypercholesterolemia function of dihydroartemisinin (DHA) in postmenopausal women, ovariectomized (OVX) mice were generated, and DHA were administrated to OVX mice for 4 weeks. The blood and liver tissues were collected for biochemical and histological tests respectively. The mRNA and protein expression levels of genes related to metabolism and transport of cholesterol, bile acid and fatty acid in the liver or ileum were checked through qPCR and western blot. DHA could significantly reduce the high concentrations of TC and LDL-C in the serum and the lipid accumulation in the liver of ovariectomized mice. The expression of ABCG5/8 was reduced in liver of OVX mice, and DHA could up-regulate the expression of them. Genes of transport proteins for bile salt transport from blood to bile, including Slc10a1, Slco1b2 and Abcb11, were also significantly up-regulated by DHA. DHA also down-regulated the expression of Slc10a2 in the ileum of OVX mice to reduce the absorption of bile salts. Genes required for fatty acid synthesis and uptake, such as Fasn and CD36, were reduced in the liver of OVX mice, and DHA administration could significantly up-regulate the expression of them. These results demonstrated that DHA could improve hypercholesterolemia in OVX mice through enhancing the vectorial transport of cholesterol and bile acid from blood to bile.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China.
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19(#), Yue-Xiu District, Guangzhou 510080, PR China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Xueying Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Changyuan Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Jiamin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
Leung E, Hazrati LN. Breast cancer type 1 and neurodegeneration: consequences of deficient DNA repair. Brain Commun 2021; 3:fcab117. [PMID: 34222870 PMCID: PMC8242133 DOI: 10.1093/braincomms/fcab117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous cellular processes, including toxic protein aggregation and oxidative stress, have been studied extensively as potential mechanisms underlying neurodegeneration. However, limited therapeutic efficacy targeting these processes has prompted other mechanisms to be explored. Previous research has emphasized a link between cellular senescence and neurodegeneration, where senescence induced by excess DNA damage and deficient DNA repair results in structural and functional changes that ultimately contribute to brain dysfunction and increased vulnerability for neurodegeneration. Specific DNA repair proteins, such as breast cancer type 1, have been associated with both stress-induced senescence and neurodegenerative diseases, however, specific mechanisms remain unclear. Therefore, this review explores DNA damage-induced senescence in the brain as a driver of neurodegeneration, with particular focus on breast cancer type 1, and its potential contribution to sex-specific differences associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Emily Leung
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 Kings College Cir, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
13
|
Ginsenoside Rg1 and astaxanthin act on the hypothalamus to protect female mice against reproductive aging. Chin Med J (Engl) 2021; 135:107-109. [PMID: 33989229 PMCID: PMC8850816 DOI: 10.1097/cm9.0000000000001542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Sikora E, Bielak-Zmijewska A, Dudkowska M, Krzystyniak A, Mosieniak G, Wesierska M, Wlodarczyk J. Cellular Senescence in Brain Aging. Front Aging Neurosci 2021; 13:646924. [PMID: 33732142 PMCID: PMC7959760 DOI: 10.3389/fnagi.2021.646924] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.
Collapse
Affiliation(s)
- Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Magdalena Dudkowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Adam Krzystyniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Grazyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Malgorzata Wesierska
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| |
Collapse
|