1
|
Zhu K, Wang T, Li S, Liu Z, Zhan Y, Zhang Q. NcRNA: key and potential in hearing loss. Front Neurosci 2024; 17:1333131. [PMID: 38298898 PMCID: PMC10827912 DOI: 10.3389/fnins.2023.1333131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
Hearing loss has an extremely high prevalence worldwide and brings incredible economic and social burdens. Mechanisms such as epigenetics are profoundly involved in the initiation and progression of hearing loss and potentially yield definite strategies for hearing loss treatment. Non-coding genes occupy 97% of the human genome, and their transcripts, non-coding RNAs (ncRNAs), are widely participated in regulating various physiological and pathological situations. NcRNAs, mainly including micro-RNAs (miRNAs), long-stranded non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in the regulation of cell metabolism and cell death by modulating gene expression and protein-protein interactions, thus impacting the occurrence and prognosis of hearing loss. This review provides a detailed overview of ncRNAs, especially miRNAs and lncRNAs, in the pathogenesis of hearing loss. We also discuss the shortcomings and issues that need to be addressed in the study of hearing loss ncRNAs in the hope of providing viable therapeutic strategies for the precise treatment of hearing loss.
Collapse
Affiliation(s)
- Keyu Zhu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Kuang X, Zhao W, Wang Q, Sun Z, Xu F, Geng R, Li B, Zheng T, Zheng Q. RNA-seq analysis highlights DNA replication and DNA repair associated with early-onset hearing loss in the cochlea of DBA/2J mice. Life Sci 2024; 337:122350. [PMID: 38103727 DOI: 10.1016/j.lfs.2023.122350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
AIMS Age-related hearing loss (ARHL) is a significant health concern, and DBA/2J (D2) and C57BL/6 (B6) mouse strains serve as valuable models for its study. B6 mice, harboring a homozygous ahl allele in Cdh23, manifest high-frequency hearing loss at 3 months. In contrast, D2 mice, carrying the R109H variant of the Fascin-2 gene (Fscn2), experience early-onset hearing loss by 3 weeks. Yet, the underlying molecular mechanisms driving early-onset hearing loss in D2 mice remain elusive. This study aimed to identify novel genes and regulatory pathways as therapeutic targets for early deafness. MAIN METHODS This study employs RNA-sequencing (RNA-seq) to analyze cochlear mRNA expression at two different ages in D2 and B6 mice, respectively. The differentially expressed genes (DEGs) are uniquely associated with D2 mice by Venn diagram analysis. A protein-protein interaction (PPI) network is further constructed, followed by module analysis utilizing MCODE. Enrichment analysis of GO and KEGG pathways revealed biological functions and molecular pathways. The PPI network and VarElect analysis are conducted for genes within these pathways, facilitating the identification of pivotal genes based on scoring criteria. Subsequently, five genes are meticulously selected and validated through qRT-PCR. KEY FINDINGS Notably, 1181 DEGs are uniquely associated with D2 mice by Venn diagram analysis. GO and KEGG pathway enrichment analyses shed light on distinctive pathways in D2 mice, encompassing DNA replication, mismatch repair, base excision repair, and nucleotide excision repair, which are associated with apoptosis. Five genes involved in these pathways were finally selected and validated by qRT-PCR. Their down-regulation with age is consistent with RNA-seq result. SIGNIFICANCE Our study underscores the potential implication of down-regulated genes associated with DNA replication and DNA damage repair in the early-onset hearing loss observed in D2 mice.
Collapse
Affiliation(s)
- Xiaojing Kuang
- School of Basic Medicine, Qingdao University, 266000 Qingdao, Shandong, China
| | - Wenben Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, 264000 Yantai, Shandong, China
| | - Qin Wang
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, 264000 Yantai, Shandong, China
| | - Zehua Sun
- Department of Radiology, Qindao University Medical College Affiliated Yantai Yuhuangding Hospital, 264000 Yantai, Shandong, China
| | - Fuyi Xu
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, 264000 Yantai, Shandong, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, 264000 Yantai, Shandong, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, 264000 Yantai, Shandong, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, 264000 Yantai, Shandong, China
| | - Qingyin Zheng
- School of Basic Medicine, Qingdao University, 266000 Qingdao, Shandong, China; Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, 264000 Yantai, Shandong, China.
| |
Collapse
|
3
|
Wang S, Li M, Liu P, Dong Y, Geng R, Zheng T, Zheng Q, Li B, Ma P. Col1a1 mediates the focal adhesion pathway affecting hearing in miR-29a mouse model by RNA-seq analysis. Exp Gerontol 2024; 185:112349. [PMID: 38103809 DOI: 10.1016/j.exger.2023.112349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Age-related hearing loss (ARHL) is a common neurodegenerative disease. Its molecular mechanisms have not been fully elucidated. In the present study, we obtained differential mRNA expression in the cochlea of 2-month-old miR-29a+/+ mice and miR-29a-/- mice by RNA-seq. Gene ontology (GO) analysis was used to identify molecular functions associated with hearing in miR-29a-/- mice, including being actin binding (GO: 0003779) and immune processes. We focused on the intersection of differential genes, miR-29a target genes and the sensory perception of sound (GO:0007605) genes, with six mRNA at this intersection, and we selected Col1a1 as our target gene. We validated Col1a1 as the direct target of miR-29a by molecular and cellular experiments. Total 6 pathways involved in Col1a1 were identified by through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We selected the focal adhesion pathway as our target pathway based. Their expression levels in miR-29a-/- mice were verified by qRT-PCR and Western blot. Compared with miR-29a+/+ mice, the expression levels of Col1a1, Itga4, Itga2, Itgb3, Itgb7, Pik3r3 and Ptk2 were different in miR-29a-/- mice. Immunofluorescence was used to locate genes in the cochlea. Col1a1, Itga4 and Itgb3 were differentially expressed in the basilar membranes and stria vascularis and spiral ganglion neurons compared to miR-29a+/+ mice. Pik3r3 and Ptk2 were differentially expressed in the basilar membranes and stria vascularis, but not at the s spiral ganglion neurons compared to miR-29a+/+ mice. Our results show that when miR-29a is knocked out, the Col1a1 mediates the focal adhesion pathway may affect the hearing of miR-29a-/- mice. These findings may provide a new direction for effective treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Shuli Wang
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Mulan Li
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Pengcheng Liu
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yaning Dong
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China.
| | - Peng Ma
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China; School of Basic Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
4
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
5
|
Luo X, Hu Y, Zhou X, Zhang C, Feng M, Yang T, Yuan W. Potential roles for lncRNA Mirg/Foxp1 in an ARHL model created using C57BL/6J mice. Hear Res 2023; 438:108859. [PMID: 37579646 DOI: 10.1016/j.heares.2023.108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Age-related hearing loss (ARHL) is associated with hair cell apoptosis, but the underlying mechanism of hair cell apoptosis remains unclear. Here, we investigated the expression profiles of long noncoding RNAs (lncRNAs) and mRNAs in an ARHL model created with C57BL/6 J mice using RNA sequencing and found that the expression of several lncRNAs was significantly correlated with apoptosis-associated mRNAs in the cochlear tissues of old mice compared to young mice. We found that lncRNA Mirg was upregulated in the cochlear tissues of old mice compared to young mice and its overexpression promoted apoptosis in House Ear Institute-Organ of Corti 1 (HEI-OC1). H2O2-induced oxidative stress increased HEI-OC1 cell apoptosis by upregulating lncRNA Mirg. Furthermore, the expression of lncRNA Mirg and Foxp1 showed the highest correlation coefficient in the cochlear tissues of old mice, and lncRNA Mirg promoted HEI-OC1 cell apoptosis by increasing Foxp1 expression. In conclusion, our findings suggest that lncRNA Mirg expression correlates with cell apoptosis-associated mRNAs in the ARHL model created using C57BL/6 J mice and that oxidative stress-induced lncRNA Mirg promotes HEI-OC1 cell apoptosis by increasing Foxp1 expression. These data suggest the potential therapeutic significance of targeting lncRNA Mirg/Foxp1 signaling in ARHL.
Collapse
Affiliation(s)
- Xiaoqin Luo
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Yaqin Hu
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Xiaoqing Zhou
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Chanyuan Zhang
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Menglong Feng
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Ting Yang
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China
| | - Wei Yuan
- Department of Otolaryngology, Chongqing Medical University, Chongqing, 400042, China; Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; Department of Otolaryngology, Chongqing General Hospital, Chongqing 400014, China.
| |
Collapse
|
6
|
Ma P, Wang S, Geng R, Gong Y, Li M, Xie D, Dong Y, Zheng T, Li B, Zhao T, Zheng Q. MiR-29a-deficiency causes thickening of the basilar membrane and age-related hearing loss by upregulating collagen IV and laminin. Front Cell Neurosci 2023; 17:1191740. [PMID: 37275774 PMCID: PMC10232818 DOI: 10.3389/fncel.2023.1191740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory degenerative disease and can significantly impact the quality of life in elderly people. A previous study using GeneChip miRNA microarray assays showed that the expression of miR-29a changes with age, however, its role in hearing loss is still unclear. In this study, we characterized the cochlear phenotype of miR-29a knockout (miR-29a-/-) mice and found that miR-29a-deficient mice had a rapid progressive elevation of the hearing threshold from 2 to 5 months of age compared with littermate controls as measured by the auditory brainstem response. Stereocilia degeneration, hair cell loss and abnormal stria vascularis (SV) were observed in miR-29a-/- mice at 4 months of age. Transcriptome sequencing results showed elevated extracellular matrix (ECM) gene expression in miR-29a-/- mice. Both Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the key differences were closely related to ECM. Further examination with a transmission electron microscope showed thickening of the basilar membrane in the cochlea of miR-29a-/- mice. Five Col4a genes (Col4a1-a5) and two laminin genes (Lamb2 and Lamc1) were validated as miR-29a direct targets by dual luciferase assays and miR-29a inhibition assays with a miR-29a inhibitor. Consistent with the target gene validation results, the expression of these genes was significantly increased in the cochlea of miR-29a-/- mice, as shown by RT-PCR and Western blot. These findings suggest that miR-29a plays an important role in maintaining cochlear structure and function by regulating the expression of collagen and laminin and that the disturbance of its expression could be a cause of progressive hearing loss.
Collapse
Affiliation(s)
- Peng Ma
- School of Basic Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Shuli Wang
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yongfeng Gong
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mulan Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Daoli Xie
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yaning Dong
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tong Zhao
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
7
|
Xie W, Shu T, Peng H, Liu J, Li C, Wang M, Wu P, Liu Y. LncRNA H19 inhibits oxidative stress injury of cochlear hair cells by regulating miR-653-5p/SIRT1 axis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:332-339. [PMID: 35538041 PMCID: PMC9828013 DOI: 10.3724/abbs.2022018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress is one of the important mechanisms of inner ear cell damage, which can lead to age-related hearing loss (ARHL). LncRNA H19 is significantly downregulated in the cochlea of old mouse, however, the role of H19 in the development of ARHL remains unclear. In this study, we aim to investigate the expression and function of H19 in oxidative stress injury of cochlear hair cells induced by HO. RT-qPCR and western blot analysis confirms that HEI-OC1 cells stimulated with HO decreases the expressions of H19 and SIRT1, but increases the expression of miR-653-5p. Overexpression of H19 could increase cell viability, ATP level and mitochondrial membrane potential, but reduce mitochondrial ROS generation and cell apoptosis ratio in HO-stimulated HEI-OC1 cells. MiR-653-5p is a target of H19, which can bind to the 3'-UTR of SIRT1. H19 is found to regulate the expression of SIRT1 through miR-653-5p. Further experiments demonstrates that H19 regulates HEI-OC1 cell viability, ATP level, mitochondrial membrane potential, mitochondrial ROS generation, and cell apoptosis ratio via the miR-653-5p/SIRT1 axis. In conclusion, lncRNA H19 inhibits oxidative stress injury of cochlear hair cells via the miR-653-5p/SIRT1 axis.
Collapse
Affiliation(s)
- Wen Xie
- Department of OtolaryngologyHead and Neck Surgerythe Second Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Ting Shu
- Medical Imaging Centerthe Second Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Haisen Peng
- Department of OtolaryngologyHead and Neck Surgerythe Second Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Jiali Liu
- Department of OtolaryngologyHead and Neck Surgerythe Second Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Chunhua Li
- Department of OtolaryngologyHead and Neck Surgerythe Second Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Meiqun Wang
- Department of OtolaryngologyHead and Neck Surgerythe Second Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Ping Wu
- Department of OtolaryngologyHead and Neck Surgerythe Second Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Yuehui Liu
- Department of OtolaryngologyHead and Neck Surgerythe Second Affiliated Hospital of Nanchang UniversityNanchang330006China,Correspondence address. Tel: +86-791-86295805; E-mail:
| |
Collapse
|
8
|
Li Q, Zang Y, Sun Z, Zhang W, Liu H. Long noncoding RNA Gm44593 attenuates oxidative stress from age-related hearing loss by regulating miR-29b/WNK1. Bioengineered 2021; 13:573-582. [PMID: 34967279 PMCID: PMC8805810 DOI: 10.1080/21655979.2021.2012062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Long noncoding RNA has been reported to play important role in various disease. However, the function of lncRNA in age-related hearing loss still unclear. The aim of our study is to investigate the function and mechanism of lncRNA Gm44593 in AHL. ATP content, JC-1 assay, mitochondrial content, cell death rates and dual-luciferase reporter assay were performed to assess the function of lncRNA Gm44593 in HEI-OC1 cells. The expression of lncRNA Gm44593 was significantly upregulated upon H2O2 and starvation treatment. Overexpression of lncRNA Gm44593 manifestly reduced the cell death rates. The ATP content, mtDNA content and mitochondrial membrane potential were alleviated upon overexpression of lncRNA Gm44593. We also proved that miR-29b is the direct target of lncRNA Gm44593. Overexpression of miR-29b completely restored the effect induced by lncRNA Gm44593. In addition, we provided evidences that WNK1 is the direct target of miR-29b. Our research uncovers a potential role of lncRNA Gm44593 in age-related hearing loss. We provide new insights into potential therapeutic targets for the amelioration of age-related hearing loss.
Collapse
Affiliation(s)
- Qian Li
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Yanzi Zang
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Zhanwei Sun
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Wenqi Zhang
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Hongjian Liu
- Otolaryngology Head and Neck Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| |
Collapse
|
9
|
Paplou V, Schubert NMA, Pyott SJ. Age-Related Changes in the Cochlea and Vestibule: Shared Patterns and Processes. Front Neurosci 2021; 15:680856. [PMID: 34539328 PMCID: PMC8446668 DOI: 10.3389/fnins.2021.680856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Both age-related hearing loss (ARHL) and age-related loss in vestibular function (ARVL) are prevalent conditions with deleterious consequences on the health and quality of life. Age-related changes in the inner ear are key contributors to both conditions. The auditory and vestibular systems rely on a shared sensory organ - the inner ear - and, like other sensory organs, the inner ear is susceptible to the effects of aging. Despite involvement of the same sensory structure, ARHL and ARVL are often considered separately. Insight essential for the development of improved diagnostics and treatments for both ARHL and ARVL can be gained by careful examination of their shared and unique pathophysiology in the auditory and vestibular end organs of the inner ear. To this end, this review begins by comparing the prevalence patterns of ARHL and ARVL. Next, the normal and age-related changes in the structure and function of the auditory and vestibular end organs are compared. Then, the contributions of various molecular mechanisms, notably inflammaging, oxidative stress, and genetic factors, are evaluated as possible common culprits that interrelate pathophysiology in the cochlea and vestibular end organs as part of ARHL and ARVL. A careful comparison of these changes reveals that the patterns of pathophysiology show similarities but also differences both between the cochlea and vestibular end organs and among the vestibular end organs. Future progress will depend on the development and application of new research strategies and the integrated investigation of ARHL and ARVL using both clinical and animal models.
Collapse
Affiliation(s)
- Vasiliki Paplou
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nick M A Schubert
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| | - Sonja J Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Zhang J, Fan W, Neng L, Chen B, Zuo B, Lu W. Long non-coding RNA Rian promotes the expression of tight junction proteins in endothelial cells by regulating perivascular-resident macrophage-like melanocytes and PEDF secretion. Hum Cell 2021; 34:1093-1102. [PMID: 33768511 DOI: 10.1007/s13577-021-00521-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022]
Abstract
Perivascular-resident macrophage-like melanocytes (PVM/Ms) can upregulate the expression of tight junction-related proteins in endothelial cells (ECs) by secreting pigment epithelial-derived factor (PEDF), and thereby regulate the permeability of the intrastrial fluid-blood barrier critical for maintaining inner ear homeostasis. This study aimed to investigate the effects of long non-coding RNA (lncRNA) Rian on cell growth of PVM/Ms and PVM/Ms regulation of intrastrial fluid-blood barrier integrity mediated by PEDF. Rian was downregulated in the aged cochlea from 12-month-old C57BL/6 mice. Rian overexpression inhibited cell apoptosis and promoted cell viability of hypoxia-injured PVM/Ms as well as increased the concentration and expression of PEDF secreted by PVM/Ms. In contrast, Rian silencing exerted the opposite effects. Furthermore, in a cell co-culture model of ECs and PVM/Ms, Rian overexpression in PVM/Ms increased the expression of the junction-associated proteins in co-cultured ECs, and this effect was abrogated by blockade of PEDF by anti-PEDF in PVM/Ms. Further mechanistical investigation revealed that Rian promoted STAT3 nuclear translocation and activation by binding to FUS, and thereby promoted the secretion of PEDF. Collectively, Rian attenuates PVM/Ms injury and strengthens the ability of PVM/Ms to maintain the integrity of the endothelial barrier by promoting PEDF expression.
Collapse
Affiliation(s)
- Jinhui Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou, 450052, China.
| | - Wenya Fan
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou, 450052, China
| | - Lingling Neng
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou, 450052, China
| | - Bei Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou, 450052, China
| | - Bin Zuo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou, 450052, China
| | - Wei Lu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou, 450052, China.
| |
Collapse
|
11
|
An Age-Related Hearing Protection Locus on Chromosome 16 of BXD Strain Mice. Neural Plast 2020; 2020:8889264. [PMID: 32587610 PMCID: PMC7298343 DOI: 10.1155/2020/8889264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Inbred mouse models are widely used to study age-related hearing loss (AHL). Many genes associated with AHL have been mapped in a variety of strains. However, little is known about gene variants that have the converse function—protective genes that confer strong resistance to hearing loss. Previously, we reported that C57BL/6J (B6) and DBA/2J (D2) strains share a common hearing loss allele in Cdh23. The cadherin 23 (Cdh23) gene is a key contributor to early-onset hearing loss in humans. In this study, we tested hearing across a large family of 54 BXD strains generated from B6 to D2 crosses. Five of 54 strains maintain the normal threshold (20 dB SPL) even at 2 years old—an age at which both parental strains are essentially deaf. Further analyses revealed an age-related hearing protection (ahp) locus on chromosome 16 (Chr 16) at 57~76 Mb with a maximum LOD of 5.7. A small number of BXD strains at 2 years with good hearing correspond roughly to the percentage of humans who have good hearing at 90 years old. Further studies to define candidate genes in the ahp locus and related molecular mechanisms involved in age-related resilience or resistance to AHL are warranted.
Collapse
|