1
|
Ali ML, Roky AH, Azad SAK, Shaikat AH, Meem JN, Hoque E, Ahasan AMF, Islam MM, Arif MSR, Mostaq MS, Mahmud MZ, Amin MN, Mahmud MA. Autophagy as a targeted therapeutic approach for skin cancer: Evaluating natural and synthetic molecular interventions. CANCER PATHOGENESIS AND THERAPY 2024; 2:231-245. [PMID: 39371094 PMCID: PMC11447340 DOI: 10.1016/j.cpt.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 10/08/2024]
Abstract
Skin cancer, a prevalent malignancy worldwide, poses significant health concerns owing to its increasing incidence. Autophagy, a natural cellular process, is a pivotal event in skin cancer and has advantageous and detrimental effects. This duality has prompted extensive investigations into medical interventions targeting autophagy modulation for their substantial therapeutic potential. This systematic review aimed to investigate the relationship between skin cancer and autophagy and the contribution and mechanism of autophagy modulators in skin cancer. We outlined the effectiveness and safety of targeting autophagy as a promising therapeutic strategy for the treatment of skin cancer. This comprehensive review identified a diverse array of autophagy modulators with promising potential for the treatment of skin cancer. Each of these compounds demonstrates efficacy through distinct physiological mechanisms that have been elucidated in detail. Interestingly, findings from a literature search indicated that none of the natural, synthetic, or semisynthetic compounds exhibited notable adverse effects in either human or animal models. Consequently, this review offers novel mechanistic and therapeutic perspectives on the targeted modulation of autophagy in skin cancer.
Collapse
Affiliation(s)
- Md. Liakot Ali
- Department of Pharmacy, University of Chittagong, Chattogram 4331, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Amdad Hossain Roky
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - S.M. Asadul Karim Azad
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Abdul Halim Shaikat
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Jannatul Naima Meem
- Department of Pharmacy, University of Chittagong, Chattogram 4331, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Emtiajul Hoque
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Abu Mohammed Fuad Ahasan
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Mohammed Murshedul Islam
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, Daffodil International University, Dhaka 1216, Bangladesh
| | - Md. Saifur Rahaman Arif
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh
| | - Md. Saqline Mostaq
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | | | - Mohammad Nurul Amin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Md. Ashiq Mahmud
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| |
Collapse
|
2
|
Wang Y, Ping Z, Gao H, Liu Z, Xv Q, Jiang X, Yu W. LYC inhibits the AKT signaling pathway to activate autophagy and ameliorate TGFB-induced renal fibrosis. Autophagy 2024; 20:1114-1133. [PMID: 38037248 PMCID: PMC11135866 DOI: 10.1080/15548627.2023.2287930] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Renal fibrosis is a typical pathological change in chronic kidney disease (CKD). Epithelial-mesenchymal transition (EMT) is the predominant stage. Activation of macroautophagy/autophagy plays a crucial role in the process of EMT. Lycopene (LYC) is a highly antioxidant carotenoid with pharmacological effects such as anti-inflammation, anti-apoptosis and mediation of autophagy. In this study, we demonstrated the specific mechanism of LYC in activating mitophagy and improving renal fibrosis. The enrichment analysis results of GO and KEGG showed that LYC had high enrichment values with autophagy. In this study, we showed that LYC alleviated aristolochic acid I (AAI)-induced intracellular expression of PINK1, TGFB/TGF-β, p-SMAD2, p-SMAD3, and PRKN/Parkin, recruited expression of MAP1LC3/LC3-II and SQSTM1/p62, decreased mitochondrial membrane potential (MMP), and ameliorated renal fibrosis in mice. When we simultaneously intervened NRK52E cells using bafilomycin A1 (Baf-A1), AAI, and LYC, intracellular MAP1LC3-II and SQSTM1 expression was significantly increased. A similar result was seen in renal tissue and cells when treated in vitro and in vivo with CQ, AAI, and LYC, and the inhibitory effect of LYC on the AAI-activated SMAD2-SMAD3 signaling pathway was attenuated. Molecular docking simulation experiments showed that LYC stably bound to the AKT active site. After intervention of cells with AAI and GSK-690693, the expression of PINK1, PRKN, MAP1LC3-II, BECN1, p-SMAD2 and p-SMAD3 was increased, and the expression of SQSTM1 was decreased. However, SC79 inhibited autophagy and reversed the inhibitory effect of LYC on EMT. The results showed that LYC could inhibit the AKT signaling pathway to activate mitophagy and reduce renal fibrosis.Abbreviation: AA: aristolochic acid; ACTA2/α-SMA: actin alpha 2, smooth muscle, aorta; ACTB: actin beta; AKT/protein kinase B: thymoma viral proto-oncogene; BAF-A1: bafilomycin A1; BECN1: beclin 1, autophagy related; CCN2/CTGF: cellular communication network factor 2; CDH1/E-Cadherin: cadherin 1; CKD: chronic kidney disease; COL1: collagen, type I; COL3: collagen, type III; CQ: chloroquine; ECM: extracellular matrix; EMT: epithelial-mesenchymal transition; FN1: fibronectin 1; LYC: lycopene; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MMP: mitochondrial membrane potential; MTOR: mechanistic target of rapamycin kinase ; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced putative kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; PPI: protein-protein interaction; SMAD2: SMAD family member 2; SMAD3: SMAD family member 3; SQSTM1/p62: sequestosome 1; TGFB/TGFβ: transforming growth factor, beta; VIM: vimentin.
Collapse
Affiliation(s)
- Yu Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhenlei Ping
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongxin Gao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhihui Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qingyang Xv
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of Animal Pathogenesis and Comparative Medicine in Heilongjiang Province, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Kowalski S, Karska J, Tota M, Skinderowicz K, Kulbacka J, Drąg-Zalesińska M. Natural Compounds in Non-Melanoma Skin Cancer: Prevention and Treatment. Molecules 2024; 29:728. [PMID: 38338469 PMCID: PMC10856721 DOI: 10.3390/molecules29030728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The elevated occurrence of non-melanoma skin cancer (NMSC) and the adverse effects associated with available treatments adversely impact the quality of life in multiple dimensions. In connection with this, there is a necessity for alternative approaches characterized by increased tolerance and lower side effects. Natural compounds could be employed due to their safety profile and effectiveness for inflammatory and neoplastic skin diseases. These anti-cancer drugs are often derived from natural sources such as marine, zoonotic, and botanical origins. Natural compounds should exhibit anti-carcinogenic actions through various pathways, influencing apoptosis potentiation, cell proliferation inhibition, and metastasis suppression. This review provides an overview of natural compounds used in cancer chemotherapies, chemoprevention, and promotion of skin regeneration, including polyphenolic compounds, flavonoids, vitamins, alkaloids, terpenoids, isothiocyanates, cannabinoids, carotenoids, and ceramides.
Collapse
Affiliation(s)
- Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Julia Karska
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland;
| | - Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (S.K.); (M.T.); (K.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Małgorzata Drąg-Zalesińska
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubińskiego 6a, 50-368 Wroclaw, Poland;
| |
Collapse
|
4
|
Nair B, Adithya JK, Chandrababu G, Lakshmi PK, Koshy JJ, Manoj SV, Ambiliraj DB, Vinod BS, Sethi G, Nath LR. Modulation of carcinogenesis with selected GRAS nutraceuticals via Keap1-Nrf2 signaling pathway. Phytother Res 2023; 37:4398-4413. [PMID: 37468211 DOI: 10.1002/ptr.7940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
Keap1-Nrf2 is a fundamental signaling cascade known to promote or prevent carcinogenesis. Extensive studies identify the key target of modulatory aspects of Keap1-Nrf2 signaling against cancer. Nutraceuticals are those dietary agents with many health benefits that have immense potential for cancer chemoprevention. The nutritional supplements known as nutraceuticals are found to be one of the most promising chemoprevention agents. Upon investigating the dual nature of Nrf2, it became clear that, in addition to shielding normal cells from numerous stresses, Nrf2 may also promote the growth of tumors. In the present review, we performed a systematic analysis of the role of 12 different nutraceuticals like curcumin, sulforaphane, resveratrol, polyunsaturated fatty acids (PUFA) from fish oil, lycopene, soybean, kaempferol, allicin, thymoquinone, quercetin, gingerol, and piperine in modulating the Nrf2/Keap1 signaling mechanism. Among these, 12 Generally Recognized As Safe (GRAS) certified nutraceuticals, sulforaphane is the most extensively studied compound in modulating Keap1-Nrf signaling. Even though there is much evidence at preclinical levels, further high-quality research is still required to validate the potential role of these nutraceuticals in Keap1-Nrf2 modulation.
Collapse
Affiliation(s)
- Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Jayaprakash K Adithya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Gopika Chandrababu
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - P K Lakshmi
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Joel Joy Koshy
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | | | - D B Ambiliraj
- Department of Chemistry, Sree Narayana College, Chempazhanthy, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
5
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Control of Redox Homeostasis by Short-Chain Fatty Acids: Implications for the Prevention and Treatment of Breast Cancer. Pathogens 2023; 12:pathogens12030486. [PMID: 36986408 PMCID: PMC10058806 DOI: 10.3390/pathogens12030486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Breast cancer is the leading cause of death among women worldwide, and certain subtypes are highly aggressive and drug resistant. As oxidative stress is linked to the onset and progression of cancer, new alternative therapies, based on plant-derived compounds that activate signaling pathways involved in the maintenance of cellular redox homeostasis, have received increasing interest. Among the bioactive dietary compounds considered for cancer prevention and treatment are flavonoids, such as quercetin, carotenoids, such as lycopene, polyphenols, such as resveratrol and stilbenes, and isothiocyanates, such as sulforaphane. In healthy cells, these bioactive phytochemicals exhibit antioxidant, anti-apoptotic and anti-inflammatory properties through intracellular signaling pathways and epigenetic regulation. Short-chain fatty acids (SCFAs), produced by intestinal microbiota and obtained from the diet, also exhibit anti-inflammatory and anti-proliferative properties related to their redox signaling activity—and are thus key for cell homeostasis. There is evidence supporting an antioxidant role for SCFAs, mainly butyrate, as modulators of Nrf2-Keap1 signaling involving the inhibition of histone deacetylases (HDACs) and/or Nrf2 nuclear translocation. Incorporation of SCFAs in nutritional and pharmacological interventions changes the composition of the the intestinal microbiota, which has been shown to be relevant for cancer prevention and treatment. In this review, we focused on the antioxidant properties of SCFAs and their impact on cancer development and treatment, with special emphasis on breast cancer.
Collapse
|
7
|
Russo M, Moccia S, Spagnuolo C, Tedesco I, Russo GL. Carotenoid-Enriched Nanoemulsions and γ-Rays Synergistically Induce Cell Death in a Novel Radioresistant Osteosarcoma Cell Line. Int J Mol Sci 2022; 23:ijms232415959. [PMID: 36555605 PMCID: PMC9782251 DOI: 10.3390/ijms232415959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
We previously demonstrated that SAOS human osteosarcoma cells, incubated with carotenoid-enriched nanoemulsions (CEN), activated a nonprotective form of autophagy and delayed cell proliferation. The present work focuses on the biological effects of CEN on a derivative of SAOS cells named SAOS400, recently described for their radiation resistance and higher expression of therapy-induced senescence (TIS) markers. SAOS400 cells, incubated with CEN, activated a “cytostatic” form of autophagy confirmed by cell cycle arrest in the G2/M phase and increased expression of autophagic proteins. Treatment of SAOS400 cells with CEN also resulted in decreased expression of the senescence marker p16INK4. However, when SAOS400 cells were γ-irradiated in combination with CEN, the threshold for cell death was reached (>60% after 96 h). We showed that this type of cell death corresponded to ‘cytotoxic’ or ‘lethal’ autophagy and that the combined treatment of CEN plus γ-rays was synergistic, with the combination index < 1. Since CEN contained β-carotene, the pure compound was used in SAOS400 cells at the same concentration present in CEN and up to 10 times higher. However, no radio-sensitizing effect of β-carotene was observed, suggesting that the biological effect of CEN was due to less abundant but more bioactive molecules, or to the synergistic activity of multiple components present in the extracts, confirming the functional pleiotropy of natural extracts enriched in bioactive molecules.
Collapse
|
8
|
Wang C, Gao P, Xu J, Liu S, Tian W, Liu J, Zhou L. Natural phytochemicals prevent side effects in BRCA-mutated ovarian cancer and PARP inhibitor treatment. Front Pharmacol 2022; 13:1078303. [PMID: 36569329 PMCID: PMC9767960 DOI: 10.3389/fphar.2022.1078303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is among the most common malignant tumors in gynecology and is characterized by insidious onset, poor differentiation, high malignancy, and a high recurrence rate. Numerous studies have shown that poly ADP-ribose polymerase (PARP) inhibitors can improve progression-free survival (PFS) in patients with BRCA-mutated ovarian cancer. With the widespread use of BRCA mutation and PARP inhibitor (PARPi) combination therapy, the side effects associated with BRCA mutation and PARPi have garnered attention worldwide. Mutations in the BRCA gene increase KEAP1-NRF2 ubiquitination and reduce Nrf2 content and cellular antioxidant capacity, which subsequently produces side effects such as cardiovascular endothelial damage and atherosclerosis. PARPi has hematologic toxicity, producing thrombocytopenia, fatigue, nausea, and vomiting. These side effects not only reduce patients' quality of life, but also affect their survival. Studies have shown that natural phytochemicals, a class of compounds with antitumor potential, can effectively prevent and treat the side effects of chemotherapy. Herein, we reviewed the role of natural phytochemicals in disease prevention and treatment in recent years, including sulforaphane, lycopene, catechin, and curcumin, and found that these phytochemicals have significant alleviating effects on atherosclerosis, nausea, and vomiting. Moreover, these mechanisms of action significantly correlated with the side-effect-producing mechanisms of BRCA mutations and PARPi. In conclusion, natural phytochemicals may be effective in alleviating the side effects of BRCA mutant ovarian cancer cells and PARP inhibitors.
Collapse
Affiliation(s)
- Chuanlin Wang
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China
| | - Pengning Gao
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China
| | - Jiali Xu
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China
| | - Shanling Liu
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China
| | - Wenda Tian
- Yunnan Cancer Center, Kunming, Yunnan, China,Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiayu Liu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Lan Zhou
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Cancer Center, Kunming, Yunnan, China,*Correspondence: Lan Zhou,
| |
Collapse
|
9
|
Steinhoff M, Alam M, Ahmad A, Uddin S, Buddenkotte J. Targeting oncogenic transcription factors in skin malignancies: An update on cancer stemness and therapeutic outcomes. Semin Cancer Biol 2022; 87:98-116. [PMID: 36372325 DOI: 10.1016/j.semcancer.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The skin is the largest organ of the human body and prone to various diseases, including cancer; thus, provides the first line of defense against exogenous biological and non-biological agents. Skin cancer, a complex and heterogenic process, with steep incidence rate often metastasizes due to poor understanding of the underlying mechanisms of pathogenesis and clinical challenges. Indeed, accumulating evidence indicates that deregulation of transcription factors (TFs) due to genetic, epigenetic and signaling distortions plays essential role in the development of cutaneous malignancies and therapeutic challenges including cancer stemness features and reprogramming. This review highlights the recent developments exploring underlying mechanisms how deregulated TFs (e.g., NF-κB, AP-1, STAT etc.,) orchestrates cutaneous onco-pathogenesis, reprogramming, stemness and poor clinical outcomes. Along this line, bioactive drugs, and their derivatives from natural and or synthetic origin has gained attention due to their multitargeting potential, potentially safer and effective therapeutic outcome for human malignancies. We also discussed therapeutic importance of targeting aberrantly expressed TFs in skin cancers with bioactive natural products and or synthetic agents.
Collapse
Affiliation(s)
- Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
10
|
Zheng Z, Zhang L, Hou X. Potential roles and molecular mechanisms of phytochemicals against cancer. Food Funct 2022; 13:9208-9225. [PMID: 36047380 DOI: 10.1039/d2fo01663j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing evidence has been reported regarding phytochemicals, plant secondary metabolites, having therapeutic functions against numerous human diseases. Recently, phytochemicals (flavonoids, polyphenols, terpenoids, alkaloids, saponins, coumarins and so on) have shown promising anti-cancer efficacy with their distinct advantages of high efficiency and low toxicity. They regulate programmed cell death (apoptosis, pyroptosis, and autophagy), migration and senescence-related signaling pathways of cancer via the modulation of reactive oxygen species (ROS), mitogen activated protein kinase (MAPK) pathway, deleted in liver cancer 1 (DLC1), nuclear factor κ light-chain-enhancer of activated B cell (NF-κB) pathways and glycolytic enzymes. Here, we review the molecular mechanisms by which phytochemicals prevent the development of cancer. Furthermore, phytochemicals combined with chemotherapeutic agents could target the crosstalk among multiple signal cascades to block chemoresistance and attenuate carcinogenic properties, and can be considered as a novel and potential therapeutic strategy. Our review highlights that the mechanisms and promising applications are required to be understood to decisively establish the anti-cancer efficacy of natural phytochemicals.
Collapse
Affiliation(s)
- Zhaodi Zheng
- School of Forensics and Laboratory Medicine, Jining Medical University, Jining, 272067, Shandong, China.
| | - Leilei Zhang
- School of Forensics and Laboratory Medicine, Jining Medical University, Jining, 272067, Shandong, China.
| | - Xitan Hou
- School of Forensics and Laboratory Medicine, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
11
|
Ahsan H, Islam SU, Ahmed MB, Lee YS. Role of Nrf2, STAT3, and Src as Molecular Targets for Cancer Chemoprevention. Pharmaceutics 2022; 14:1775. [PMID: 36145523 PMCID: PMC9505731 DOI: 10.3390/pharmaceutics14091775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a complex and multistage disease that affects various intracellular pathways, leading to rapid cell proliferation, angiogenesis, cell motility, and migration, supported by antiapoptotic mechanisms. Chemoprevention is a new strategy to counteract cancer; to either prevent its incidence or suppress its progression. In this strategy, chemopreventive agents target molecules involved in multiple pathways of cancer initiation and progression. Nrf2, STAT3, and Src are promising molecular candidates that could be targeted for chemoprevention. Nrf2 is involved in the expression of antioxidant and phase II metabolizing enzymes, which have direct antiproliferative action as well as indirect activities of reducing oxidative stress and eliminating carcinogens. Similarly, its cross-talk with NF-κB has great anti-inflammatory potential, which can be utilized in inflammation-induced/associated cancers. STAT3, on the other hand, is involved in multiple pathways of cancer initiation and progression. Activation, phosphorylation, dimerization, and nuclear translocation are associated with tumor cell proliferation and angiogenesis. Src, being the first oncogene to be discovered, is important due to its convergence with many upstream stimuli, its cross-talk with other potential molecular targets, such as STAT3, and its ability to modify the cell cytoskeleton, making it important in cancer invasion and metastasis. Therefore, the development of natural/synthetic molecules and/or design of a regimen that can reduce oxidative stress and inflammation in the tumor microenvironment and stop multiple cellular targets in cancer to stop its initiation or retard its progression can form newer chemopreventive agents.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Salman Ul Islam
- Department of Pharmacy, CECOS University, Peshawar 25000, Pakistan
| | - Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Young Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
12
|
Dai XY, Zhu SY, Chen J, Li MZ, Talukder M, Li JL. Role of Toll-like Receptor/MyD88 Signaling in Lycopene Alleviated Di-2-ethylhexyl Phthalate (DEHP)-Induced Inflammatory Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10022-10030. [PMID: 35917506 DOI: 10.1021/acs.jafc.2c03864] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lycopene (Lyc) has anti-inflammatory and antioxidant biological functions. Di-2-ethylhexyl phthalate (DEHP) is an extremely harmful and persistent environmental pollutant and is a threat to animal health. The toll-like receptor (TLR)/MyD88 pathway is an important pathway in the inflammatory response. To illustrate the potential antagonistic action of Lyc against DEHP by the TLR/MyD88 pathway, 140 ICR mice were randomly assigned groups and continuously gavaged with corn oil, distilled water, different DEHP concentrations (500 or 1000 mg/kg BW/day), and/or Lyc (5 mg/kg BW/day) for 28 days. The data show that Lyc effectively attenuates the DEHP-induced activation of the TLR/MyD88 pathway, the upregulation of JNK expression, the content of IL-6 and TNF-α, and the downregulation of the IL-10 content, which eventually inhibit the inflammatory response and mitochondrial injuries. These findings underline the TLR/MyD88 pathway as a potential therapeutic target in DEHP and Lyc as a new therapeutic method to inhibit DEHP toxicity.
Collapse
Affiliation(s)
- Xue-Yan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | | | | | | | - Milton Talukder
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | | |
Collapse
|
13
|
Dai XY, Zhu SY, Chen J, Li MZ, Zhao Y, Talukder M, Li JL. Lycopene alleviates di(2-ethylhexyl) phthalate-induced splenic injury by activating P62-Keap1-NRF2 signaling. Food Chem Toxicol 2022; 168:113324. [PMID: 35917956 DOI: 10.1016/j.fct.2022.113324] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 01/15/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is an omnipresent environmental pollutant. It has been determined that DEHP is involved in multiple health disorders. Lycopene (Lyc) is a natural carotenoid pigment, with anti-inflammatory and antioxidant properties. However, it is not clear whether Lyc can protect the spleen from DEHP-induced oxidative damage. A total of 140 mice were randomly divided into seven groups (n = 20) and continuously gavaged with corn oil, distilled water, DEHP (500 or 1000 mg/kg BW/day) and/or Lyc (5 mg/kg BW/day) for 28 days. Histopathological and ultrastructural results showed a DEHP-induced inflammatory response and mitochondrial injuries. Moreover, DEHP exposure induced redox imbalance, which resulted in the up-regulation of ROS activity and MDA content, and the down-regulation of T-AOC, T-SOD and CAT in the DEHP groups. Simultaneously, our results also demonstrated that DEHP-induced kelch-like ECH-associated protein 1 (Keap1) expression was downregulated, and the expression levels of P62, nuclear factor erythroid 2-related factor (NRF2) and their downstream target genes were up-regulated. However, the supplementary Lyc reverted these changes to normal levels. Together, Lyc prevented DEHP-induced splenic injuries by regulating the P62-Keap1-NRF2 signaling pathway. Hence, the protective effects of Lyc might be a therapeutic strategy to ameliorate DEHP-induced splenic damage.
Collapse
Affiliation(s)
- Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
14
|
Chaiprasongsuk A, Panich U. Role of Phytochemicals in Skin Photoprotection via Regulation of Nrf2. Front Pharmacol 2022; 13:823881. [PMID: 35645796 PMCID: PMC9133606 DOI: 10.3389/fphar.2022.823881] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Ethnopharmacological studies have become increasingly valuable in the development of botanical products and their bioactive phytochemicals as novel and effective preventive and therapeutic strategies for various diseases including skin photoaging and photodamage-related skin problems including abnormal pigmentation and inflammation. Exploring the roles of phytochemicals in mitigating ultraviolet radiation (UVR)-induced skin damage is thus of importance to offer insights into medicinal and ethnopharmacological potential for development of novel and effective photoprotective agents. UVR plays a role in the skin premature aging (or photoaging) or impaired skin integrity and function through triggering various biological responses of skin cells including apoptosis, oxidative stress, DNA damage and inflammation. In addition, melanin produced by epidermal melanocytes play a protective role against UVR-induced skin damage and therefore hyperpigmentation mediated by UV irradiation could reflect a sign of defensive response of the skin to stress. However, alteration in melanin synthesis may be implicated in skin damage, particularly in individuals with fair skin. Oxidative stress induced by UVR contributes to the process of skin aging and inflammation through the activation of related signaling pathways such as the mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1), the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), the nuclear factor kappa B (NF-κB) and the signal transducer and activator of transcription (STAT) in epidermal keratinocytes and dermal fibroblasts. ROS formation induced by UVR also plays a role in regulation of melanogenesis in melanocytes via modulating MAPK, PI3K/Akt and the melanocortin 1 receptor (MC1R)-microphthalmia-associated transcription factor (MITF) signaling cascades. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated antioxidant defenses can affect the major signaling pathways involved in regulation of photoaging, inflammation associated with skin barrier dysfunction and melanogenesis. This review thus highlights the roles of phytochemicals potentially acting as Nrf2 inducers in improving photoaging, inflammation and hyperpigmentation via regulation of cellular homeostasis involved in skin integrity and function. Taken together, understanding the role of phytochemicals targeting Nrf2 in photoprotection could provide an insight into potential development of natural products as a promising strategy to delay skin photoaging and improve skin conditions.
Collapse
Affiliation(s)
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Uraiwan Panich,
| |
Collapse
|
15
|
Wang S, Wu H, Zhu Y, Cui H, Yang J, Lu M, Cheng H, Gu L, Xu T, Xu L. Effect of Lycopene on the Growth Performance, Antioxidant Enzyme Activity, and Expression of Gene in the Keap1-Nrf2 Signaling Pathway of Arbor Acres Broilers. Front Vet Sci 2022; 9:833346. [PMID: 35359683 PMCID: PMC8964064 DOI: 10.3389/fvets.2022.833346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to determine the effect of dietary lycopene supplementation on the growth performance, antioxidant enzyme activity of serum and liver, and gene expressions associated with Kelch-like ech-associated protein-1 (Keap1)/Nuclear Factor E2-related factor 2 (Nrf2) pathway in liver of Arbor Acres broilers. A total of 288 1-day-old male broilers were randomly divided into 4 treatments with 6 replicates and 12 chickens for each replicate. The control group was fed with the basal diet, while the treated groups were fed with the basal diet with 10, 20, and 30 mg/kg lycopene in powder. Feed and water were provided ad libitum for 42 days. Compared with the control group, (a) the average daily gain increased (p = 0.002 vs. p = 0.001) and the feed conversion ratio decreased (p = 0.017 vs. p = 0.023) in groups treated with lycopene in the grower and whole phases, and the average daily feed intake was quadratically affected (p = 0.043) by lycopene in the grower phase; (b) the serum superoxide dismutase content was linearly affected (p = 0.035) by lycopene at 21 days; (c) the serum glutathione peroxidase content, superoxide dismutase content, and total antioxidant capability were higher (p = 0.014, p = 0.003, and p = 0.016, respectively) in the 30 mg/kg lycopene group at 42 days; (d) the liver glutathione peroxidase and superoxide dismutase contents in groups treated with lycopene were higher (p ≤ 0.001 vs. p ≤ 0.001) at 21 days; (e) the liver glutathione peroxidase content was higher (p ≤ 0.001) in the 20 and 30 mg/kg lycopene groups, at 42 days; (f) the mRNA expression levels of Nrf2, superoxide dismutase 2, NAD(P)H quinone dehydrogenase 1, and heme oxygenase 1 genes were higher (21 days: p = 0.042, p = 0.021, p = 0.035, and p = 0.043, respectively; 42 days: p = 0.038, p = 0.025, p = 0.034, and p = 0.043, respectively) in the 20 and 30 mg/kg lycopene groups at 21 and 42 days. The 30 mg/kg lycopene concentration improved the growth performance, antioxidant enzyme activity in serum and liver, and gene expression in the Keap1-Nrf2 signaling pathway of Arbor Acres broilers.
Collapse
Affiliation(s)
- Sibo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yunhui Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hongxia Cui
- Inner Mongolia Ordos City Agricultural and Forestry Technology Extension Center, Ordos, China
| | - Ji Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mingyuan Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Huangzuo Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lihong Gu
- Institute of Animal Science & Veterinary, Hainan Academy of Agricultural Science, Haikou, China
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Li Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- *Correspondence: Li Xu
| |
Collapse
|
16
|
Lu J, Gu L, Li Q, Wu N, Li H, Zhang X. Andrographolide emeliorates maltol aluminium-induced neurotoxicity via regulating p62-mediated Keap1-Nrf2 pathways in PC12 cells. PHARMACEUTICAL BIOLOGY 2021; 59:232-241. [PMID: 33632062 PMCID: PMC7919883 DOI: 10.1080/13880209.2021.1883678] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 06/08/2023]
Abstract
CONTEXT Andrographolide (Andro) has a neuroprotective effect and a potential for treating Alzheimer's disease (AD), but the mechanism has not been elucidated. OBJECTIVE The efficacy of Andro on p62-mediated Kelch-like ECH-associated protein 1(Keap1)-Nuclear factor E2 related factor 2 (Nrf2) pathways in the aluminium maltolate (Al(mal)3)-induced neurotoxicity in PC12 cell was explored. MATERIALS AND METHODS PC12 cells were induced by Al(mal)3 (700 μM) to establish a neurotoxicity model. Following Andro (1.25, 2.5, 5, 10, 20, 40 μM) co-treatment with Al(Mal)3, cell viability was detected with MTT, protein expression levels of β-amyloid precursor protein (APP), β-site APP cleaving enzyme 1 (BACE1), Tau, Nrf2, Keap1, p62 and LC3 were measured via western blotting or immunofluorescence analyses. Nrf2, Keap1, p62 and LC3 mRNA, were detected by reverse transcription-quantitative PCR. RESULTS Compared with the 700 μM Al(mal)3 group, Andro (5, 10 μM) significantly increased Al(mal)3-induced cell viability from 67.4% to 91.9% and 91.2%, respectively, and decreased the expression of APP, BACE1 and Keap1 proteins and the ratio of P-Tau to Tau (from 2.75- fold to 1.94- and 1.70-fold, 2.12-fold to 1.77- and 1.56-fold, 0.68-fold to 0.51- and 0.55-fold, 1.45-fold to 0.82- and 0.91-fold, respectively), increased the protein expression of Nrf2, p62 and the ratio of LC3-II/LC3-I (from 0.67-fold to 0.93- and 0.94-fold, 0.64-fold to 0.88- and 0.87-fold, 0.51-fold to 0.63- and 0.79-fold, respectively), as well as the mRNA expression of Nrf2, p62 and LC3 (from 0.48-fold to 0.92-fold, 0.49-fold to 0.92-fold, 0.25-fold to 0.38-fold). Furthermore, Nrf2 and p62 nuclear translocation were increased and keap1 in the cytoplasm was decreased in the presence of Andro. Silencing p62 or Nrf2 can significantly reduce the protein and mRNA expression of Nrf2 and p62 under co-treatment with Andro and Al(mal)3. DISCUSSION AND CONCLUSIONS Our results suggested that Andro could be a promising therapeutic lead against Al-induced neurotoxicity by regulating p62-mediated keap1-Nrf2 pathways.
Collapse
Affiliation(s)
- Jiaqi Lu
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Lili Gu
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Qin Li
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Ningzi Wu
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Hongxing Li
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Xinyue Zhang
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| |
Collapse
|
17
|
Cao L, Zhao J, Ma L, Chen J, Xu J, Rahman SU, Feng S, Li Y, Wu J, Wang X. Lycopene attenuates zearalenone-induced oxidative damage of piglet sertoli cells through the nuclear factor erythroid-2 related factor 2 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112737. [PMID: 34482067 DOI: 10.1016/j.ecoenv.2021.112737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) has an estrogenic effect and often causes reproductive damage. Pigs are particularly sensitive to it. Lycopene (LYC) is a type of fat-soluble natural carotenoid that has antioxidant, anti-inflammatory, anti-cancer, anti-cardiovascular and detoxifying effects. In this study, piglet sertoli cells (SCs) were used as research objects to investigate the mechanism of ZEA induced damage to piglet SCs and to evaluate the protective effect of LYC on ZEA induced toxic damage to piglet SCs. The results showed that ZEA damaged the cell structure and inhibited the expression of nuclear factor erythroid-2 related factor 2 (Nrf2) in the nucleus, which down-regulated the relative mRNA expression of heme oxygenase 1 (HO-1) and glutathione peroxidase 1 (GPX1) and decreased the activity of HO-1, glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD), resulting in an increase in malondialdehyde (MDA) and reactive oxygen species (ROS) content. ZEA downregulated the relative mRNA and protein expression of bcl-2 in piglet SCs, promoted cell apoptosis, and upregulated the relative mRNA and protein expression of LC3, beclin-1, and bax. After 3 h LYC-pretreatment, ZEA was added for mixed culture. The results of pretreatment with LYC showed that LYC could alleviate the cytotoxicity of ZEA to porlets SCs. Compared with ZEA group, improved the cell survival rate, promoted the expression of Nrf2 in the nucleus, upregulated the relative mRNA expression of HO-1 and GPX1, increased the activity of antioxidant enzymes, and reduced the levels of MDA and ROS. Moreover, after pretreatment with LYC, the mRNA expression of bcl-2 was upregulated, the apoptosis rate was decreased, the relative mRNA and protein expressions of LC3, beclin-1 and bax were downregulated, and autophagy was alleviated. In conclusion, LYC alleviated the oxidative damage of SCs caused by ZEA by promoting the expression of Nrf2 pathway and decreased autophagy and apoptosis.
Collapse
Affiliation(s)
- Li Cao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jie Zhao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Li Ma
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jiawen Chen
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jingru Xu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| |
Collapse
|
18
|
Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
|
19
|
Russo GL, Moccia S, Russo M, Spagnuolo C. Redox regulation by carotenoids: Evidence and conflicts for their application in cancer. Biochem Pharmacol 2021; 194:114838. [PMID: 34774845 DOI: 10.1016/j.bcp.2021.114838] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022]
Abstract
Carotenoids have been constantly investigated since the early fifty for their chemical, biochemical and biological properties being presence in foods. Among the more than 1100 carotenoids synthesized by plants and microorganisms, approximately 50 are present in the human diet, and about 20 can be detected in human blood and tissues. Review articles that discuss the anticancer and cancer preventing activity of phytochemicals have often in common the difficulty to find a coherency between the results deriving from experimental studies and the controversial or weak clinical indications arising from epidemiological and interventional studies. In this scenario, the class of carotenoids does not represent an exception. In fact, according with World Cancer Research Fund, strong evidence exists that high-dose supplementation of β-carotene increases the risk of lung cancer, while for other types of cancer, the protective or harmful effects of food-containing carotenoids or carotenoid supplements have been considered limited, suggestive or unlikely. The analysis of the mechanistic evidence is complicated by the double nature of carotenoids being molecules acting either as antioxidant or pro-oxidant compounds. The present review analyzes the ambiguity and the unexpected results deriving from the epidemiological and interventional studies and discusses how the effects of carotenoids on cancer risk can be explained by understanding their capacity to modulate the cellular antioxidant response, depending on the concentration applied and the cellular metabolism. In the final part, a new global approach is proposed to study the contribution of carotenoids, but also of other phytochemicals, to disease prevention, including cancer.
Collapse
Affiliation(s)
- Gian Luigi Russo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy.
| | - Stefania Moccia
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Maria Russo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Carmela Spagnuolo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| |
Collapse
|
20
|
Fan RF, Tang KK, Wang ZY, Wang L. Persistent activation of Nrf2 promotes a vicious cycle of oxidative stress and autophagy inhibition in cadmium-induced kidney injury. Toxicology 2021; 464:152999. [PMID: 34695510 DOI: 10.1016/j.tox.2021.152999] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) serves as the master regulator of antioxidant signaling and inhibition or hyperactivation of Nrf2 pathway will result in the redox imbalance to induce tissue injury. Herein, we established cadmium (Cd)-exposed rat kidney injury model by intraperitoneal injection with CdCl2 (1.5 mg/kg body weight) and cytotoxicity model of NRK-52E cells by CdCl2 (5 μM) exposure to reveal the role of Nrf2 hyperactivation in Cd-induced nephrotoxicity. Data from the in vitro and in vivo study showed that Cd caused Nrf2 nuclear retention due to nuclear-cytoplasmic depletion of Kelch-like ECH-associated protein 1 (Keap1) and Sequestosome-1(SQSTM1/p62) accumulation, leading to the persistent activation of Nrf2. Moreover, we established inhibited models of Cd-induced prolonged Nrf2 activation using siRNA-mediated gene silencing in vitro and pharmacological inhibition in vivo for subsequent assays. First, Cd-induced cytotoxicity, renal injury and concomitant oxidative stress were markedly alleviated by Nrf2 inhibition. Second, Cd-induced autophagy inhibition was notably alleviated by Nrf2 inhibition. Further, we revealed underlying molecular mechanisms of the crosstalk between persistent activation of Nrf2 and autophagy inhibition in Cd-induced nephrotoxicity. Data showed that Cd-induced lysosomal dysfunction evidenced by impaired lysosomal biogenesis and degradation capacity was markedly recovered by Nrf2 inhibition. Meanwhile, Cd-impaired autophagosome-lysosome fusion was obviously restored by Nrf2 inhibition. In conclusion, our findings revealed that persistent activation of Nrf2 promoted a vicious cycle of oxidative stress and autophagy inhibition in Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Kou-Kou Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
21
|
Rajput SA, Liang SJ, Wang XQ, Yan HC. Lycopene Protects Intestinal Epithelium from Deoxynivalenol-Induced Oxidative Damage via Regulating Keap1/Nrf2 Signaling. Antioxidants (Basel) 2021; 10:antiox10091493. [PMID: 34573125 PMCID: PMC8466454 DOI: 10.3390/antiox10091493] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022] Open
Abstract
Deoxynivalenol (DON) is a threatening mycotoxin primarily present in the agricultural environment, especially in food commodities and animal forages, and exerts significant global health hazards. Lycopene (LYC) is a potent antioxidant carotenoid mainly present in tomatoes and other fruits with enormous health benefits. The present study was designed to ascertain whether LYC could protect DON-induced intestinal epithelium oxidative injury by regulating Keap1/Nrf2 signaling in the intestine of mice. A total of forty-eight mice were randomly distributed into four groups (n = 12), Control (CON), 10 mg/kg BW LYC, 3 mg/kg BW DON, and 3 mg/kg DON + 10 mg/kg LYC BW (DON + LYC). The experimental groups were treated by intragastric administration for 11 days. Our results showed that LYC significantly increased average daily feed intake (ADFI), average daily gain (ADG), and repaired intestinal injury and barrier dysfunction, as evident by increased trans-epithelial electrical resistance (TEER) and decreased diamine oxidase (DAO) activity, as well as up-regulated tight junction proteins (occludin, claudin-1) under DON exposure. Furthermore, LYC treatment stabilized the functions of intestinal epithelial cells (Lgr5, PCNA, MUC2, LYZ, and Villin) under DON exposure. Additionally, LYC alleviated DON-induced oxidative stress by reducing ROS and MDA accumulation and enhancing the activity of antioxidant enzymes (CAT, T-SOD, T-AOC, and GSH-Px), which was linked with the activation of Nrf2 signaling and degradation of Keap1 expression. Conclusively, our findings demonstrated that LYC protects intestinal epithelium from oxidative injury by modulating the Keap1/Nrf2 signaling pathway under DON exposure. These novel findings could lead to future research into the therapeutic use of LYC to protect the DON-induced harmful effects in humans and/or animals.
Collapse
Affiliation(s)
| | | | - Xiu-Qi Wang
- Correspondence: (X.-Q.W.); (H.-C.Y.); Tel./Fax: +86-20-38295462 (X.-Q.W.)
| | - Hui-Chao Yan
- Correspondence: (X.-Q.W.); (H.-C.Y.); Tel./Fax: +86-20-38295462 (X.-Q.W.)
| |
Collapse
|
22
|
Puah BP, Jalil J, Attiq A, Kamisah Y. New Insights into Molecular Mechanism behind Anti-Cancer Activities of Lycopene. Molecules 2021; 26:molecules26133888. [PMID: 34202203 PMCID: PMC8270321 DOI: 10.3390/molecules26133888] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Lycopene is a well-known compound found commonly in tomatoes which brings wide range of health benefits against cardiovascular diseases and cancers. From an anti-cancer perspective, lycopene is often associated with reduced risk of prostate cancer and people often look for it as a dietary supplement which may help to prevent cancer. Previous scientific evidence exhibited that the anti-cancer activity of lycopene relies on its ability to suppress oncogene expressions and induce proapoptotic pathways. To further explore the real potential of lycopene in cancer prevention, this review discusses the new insights and perspectives on the anti-cancer activities of lycopene which could help to drive new direction for research. The relationship between inflammation and cancer is being highlighted, whereby lycopene suppresses cancer via resolution of inflammation are also discussed herein. The immune system was found to be a part of the anti-cancer system of lycopene as it modulates immune cells to suppress tumor growth and progression. Lycopene, which is under the family of carotenoids, was found to play special role in suppressing lung cancer.
Collapse
Affiliation(s)
- Boon-Peng Puah
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence: ; Tel.: +603-9289-7533
| | - Ali Attiq
- Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Malaysia;
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
23
|
Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Bagherzadeh M, Dinarvand R, Ahmadi S, Rabiee M, Tahriri M, Hamblin MR, Tayebi L, Webster TJ. The colorful world of carotenoids: a profound insight on therapeutics and recent trends in nano delivery systems. Crit Rev Food Sci Nutr 2021; 62:3658-3697. [PMID: 33399020 DOI: 10.1080/10408398.2020.1867958] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The therapeutic effects of carotenoids as dietary supplements to control or even treat some specific diseases including diabetic retinopathy, cardiovascular diseases, bacterial infections, as well as breast, prostate, and skin cancer are discussed in this review and also thoughts on future research for their widespread use are emphasized. From the stability standpoint, carotenoids have low bioavailability and bioaccessibility owing to their poor water solubility, deterioration in the presence of environmental stresses such as oxygen, light, and high heat as well as rapid degradation during digestion. Nanoencapsulation technologies as wall or encapsulation materials have been increasingly used for improving food product functionality. Nanoencapsulation is a versatile process employed for the protection, entrapment, and the delivery of food bioactive products including carotenoids from diverse environmental conditions for extended shelf lives and for providing controlled release. Therefore, we present here, recent (mostly during the last five years) nanoencapsulation methods of carotenoids with various nanocarriers. To us, this review can be considered as the first highlighting not only the potential therapeutic effects of carotenoids on various diseases but also their most effective nanodelivery systems.HighlightsBioactive compounds are of deep interest to improve food properties.Carotenoids (such as β-carotene and xanthophylls) play indispensable roles in maintaining human health and well-being.A substantial research effort has been carried out on developing beneficial nanodelivery systems for various carotenoids.Nanoencapsulation of carotenoids can enhance their functional properties.Stable nanoencapsulated carotenoids could be utilized in food products.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Medicinal Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA.,Department of Dermatology, Harvard Medical School, Boston, USA
| | - Lobat Tayebi
- Department of Engineering, Norfolk State University, Norfolk, VA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
24
|
Zhang Y, Fan D, Liu X, Liu X, He J, Zhang N, Tang L. hTBK1-c.978T>A mutation promotes the ferroptosis in NSC-34 cells via mediation of KEAP1/NRF2/p62 signaling. Am J Transl Res 2020; 12:7386-7394. [PMID: 33312375 PMCID: PMC7724361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) can result in the dysfunction of upper and lower motor neurons. A previous study has indicated that TBK1 mutation (hTBK1-c.978T>A) is involved in progression of ALS. However, the mechanism by which TBK1 mutation mediates the progression of ALS remains unclear. METHODS NSC-34 cells with hTBK1-c.978T>A mutation (TBK1 mutation status) was used to mimic ALS in vitro. In addition, cell proliferation was detected by Ki67 staining. Gene and protein expressions in NSC-34 cells were detected by RT-qPCR and western blot, respectively. ROS and PGSK levels in NSC-34 cells were detected by flow cytometry. RESULTS hTBK1-c.978T>A mutation significantly inhibited the proliferation of NSC-34 cells via inducing cell ferroptosis, while the effect of TBK1 mutation was notably reversed by Ferrostatin-1 or p62 siRNA. Meanwhile, hTBK1-c.978T>A mutation significantly increased the expression of KEAP1 in NSC-34 cells, while this phenomenon was partially reversed by p62 knockdown. CONCLUSION hTBK1-c.978T>A mutation promoted promotes the ferroptosis in NSC-34 cells via regulation of KEAP1/NRF2/p62 signaling. Thus, hTBK1-c.978T>A mutation may serve as a possible target for the treatment of ALS.
Collapse
Affiliation(s)
- Yuanjin Zhang
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| | - Xiangyi Liu
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| | - Xiaolu Liu
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital Beijing 100191, China
| |
Collapse
|
25
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|