1
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
2
|
Tang Y, Cao J, Peng R, Mao X, Su B, Tang H, Tu D, Zhou J, Jiang G, Jin S, Wang Q, Zhang C, Liu R, Zhang C, Bai D. Screening and Verification of Key Ubiquitination Genes Related to Immune Infiltration in Stage III/IV Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:765-781. [PMID: 37250505 PMCID: PMC10216869 DOI: 10.2147/jhc.s407536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Immune checkpoint therapy (ICIs) effectively improves the prognosis of advanced (stage III/IV) hepatocellular carcinoma (HCC) patients. However, its objective response rate (ORR) is below 20%, significantly limiting ICI use in advanced HCC patients. The level of tumour immune infiltration influences ICI response rate. Recent studies have found ubiquitinase to be an important factor that regulates tumour immune infiltration. Therefore, the aim of this study is to explore the key ubiquitination genes that regulate immune infiltration in advanced HCC and further validate them. Methods A biotechnological process was performed as a means of classifying 90 advanced HCC patients into three immune subtypes and identifying associations with immune infiltration in the co-expressed modules. Ubiquitination-related genes were then screened with WGCNA. Gene enrichment analysis was performed for the target module and 30 hub genes were screened out by protein-protein interaction network (PPI). ssGSEA, single-gene sequencing and the MCP counter were used for exploring immune infiltration. TIDE score was applied for predicting drug efficacy and GSEA was used for exploring potential pathways. Finally, GRB2 expression in HCC tissue was validated by in vitro experiments. Results GRB2 expression was found to have a significant correlation with the pathological stage and prognosis of HCC patients and a positive correlation with immune infiltration and tumour mutation burden (TMB). In addition, significant correlations with the efficacy of ICIs, sorafenib and transarterial chemoembolization (TACE) were identified. GRB2 was found to be most significantly associated with the JAK-STAT signalling pathway and cytosolic DNA sensing pathway. Finally, it was found that GRB2 expression is closely related to the prognosis, tumour size and TMN stage. Conclusion A significant association was observed between the ubiquitinated gene GRB2 and the prognosis and immune infiltration of advanced HCC patients and it may potentially be used for predicting therapy efficacy in advanced HCC patients in the future.
Collapse
Affiliation(s)
- Yuhong Tang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jun Cao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xingkang Mao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hao Tang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Qian Wang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Chen Zhang
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Renjie Liu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, People’s Republic of China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
3
|
Sandouk A, Xu Z, Baruah S, Tremblay M, Hopkins JB, Chakravarthy S, Gakhar L, Schnicker NJ, Houtman JCD. GRB2 dimerization mediated by SH2 domain-swapping is critical for T cell signaling and cytokine production. Sci Rep 2023; 13:3505. [PMID: 36864087 PMCID: PMC9981690 DOI: 10.1038/s41598-023-30562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
GRB2 is an adaptor protein required for facilitating cytoplasmic signaling complexes from a wide array of binding partners. GRB2 has been reported to exist in either a monomeric or dimeric state in crystal and solution. GRB2 dimers are formed by the exchange of protein segments between domains, otherwise known as "domain-swapping". Swapping has been described between SH2 and C-terminal SH3 domains in the full-length structure of GRB2 (SH2/C-SH3 domain-swapped dimer), as well as between α-helixes in isolated GRB2 SH2 domains (SH2/SH2 domain-swapped dimer). Interestingly, SH2/SH2 domain-swapping has not been observed within the full-length protein, nor have the functional influences of this novel oligomeric conformation been explored. We herein generated a model of full-length GRB2 dimer with an SH2/SH2 domain-swapped conformation supported by in-line SEC-MALS-SAXS analyses. This conformation is consistent with the previously reported truncated GRB2 SH2/SH2 domain-swapped dimer but different from the previously reported, full-length SH2/C-terminal SH3 (C-SH3) domain-swapped dimer. Our model is also validated by several novel full-length GRB2 mutants that favor either a monomeric or a dimeric state through mutations within the SH2 domain that abrogate or promote SH2/SH2 domain-swapping. GRB2 knockdown and re-expression of selected monomeric and dimeric mutants in a T cell lymphoma cell line led to notable defects in clustering of the adaptor protein LAT and IL-2 release in response to TCR stimulation. These results mirrored similarly-impaired IL-2 release in GRB2-deficient cells. These studies show that a novel dimeric GRB2 conformation with domain-swapping between SH2 domains and monomer/dimer transitions are critical for GRB2 to facilitate early signaling complexes in human T cells.
Collapse
Affiliation(s)
- Aline Sandouk
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Sankar Baruah
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Mikaela Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Deng Z, Hou J, Xu H, Lei Z, Li Z, Zhu H, Yu X, Yang Z, Jin X, Sun J. The Prognostic Value of a lncRNA Risk Model Consists of 9 m6A Regulator-Related lncRNAs in Hepatocellular Carcinoma (HCC). Evol Bioinform Online 2023; 19:11769343221142013. [PMID: 36655172 PMCID: PMC9841875 DOI: 10.1177/11769343221142013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/03/2022] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver. Although the RNA modification N6-methyladenine (m6A) has been reported to be involved in HCC carcinogenesis, early diagnostic markers and promising personalized therapeutic targets are still lacking. In this study, we identified that 19 m6A regulators and 34 co-expressed lncRNAs were significantly upregulated in HCC samples; based on these factors, we established a prognostic signal of HCC associated with 9 lncRNAs and 19 m6A regulators using LASSO Cox regression analysis. Kaplan-Meier survival estimate revealed correlations between the risk scores and patients' OS in the training and validation dataset. The ROC curve demonstrated that the risk score-based curve has satisfactory prediction efficiency for both training and validation datasets. Multivariate Cox's proportional hazard regression analysis indicated that the risk score was an independent risk factor within the training and validation dataset. In addition, the risk score could distinguish HCC patients from normal non-cancerous samples and HCC samples of different pathological grades. Eventually, 232 mRNAs were co-expressed with these 9 lncRNAs according to GSE101685 and GSE112790; these mRNAs were enriched in cell cycle and cell metabolic activities, drug metabolism, liver disease-related pathways, and some important cancer related pathways such as p53, MAPK, Wnt, RAS and so forth. The expression of the 9 lncRNAs was significantly higher in HCC samples than that in the neighboring non-cancerous samples. Altogether, by using the Consensus Clustering, PCA, ESTIMATE algorithm, LASSO regression model, Kaplan-Meier survival assessment, ROC curve analysis, and multivariate Cox's proportional hazard regression model analysis, we established a prognostic marker consisting of 9 m6A regulator-related lncRNAs that markers may have prognostic and diagnostic potential for HCC.
Collapse
Affiliation(s)
- Zhen Deng
- Department of Hepatobiliary and Pancreatic Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxing Hou
- Department of Hepatobiliary and Pancreatic Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Department of Hepatobiliary and Pancreatic Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Lei
- Department of Hepatobiliary and Pancreatic Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Li
- Department of Hepatobiliary and Pancreatic Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Yang
- Department of Colorectal & Anal Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Jin
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jichun Sun
- Department of Hepatobiliary and Pancreatic Surgery, the Third Xiangya Hospital, Central South University, Changsha, China,Jichun Sun, Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, China.
| |
Collapse
|
5
|
Evaluation of the relationship between miR-1271 and GRB2 gene in endometriosis. Eur J Obstet Gynecol Reprod Biol 2022; 277:12-15. [PMID: 35970002 DOI: 10.1016/j.ejogrb.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Endometriosis is a common gynecological condition with a substantial economic burden on society. It is known that both genetic and environmental factors are contributing to the phenotypic development of the disease. MicroRNAs have a vital role in the pathogenesis of endometriosis. miR-1271 and its direct target gene, GRB2 (growth factor receptor-bound protein 2), expression have been studied in gynecologic cancers, while their role in endometriosis has not been studied. OBJECTIVE We measured miR-1271 and GRB2 gene expression in the eutopic and ectopic tissues of patients (endometrial tissues) in contrast to the control samples from healthy women. MATERIALS AND METHODS In this study, a total of 45 samples (15 control samples, 15 eutopic samples and 15 ectopic samples) were collected. We used qRT-PCR (quantitative polymerase chain reaction) to evaluate the expression levels of the miR-1271 and GRB2 gene. RESULTS We observed inverse expression of miR-1271 and GRB2 gene. MiR-1271 expression was significantly reduced in patients with endometriosis compared with healthy women. While there was a noticeable increase in the expression level of its target gene, GRB2, in tissues of endometriosis patients compared with normal control samples. CONCLUSION We have shown an inverse relationship between the reduction of miR-1271 expression level and increase in the expression level of GRB2, therefore, increased GRB2 expression in endometriosis tissues can be due to decreased expression of this microRNA. Our findings suggested that miR-1271 maybe play a role as a biomarker in the diagnosis of patients with endometriosis.
Collapse
|
6
|
Liao Q, Gao X. Tribbles homolog 3 contributes to high glucose-induced injury in retinal pigment epithelial cells via binding to growth factor receptor-bound 2. Bioengineered 2022; 13:10386-10398. [PMID: 35465829 PMCID: PMC9161919 DOI: 10.1080/21655979.2022.2056315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Diabetic retinopathy (DR) is the most typical complication of diabetes, which severely threatens sight. Tribbles homolog 3 (TRB3), a kind of pseudokinase, is discovered to be highly expressed in diabetes and retinas after retinal detachment. TRB3 expression in human retinal pigment epithelial (hRPE) cells exposed to different concentrations of glucose was tested by RT-qPCR and western blot. Then, cells were induced with 30 mM high glucose (HG) to establish a DR cell model. Following TRB3 knockdown, cell viability estimation employed CCK-8 assay. The mRNA levels of inflammatory factors were detected by RT-qPCR. Reactive oxygen species (ROS) level was measured by DCFH-DA assay, and levels of oxidative stress markers were evaluated applying corresponding kits. Cell apoptosis was assayed by TUNEL assay and western blot. Following, the growth factor receptor-bound 2 (GRB2) expression was also examined by RT-qPCR and western blot. The interaction between TRB3 and GRB2 was verified by Co-IP assay. After GRB2 was overexpressed in HG-induced hRPE cells transfected with shRNA-TRB3, functional experiments were conducted again. The results manifested that TRB3 expression was elevated under HG conditions. Deficiency of TRB3 enhanced the viability while alleviated inflammation, oxidative stress, and apoptosis in HG-induced hRPE cells. GRB2 was also increased in HG-exposed hRPE cells. Moreover, GRB2 had a strong affinity with TRB3 and positively regulated by TRB3. After GRB2 overexpression, the effects of TRB3 knockdown on HG-stimulated hRPE cells were all reversed. Briefly, this study confirmed the promoting role of TRB3/GRB2 axis in the progression of DR.
Collapse
Affiliation(s)
- Qin Liao
- Department of Ophthalmology, Chengdu Second People’s Hospital, Chengdu, china
| | - Xuefeng Gao
- College of Management, Beijing Capital Normal University, Beijing
| |
Collapse
|
7
|
Lai S, Quan Z, Hao Y, Liu J, Wang Z, Dai L, Dai H, He S, Tang B. Long Non-Coding RNA LINC01572 Promotes Hepatocellular Carcinoma Progression via Sponging miR-195-5p to Enhance PFKFB4-Mediated Glycolysis and PI3K/AKT Activation. Front Cell Dev Biol 2022; 9:783088. [PMID: 34970545 PMCID: PMC8712893 DOI: 10.3389/fcell.2021.783088] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Accumulating evidence indicates that type 2 diabetes mellitus (T2DM) is a risk factor for hepatocellular carcinoma (HCC), and T2DM-associated HCC represents a common type of HCC cases. We herein identify an lncRNA LINC01572 that was aberrantly upregulated in T2DM-related HCC via high-throughput screening. Based on this, the study was undertaken to identify the functional role and mechanism of LINC01572 in HCC progression. Methods: RT-qPCR was used to detect the expressions of LINC01572 in HCC tissues and cell lines. Gain- or loss-of-function assays were applied to evaluate the in vitro and in vivo functional significance of LINC01572 in the HCC cell proliferation, migration, and invasion using corresponding experiments. Bioinformatics, RIP, RNA pull-down, and luciferase reporter assays were performed to explore the regulatory relationship of the LINC01572/miR-195-5p/PFKFB4 signaling axis. Result: In this study, we profiled lncRNAs in HCC tissues and corresponding adjacent tissues from HCC patients with T2DM by RNA sequencing. Our data showed that LINC01572 was aberrantly upregulated in HCC tissues as compared with control, especially in those with concurrent T2DM. The high level of LINC01572 was correlated with advanced tumor stage, increased blood HbA1c level, and shortened survival time. The overexpression of LINC01572 significantly promoted HCC cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT), while the knockdown of LINC01572 had the opposite effects on HCC cells. A mechanistic study revealed that LINC01572-regulated HCC progression via sponging miR-195-5p to increase the level of PFKFB4 and subsequent enhancement of glycolysis and activation of PI3K-AKT signaling. Conclusion: LINC01572 acts as ceRNA of miR-195-5p to restrict its inhibition of PFKFB4, thereby enhancing glycolysis and activates PI3K/AKT signaling to trigger HCC malignancy.
Collapse
Affiliation(s)
- Shihui Lai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Zhipeng Quan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Yuesong Hao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Jun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Zhiqian Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Luo Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Hongliang Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Songqing He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Bo Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| |
Collapse
|
8
|
Lu Y, Yuan R, Huang H, Chen Z, Qin X, Chen J, Jiang J, Zhuo Y. A Six Autophagy-Related LncRNA Signature Associated with Clinical Prognosis in Prostate Cancer. Genet Test Mol Biomarkers 2021. [DOI: 10.1089/gtmb.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yangbai Lu
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Urology, Zhongshan City People's Hospital Affiliated to Sun Yat‑sen University, Zhongshan, China
| | - Runqiang Yuan
- Department of Urology, Zhongshan City People's Hospital Affiliated to Sun Yat‑sen University, Zhongshan, China
| | - Hongxing Huang
- Department of Urology, Zhongshan City People's Hospital Affiliated to Sun Yat‑sen University, Zhongshan, China
| | - Zheng Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaoping Qin
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jianfan Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Junbin Jiang
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yumin Zhuo
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Ge X, Yao Y, Li J, Li Z, Han X. Role of LncRNAs in the Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Front Oncol 2021; 11:690800. [PMID: 34113574 PMCID: PMC8185227 DOI: 10.3389/fonc.2021.690800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of primary liver cancer with a high incidence and mortality rate. HCC develops insidiously, and most newly diagnosed cases are in the middle and advanced stages. The epithelial-mesenchymal transition (EMT) is a vital mechanism underlying metastasis in patients with advanced HCC. EMT is a multistep and complex procedure. The promotion and inhibition of EMT directly affect the migration and invasion of HCC. LncRNAs are involved in the epigenetic modification of genes, regulation of gene transcription, and posttranslational modification of proteins. LncRNAs also play important roles in regulating EMT progression in HCC and are promising biomarkers and therapeutic targets. This review focused on summarizing the mechanism by which lncRNAs regulate EMT in HCC. In particular, lncRNAs were reported to primarily act as RNA sponges, and the regulation of EMT involves major signaling pathways. Finally, we reviewed the mechanisms by which lncRNAs are involved in drug resistance and discussed the clinical prospects and potential challenges of utilizing lncRNAs to treat HCC.
Collapse
Affiliation(s)
- Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Yao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaonan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Hu H, Xu H, Lu F, Zhang J, Xu L, Xu S, Jiang H, Zeng Q, Chen E, He Z. Exploring the Effect of Differentially Expressed Long Non-coding RNAs Driven by Copy Number Variation on Competing Endogenous RNA Network by Mining Lung Adenocarcinoma Data. Front Cell Dev Biol 2021; 8:627436. [PMID: 33585468 PMCID: PMC7876300 DOI: 10.3389/fcell.2020.627436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the first cause of cancer death, and gene copy number variation (CNV) is a vital cause of lung cancer progression. Prognosis prediction of patients followed by medication guidance by detecting CNV of lung cancer is emerging as a promising precise treatment in the future. In this paper, the differences in CNV and gene expression between cancer tissue and normal tissue of lung adenocarcinoma (LUAD) from The Cancer Genome Atlas Lung Adenocarcinoma data set were firstly analyzed, and greater differences were observed. Furthermore, CNV-driven differentially expressed long non-coding RNAs (lncRNAs) were screened out, and then, a competing endogenous RNA (ceRNA) regulatory network related to the gene CNV was established, which involved 9 lncRNAs, seven microRNAs, and 178 downstream messenger RNAs (mRNAs). Pathway enrichment analyses sequentially performed revealed that the downstream mRNAs were mainly enriched in biological pathways related to cell division, DNA repair, and so on, indicating that these mRNAs mainly affected the replication and growth of tumor cells. Besides, the relationship between lncRNAs and drug effects was explored based on previous studies, and it was found that LINC00511 and LINC00942 in the CNV-associated ceRNA network could be used to determine tumor response to drug treatment. As examined, the drugs affected by these two lncRNAs mainly targeted metabolism, target of rapamycin signaling pathway, phosphatidylinositol-3-kinase signaling pathway, epidermal growth factor receptor signaling pathway, and cell cycle. In summary, the present research was devoted to analyzing CNV, lncRNA, mRNA, and microRNA of lung cancer, and nine lncRNAs that could affect the CNV-associated ceRNA network we constructed were identified, two of which are promising in determining tumor response to drug treatment.
Collapse
Affiliation(s)
- Huihui Hu
- Department of Respiratory, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hangdi Xu
- Department of Respiratory, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Fen Lu
- Operation Room, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jisong Zhang
- Department of Respiratory, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Li Xu
- Department of Respiratory, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shan Xu
- Department of Respiratory, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hanliang Jiang
- Department of Respiratory, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qingxin Zeng
- Department of Thoracic Surgery, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Enguo Chen
- Department of Respiratory, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Hepigenetics: A Review of Epigenetic Modulators and Potential Therapies in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9593254. [PMID: 33299889 PMCID: PMC7707949 DOI: 10.1155/2020/9593254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma is the fifth most common cancer worldwide and the second most lethal, following lung cancer. Currently applied therapeutic practices rely on surgical resection, chemotherapy and radiotherapy, or a combination thereof. These treatment options are associated with extreme adversities, and risk/benefit ratios do not always work in patients' favor. Anomalies of the epigenome lie at the epicenter of aberrant molecular mechanisms by which the disease develops and progresses. Modulation of these anomalous events poses a promising prospect for alternative treatment options, with an abundance of felicitous results reported in recent years. Herein, the most recent epigenetic modulators in hepatocellular carcinoma are recapitulated on.
Collapse
|
12
|
Zhang X, Zhang J, Gao F, Fan S, Dai L, Zhang J. KPNA2-Associated Immune Analyses Highlight the Dysregulation and Prognostic Effects of GRB2, NRAS, and Their RNA-Binding Proteins in Hepatocellular Carcinoma. Front Genet 2020; 11:593273. [PMID: 33193737 PMCID: PMC7649362 DOI: 10.3389/fgene.2020.593273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Karyopherin α2 (KPNA2) was reported to be overexpressed and have unfavorable prognostic effects in many malignancies including hepatocellular carcinoma (HCC). Although its contributions to inflammatory response were reported in many studies, its specific associations with immune infiltrations and immune pathways during cancer progression were unclear. Here, we aimed to identify new markers for HCC diagnosis and prognosis through KPNA2-associated immune analyses. RNA-seq expression data of HCC datasets were downloaded from The Cancer Genome Atlas and International Cancer Genome Consortium. The gene expressions were counts per million normalized. The infiltrations of 24 kinds of immune cells in the samples were evaluated with ImmuCellAI (Immune Cell Abundance Identifier). The Spearman correlations of the immune infiltrations with KPNA2 expression were investigated, and the specific positive correlation of B-cell infiltration with KPNA2 expression in HCC tumors was identified. Fifteen genes in KEGG (Kyoto Encyclopedia of Genes and Genomes) B-cell receptor signaling pathway presented significant correlations with KPNA2 expression in HCC. Among them, GRB2 and NRAS were indicated to be independent unfavorable prognostic factors for HCC overall survival. Clinical Proteomic Tumor Analysis Consortium HCC dataset was investigated to validate the results at protein level. The upregulation and unfavorable prognostic effects of KPNA2 and GRB2 were confirmed, whereas, unlike its mRNA form, NRAS protein was presented to be downregulated and have favorable prognostic effects. Through receiver operating characteristic curve analysis, the diagnostic potential of the three proteins was shown. The RNA-binding proteins (RBPs) of KPNA2, NRAS, and GRB2, downloaded via The Encyclopedia of RNA Interactomes, were investigated for their clinical significance in HCC at protein level. An eight-RBP signature with independent prognostic value and dysregulations in HCC was identified. All the RBPs were significantly correlated with MKI67 expression and at least one of KPNA2, GRB2, and NRAS at protein level in HCC, indicating their roles in HCC progression and the regulation of the three proteins. We concluded that KPNA2, GRB2, NRAS, and their RBPs might have coordinating roles in HCC immunoregulation and progression. They might be new markers for HCC diagnosis and prognosis predication and new targets for HCC immunotherapy.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Jialing Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Fenglan Gao
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Shasha Fan
- Oncology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinzhong Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| |
Collapse
|
13
|
Xu W, Li K, Song C, Wang X, Li Y, Xu B, Liang X, Deng W, Wang J, Liu J. Knockdown of lncRNA LINC01234 Suppresses the Tumorigenesis of Liver Cancer via Sponging miR-513a-5p. Front Oncol 2020; 10:571565. [PMID: 33178601 PMCID: PMC7597595 DOI: 10.3389/fonc.2020.571565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background Liver cancer is a frequent malignancy with poor prognosis and high mortality all over the world. It has been reported many lncRNAs could modulate the tumorigenesis of liver cancer. To identify novel potential targets for liver cancer, the differential expressed lncRNAs between liver cancer and adjacent normal tissues was analyzed with bioinformatics tool. Methods The differential expressed lncRNAs between liver cancer and adjacent normal tissues were analyzed with bioinformatics tool. Cell viability and proliferation was tested by CCK8 and Ki67, respectively. Apoptosis of liver cancer cells was tested by flow cytometry. Gene and protein expressions in liver cancer cells were measured by qRT-PCR and western blot, respectively. In vivo model of liver cancer was established to detect the effect of LINC01234 on liver cancer in vivo. Results LINC01234 was found to be negatively correlated with the survival rate of patients with liver cancer. Moreover, knockdown of LINC01234 significantly suppressed the proliferation and invasion of liver cancer cells via inducing the apoptosis. Meanwhile, miR-513a-5p was sponged by LINC01234, and USP4 was found to be a direct target of miR-513a-5p. In addition, LINC01234 knockdown inhibited the tumorigenesis of liver cancer via inactivating TGF-β signaling. Furthermore, silencing of LINC01234 notably inhibited the tumor growth of liver cancer in vivo. Conclusion Downregulation of LINC01234 could inhibit the tumorigenesis of liver cancer via mediation of miR-513a-5p/USP4/TGF-β axis. Thus, LINC01234 might serve as a new target for the treatment of liver cancer.
Collapse
Affiliation(s)
- Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Kesang Li
- Department of Hematology and Oncology, Hwa Mei Hospital, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Changfeng Song
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaotong Wang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yueqi Li
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Baixue Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wanli Deng
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|