1
|
Liu F, Ye S, Zhao L, Niu Q. The role of IGF/IGF-1R signaling in the regulation of cancer stem cells. Clin Transl Oncol 2024; 26:2924-2934. [PMID: 38865036 DOI: 10.1007/s12094-024-03561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Cancer stem cells (CSCs) are a group of tumor cells with high tumorigenic ability and self-renewal potential similar to those of normal stem cells. CSCs are the key "seeds" for tumor development, metastasis, and recurrence. A better insight into the key mechanisms underlying CSC survival improves the efficiency of cancer therapy via specific targeting of CSCs. Insulin-like growth factor (IGF)/IGF-1 receptor (IGF-1R) signaling plays an important role in the maintenance of cancer stemness. However, the effect of IGF/IGF-1R signaling on stemness and CSCs and the underlying mechanisms are still controversial. Based on the similarity between CSCs and normal stem cells, this review discusses emerging data on the functions of IGF/IGF-1R signaling in normal stem cells and CSCs and dissects the underlying mechanisms by which IGF/IGF-1R signaling is involved in CSCs. On the other hand, this review highlighted the role of IGF/IGF-1R signaling blockade in multiple CSCs as a potential strategy to improve CSC-based therapy.
Collapse
Affiliation(s)
- Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Susu Ye
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu Zhao
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qinghui Niu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Al Sharie AH, Al Masoud EB, Jadallah RK, Alzghoul SM, Darweesh RF, Al-Bataineh R, Lataifeh LN, Salameh ST, Daoud MN, Rawashdeh TH, El-Elimat T, Alali FQ. Transcriptome analysis revealed a novel nine-gene prognostic risk score of clear cell renal cell carcinoma. Medicine (Baltimore) 2024; 103:e39678. [PMID: 39331921 PMCID: PMC11441924 DOI: 10.1097/md.0000000000039678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) continues to pose a significant global health concern, with rising incidence and high mortality rate. Accordingly, identifying molecular alternations associated with ccRCC is crucial to boost our understanding of its onset, persistence, and progression as well as developing prognostic biomarkers and novel therapies. Bulk RNA sequencing data and its associated clinicopathological variables of ccRCC were obtained from The Cancer Genome Atlas Program. Atypical differential gene expression analysis of advanced disease states using the extreme categories of staging and grading components was performed. Upregulated differentially expressed genes shared across the aforementioned components were selected. The risk-score construction pipeline started with univariate Cox logistic regression analysis, least absolute shrinkage and selection operator, and multivariate Cox logistic regression analysis in sequence. The generated risk score classified patients into low- vs high-risk groups. The predictive power of the constructed risk score was assessed using Kaplan-Meier curves analysis, multivariate Cox logistic regression analysis, and receiver operator curve of the overall survival. External validation of the risk score was performed using the E-MTAB-1980 cohort. The analysis work scheme established a novel nine-gene prognostic risk score composed of the following genes: ZIC2, TNNT1, SAA1, OTX1, C20orf141, CDHR4, HOXB13, IGFL2, and IGFN1. The high-risk group was associated with shortened overall survival and possessed an independent predictive power (hazard ratio: 1.942, 95% CI: 1.367-2.758, P < .0001, area under the curve = 0.719). In addition, the high-risk score was associated with advance clinicopathological parameters. The same pattern was observed within the external validation dataset (E-MTAB-1980 cohort), in which the high-risk score held a poor prognostic signature as well as independent predictive potential (hazard ratio: 5.121, 95% CI: 1.412-18.568, P = .013, area under the curve = 0.787). In the present work, a novel nine-gene prognostic risk score was constructed and validated. The risk score correlated with tumor immune microenvironment, somatic mutation patterns, and altered molecular pathways involved in tumorigenesis. Further experimental data are warranted to expand the work.
Collapse
Affiliation(s)
- Ahmed H Al Sharie
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Eyad B Al Masoud
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Rand K Jadallah
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Saja M Alzghoul
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Reem F Darweesh
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Rania Al-Bataineh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Leen N Lataifeh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Shatha T Salameh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Majd N Daoud
- Department of Endocrinology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | | | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Feras Q Alali
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Xie G, Si Q, Zhang G, Fan Y, Li Q, Leng P, Qiao F, Liang S, Yu R, Wang Y. The role of imprinting genes' loss of imprints in cancers and their clinical implications. Front Oncol 2024; 14:1365474. [PMID: 38812777 PMCID: PMC11133587 DOI: 10.3389/fonc.2024.1365474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Genomic imprinting plays an important role in the growth and development of mammals. When the original imprint status of these genes is lost, known as loss of imprinting (LOI), it may affect growth, neurocognitive development, metabolism, and even tumor susceptibility. The LOI of imprint genes has gradually been found not only as an early event in tumorigenesis, but also to be involved in progression. More than 120 imprinted genes had been identified in humans. In this review, we summarized the most studied LOI of two gene clusters and 13 single genes in cancers. We focused on the roles they played, that is, as growth suppressors and anti-apoptosis agents, sustaining proliferative signaling or inducing angiogenesis; the molecular pathways they regulated; and especially their clinical significance. It is notable that 12 combined forms of multi-genes' LOI, 3 of which have already been used as diagnostic models, achieved good sensitivity, specificity, and accuracy. In addition, the methods used for LOI detection in existing research are classified into detection of biallelic expression (BAE), differentially methylated regions (DMRs), methylation, and single-nucleotide polymorphisms (SNPs). These all indicated that the detection of imprinting genes' LOI has potential clinical significance in cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Guojing Xie
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin Si
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangjie Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Laboratory, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Yu Fan
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Qinghua Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Fengling Qiao
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Simin Liang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Yu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| | - Yingshuang Wang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, Chengdu, China
| |
Collapse
|
4
|
Deris Zayeri Z, Parsi A, Shahrabi S, Kargar M, Davari N, Saki N. Epigenetic and metabolic reprogramming in inflammatory bowel diseases: diagnostic and prognostic biomarkers in colorectal cancer. Cancer Cell Int 2023; 23:264. [PMID: 37936149 PMCID: PMC10631091 DOI: 10.1186/s12935-023-03117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND AND AIM "Inflammatory bowel disease" (IBD) is a chronic, relapsing inflammatory disease of the intestinal tract that typically begins at a young age and might transit to colorectal cancer (CRC). In this manuscript, we discussed the epigenetic and metabolic change to present a extensive view of IBDs transition to CRC. This study discusses the possible biomarkers for evaluating the condition of IBDs patients, especially before the transition to CRC. RESEARCH APPROACH We searched "PubMed" and "Google Scholar" using the keywords from 2000 to 2022. DISCUSSION In this manuscript, interesting titles associated with IBD and CRC are discussed to present a broad view regarding the epigenetic and metabolic reprogramming and the biomarkers. CONCLUSION Epigenetics can be the main reason in IBD transition to CRC, and Hypermethylation of several genes, such as VIM, OSM4, SEPT9, GATA4 and GATA5, NDRG4, BMP3, ITGA4 and plus hypomethylation of LINE1 can be used in IBD and CRC management. Epigenetic, metabolisms and microbiome-derived biomarkers, such as Linoleic acid and 12 hydroxy 8,10-octadecadienoic acid, Serum M2-pyruvate kinase and Six metabolic genes (NAT2, XDH, GPX3, AKR1C4, SPHK and ADCY5) expression are valuable biomarkers for early detection and transition to CRC condition. Some miRs, such as miR-31, miR-139-5p, miR -155, miR-17, miR-223, miR-370-3p, miR-31, miR -106a, miR -135b and miR-320 can be used as biomarkers to estimate IBD transition to CRC condition.
Collapse
Affiliation(s)
- Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abazar Parsi
- Alimentary Tract Research Center, Clinical Sciences Research Inistitute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Masoud Kargar
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Wang Y, Yuan H, Yue G, Zhao L, Xia Y, Zhang N, Li H, Liu D, Su Y, Wang H, Gao Y. Pan-cancer analysis reveals IGFL2 as a potential target for cancer prognosis and immunotherapy. Sci Rep 2023; 13:6034. [PMID: 37055418 PMCID: PMC10101991 DOI: 10.1038/s41598-023-27602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 04/15/2023] Open
Abstract
Insulin-like growth factor like family member 2 (IGFL2) is a gene in the IGFL family, located on chromosome 19, whose role in cancer is unclear, and the aim of this study was to investigate the relevance of IGFL2 expression, prognosis, immunity, and mutation in pan-cancer. Obtaining information from The Cancer Genome Atlas and The Genotype-Tissue Expression Project (GTEx) databases for expression analysis and combining with The Gene Expression Profile Interaction Analysis database for prognostic aspects. Analysis of immune cell infiltration by TIMER and CIBERSORT algorithms. Calculation of correlation of immune-related genes with IGFL2 expression and tumor mutational burden and microsatellite instability. Mutations and DNA methylation were analyzed using the cBioPortal database and the UALCAN database, and functional enrichment was performed using Gene set enrichment analysis (GSEA). IGFL2 expression is significantly elevated in tumor tissue and high expression has a worse prognosis in most cancers. In immune correlation analysis, it was associated with most immune cells and immune-related genes. In most cancers, IGFL2 methylation is lower and the group with mutations in IGFL2 has a worse prognosis than the normal group. The GSEA analysis showed that IGFL2 was significantly enriched in signaling and metabolism. IGFL2 may be involved in the development of many types of cancer, influencing the course of cancer with different biological functions. It may also be a biomarker for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuqi Wang
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Hongwei Yuan
- Department of Pathology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Genquan Yue
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lingyan Zhao
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Molecular Epidemiology of Chronic Diseases, Inner Mongolia Medical University, Hohhot, China
| | - Yuan Xia
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Molecular Epidemiology of Chronic Diseases, Inner Mongolia Medical University, Hohhot, China
| | - Nan Zhang
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Molecular Epidemiology of Chronic Diseases, Inner Mongolia Medical University, Hohhot, China
| | - Hailing Li
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Molecular Epidemiology of Chronic Diseases, Inner Mongolia Medical University, Hohhot, China
| | - Dongyang Liu
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Yubo Su
- School of Public Health, Inner Mongolia Medical University, Hohhot, China
| | - Haisheng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China.
| | - Yumin Gao
- School of Public Health, Inner Mongolia Medical University, Hohhot, China.
- Key Laboratory of Molecular Epidemiology of Chronic Diseases, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
6
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
7
|
Sun J, Shu J, Shi D, Liu W, Zhang Y, Luo B. Effects of methylation and imprinting expression of Insulin-like growth factor 2 gene in gastric cancer. Cancer Biomark 2023; 38:355-366. [PMID: 37718779 DOI: 10.3233/cbm-230105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) is a common malignant tumor associated with EBV infection. Insulin-like growth factor 2 (IGF2) is an imprinted gene and a key protein that regulates growth, especially during normal fetal development. Loss of imprinting (LOI), is a common epigenetic anomaly in a variety of human cancers. However, the promoter methylation, imprinting status and function of IGF2 gene in GC are unclear. OBJECTIVE To explore the role of IGF2 in the occurrence and development of gastric cancer. METHODS The biological function of IGF2 in gastric cancer was investigated by Transwell, wound healing, CCK-8 and flow cytometry assays. IGF2 imprinting status and gene promoter methylation in gastric cancer tissues were detected by PCR-RFLP and BGS. RESULTS The results showed that the expression of IGF2 was higher in GC tissues than adjacent tissues. IGF2 gene promoter methylation and LOI were significantly higher in EBVaGC tissues than in EBV-negative gastric cancer (EBVnGC) tissues. The high expression of IGF2 in gastric cancer can promote the migration and proliferation of gastric cancer cells. CONCLUSION Our data suggest that IGF2 is involved in the occurrence and development of gastric cancer. Targeting IGF2 may be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jiting Sun
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jun Shu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Duo Shi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, Shandong, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Mahgoub E, Taneera J, Sulaiman N, Saber-Ayad M. The role of autophagy in colorectal cancer: Impact on pathogenesis and implications in therapy. Front Med (Lausanne) 2022; 9:959348. [PMID: 36160153 PMCID: PMC9490268 DOI: 10.3389/fmed.2022.959348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is considered as a global major cause of cancer death. Surgical resection is the main line of treatment; however, chemo-, radiotherapy and other adjuvant agents are crucial to achieve good outcomes. The tumor microenvironment (TME) is a well-recognized key player in CRC progression, yet the processes linking the cancer cells to its TME are not fully delineated. Autophagy is one of such processes, with a controversial role in the pathogenesis of CRC, with its intricate links to many pathological factors and processes. Autophagy may apparently play conflicting roles in carcinogenesis, but the precise mechanisms determining the overall direction of the process seem to depend on the context. Additionally, it has been established that autophagy has a remarkable effect on the endothelial cells in the TME, the key substrate for angiogenesis that supports tumor metastasis. Favorable response to immunotherapy occurs only in a specific subpopulation of CRC patients, namely the microsatellite instability-high (MSI-H). In view of such limitations of immunotherapy in CRC, modulation of autophagy represents a potential adjuvant strategy to enhance the effect of those relatively safe agents on wider CRC molecular subtypes. In this review, we discussed the molecular control of autophagy in CRC and how autophagy affects different processes and mechanisms that shape the TME. We explored how autophagy contributes to CRC initiation and progression, and how it interacts with tumor immunity, hypoxia, and oxidative stress. The crosstalk between autophagy and the TME in CRC was extensively dissected. Finally, we reported the clinical efforts and challenges in combining autophagy modulators with various cancer-targeted agents to improve CRC patients’ survival and restrain cancer growth.
Collapse
Affiliation(s)
- Eglal Mahgoub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jalal Taneera
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Nabil Sulaiman
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Giza, Egypt
- *Correspondence: Maha Saber-Ayad,
| |
Collapse
|
9
|
Lei L, Jiang L, Hu Y, Chen M, Huang J, Chen J, Zeng Q. The comprehensive assessment of epigenetics changes during skin development. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
10
|
Xu L, Zhang J, Sun J, Hou K, Yang C, Guo Y, Liu X, Kalvakolanu DV, Zhang L, Guo B. Epigenetic regulation of cancer stem cells: Shedding light on the refractory/relapsed cancers. Biochem Pharmacol 2022; 202:115110. [PMID: 35640714 DOI: 10.1016/j.bcp.2022.115110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
The resistance to drugs, ability to enter quiescence and generate heterogeneous cancer cells, and enhancement of aggressiveness, make cancer stem cells (CSCs) integral part of tumor progression, metastasis and recurrence after treatment. The epigenetic modification machinery is crucial for the viability of CSCs and evolution of aggressive forms of a tumor. These mechanisms can also be targeted by specific drugs, providing a promising approach for blocking CSCs. In this review, we summarize the epigenetic regulatory mechanisms in CSCs which contribute to drug resistance, quiescence and tumor heterogeneity. We also discuss the drugs that can potentially target these processes and data from experimental and clinical studies.
Collapse
Affiliation(s)
- Libo Xu
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China; Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Jinghua Zhang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Jicheng Sun
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Kunlin Hou
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Chenxin Yang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Ying Guo
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Xiaorui Liu
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Ling Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China; Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China.
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China.
| |
Collapse
|
11
|
Mukhopadhyay S, Mahapatra KK, Praharaj PP, Patil S, Bhutia SK. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics. Semin Cancer Biol 2021; 85:196-208. [PMID: 34500075 DOI: 10.1016/j.semcancer.2021.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
Autophagy, a lysosomal catabolic process, involves degradation of cellular materials, protein aggregate, and dysfunctional organelles to maintain cellular homeostasis. Strikingly, autophagy exhibits a dual-sided role in cancer; on the one hand, it promotes clearance of transformed cells and inhibits tumorigenesis, while cytoprotective autophagy has a role in sustaining cancer. The autophagy signaling in the tumor microenvironment (TME) during cancer growth and therapy is not adequately understood. The review highlights the role of autophagy signaling pathways to support cancer growth and progression in adaptation to the oxidative and hypoxic context of TME. Furthermore, autophagy contributes to regulating the metabolic switch for generating sufficient levels of high-energy metabolites, including amino acids, ketones, glutamine, and free fatty acids for cancer cell survival. Interestingly, autophagy has a critical role in modulating the tumor-associated fibroblast resulting in different cytokines and paracrine signaling mediated angiogenesis and invasion of pre-metastatic niches to secondary tumor sites. Moreover, autophagy promotes immune evasion to inhibit antitumor immunity, and autophagy inhibitors enhance response to immunotherapy with infiltration of immune cells to the TME niche. Furthermore, autophagy in TME maintains and supports the survival of cancer stem cells resulting in chemoresistance and therapy recurrence. Presently, drug repurposing has enabled the use of lysosomal inhibitor-based antimalarial drugs like chloroquine and hydroxychloroquine as clinically available autophagy inhibitors in cancer therapy. We focus on the recent developments of multiple autophagy modulators from pre-clinical trials and the challenges in developing autophagy-based cancer therapy.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
12
|
Unraveling the IGF System Interactome in Sarcomas Exploits Novel Therapeutic Options. Cells 2021; 10:cells10082075. [PMID: 34440844 PMCID: PMC8392407 DOI: 10.3390/cells10082075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. In this review, we will initially highlight multiple mechanisms underlying IGF dysregulation in cancer and then focus on the impact of the IGF system and its complexity in sarcoma development and progression as well as response to anti-IGF therapies. We will also discuss the role of Ephrin receptors, Hippo pathway, BET proteins and CXCR4 signaling, as mediators of sarcoma malignancy and relevant interactors with the IGF system in tumor cells. A deeper understanding of these molecular interactions might provide the rationale for novel and more effective therapeutic combinations to treat sarcomas.
Collapse
|
13
|
Ghafouri-Fard S, Hussen BM, Badrlou E, Abak A, Taheri M. MicroRNAs as important contributors in the pathogenesis of colorectal cancer. Biomed Pharmacother 2021; 140:111759. [PMID: 34091180 DOI: 10.1016/j.biopha.2021.111759] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most fatal and fourth most frequently diagnosed neoplasm in the world. Numerous non-coding RNAs have been shown to contribute in the development of CRC. MicroRNAs (miRNAs) are among the mostly assessed non-coding RNAs in CRC. These transcripts influence expression and activity of TGF-β, Wnt/β-catenin, MAPK, PI3K/AKT and other CRC-related pathways. In the context of CRC, miRNAs interact with long non-coding RNAs to influence CRC course. Stool and serum levels of miRNAs have been used to distinguish CRC patients from healthy controls, indicating diagnostic roles of these transcripts in CRC. Therapeutic application of miRNAs in CRC has been assessed in animal models, yet has not been verified in clinical settings. In the current review, we have provided a recent update on the role of miRNAs in CRC development as well as diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Elham Badrlou
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Chen L, He M, Zhang M, Sun Q, Zeng S, Zhao H, Yang H, Liu M, Ren S, Meng X, Xu H. The Role of non-coding RNAs in colorectal cancer, with a focus on its autophagy. Pharmacol Ther 2021; 226:107868. [PMID: 33901505 DOI: 10.1016/j.pharmthera.2021.107868] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of malignant afflictions burdening people worldwide, mainly caused by shortages of effective medical intervention and poorly mechanistic understanding of the pathogenesis of CRC. Non-coding RNAs (ncRNAs) are a type of heterogeneous transcripts without the capability of coding protein, but have the potency of regulating protein-coding gene expression. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic contents are delivered to cellular lysosomes for degradation, resulting in the turnover of cellular components and producing energy for cell functions. A growing body of evidence reveals that ncRNAs, autophagy, and the crosstalks of ncRNAs and autophagy play intricate roles in the initiation, progression, metastasis, recurrence and therapeutic resistance of CRC, which confer ncRNAs and autophagy to serve as clinical biomarkers and therapeutic targets for CRC. In this review, we sought to delineate the complicated roles of ncRNAs, mainly including miRNAs, lncRNAs and circRNAs, in the pathogenesis of CRC, particularly focus on the regulatory role of ncRNAs in CRC-related autophagy, attempting to shed light on the complex pathological mechanisms, involving ncRNAs and autophagy, responsible for CRC tumorigenesis and development, so as to underpin the ncRNAs- and autophagy-based therapeutic strategies for CRC in clinical setting.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|