1
|
Chen X, Liu J, Wang G, Sun Y, Ding X, Zhang X. Regulating lipid metabolism in osteoarthritis: a complex area with important future therapeutic potential. Ann Med 2024; 56:2420863. [PMID: 39466361 PMCID: PMC11520103 DOI: 10.1080/07853890.2024.2420863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), which is characterized by pain, inflammation and pathological changes, is associated with abnormal lipid metabolism. Extensive studies have been conducted on the potential functions of lipids including cholesterol, fatty acids (FAs) and adipokines. MATERIALS AND METHODS By searching and screening the literature included in the PubMed and Web of Science databases from 1 January 2019 to 1 January 2024, providing an overview of research conducted on lipid metabolism and OA in the last 5 years. RESULTS In addition to adiponectin, several studies on the effects of lipid metabolism on OA have been consistent and complementary. Total cholesterol, triglycerides, low-density lipoprotein cholesterol, adipsin, leptin, resistin, saturated FAs, monounsaturated FAs, FA-binding protein 4 and the ratios of the FAs hexadecenoylcarnitine (C16:1) to dodecanoylcarnitine and C16:1 to tetradecanoylcarnitine induced mostly deleterious effects, whereas high-density lipoprotein cholesterol and apolipoprotein A/B/D had a positive impact on the health of joints. The situation for polyunsaturated FAs may be more complicated, as omega-3 increases the genetic susceptibility to OA, whereas omega-6 does the opposite. Alterations in lipid or adipokine levels and the resulting pathological changes in cartilage and other tissues (such as bone and synovium) ultimately affect joint pain, inflammation and cartilage degradation. Lipid or adipokine regulation has potential as a future direction for the treatment of OA, this potential avenue of OA treatment requires high-quality randomized controlled trials of combined lipid regulation therapy, and more in-depth in vivo and in vitro studies to confirm the underlying mechanism.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Guizhen Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Selim AM, Elsabagh YA, El-Sawalhi MM, Ismail NA, Senousy MA. Serum lncRNA ITGB2-AS1 and ICAM-1 as novel biomarkers for rheumatoid arthritis and osteoarthritis diagnosis. BMC Med Genomics 2024; 17:247. [PMID: 39379962 PMCID: PMC11462822 DOI: 10.1186/s12920-024-01993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The complete circulating long non-coding RNAs (lncRNAs) signature of rheumatoid arthritis (RA) and osteoarthritis (OA) is still uncovered. The lncRNA integrin subunit beta 2 (ITGB2)-anti-sense RNA 1 (ITGB2-AS1) affects ITGB2 expression; however, there is a gap in knowledge regarding its expression and clinical usefulness in RA and OA. This study investigated the potential of serum ITGB2-AS1 as a novel diagnostic biomarker and its correlation with ITGB2 expression and its ligand intercellular adhesion molecule-1 (ICAM-1), disease activity, and severity in RA and primary knee OA patients. SUBJECTS Forty-three RA patients, 35 knee OA patients, and 22 healthy volunteers were included. RESULTS Compared with healthy controls, serum ITGB2-AS1 expression was upregulated in RA patients but wasn't significantly altered in knee OA patients, whereas serum ICAM-1 protein levels were elevated in both diseases. ITGB2-AS1 showed discriminative potential for RA versus controls (AUC = 0.772), while ICAM-1 displayed diagnostic potential for both RA and knee OA versus controls (AUC = 0.804, 0.914, respectively) in receiver-operating characteristic analysis. In the multivariate analysis, serum ITGB2-AS1 and ICAM-1 were associated with the risk of developing RA, while only ICAM-1 was associated with the risk of developing knee OA. A panel combining ITGB2-AS1 and ICAM-1 showed profound diagnostic power for RA (AUC = 0.9, sensitivity = 86.05%, and specificity = 91.67%). Interestingly, serum ITGB2-AS1 positively correlated with disease activity (DAS28) in RA patients and with ITGB2 mRNA expression in both diseases, while ICAM-1 positively correlated with ITGB2 expression in knee OA patients. CONCLUSION Our study portrays serum ITGB2-AS1 as a novel potential diagnostic biomarker of RA that correlates with disease activity. A predictive panel combining ITGB2-AS1 and ICAM-1 could have clinical utility in RA diagnosis. We also spotlight the association of ICAM-1 with knee OA diagnosis. The correlation of serum ITGB2-AS1 with ITGB2 expression in both diseases may be insightful for further mechanistic studies.
Collapse
Affiliation(s)
- Aliaa M Selim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 23 Kasr El-Ainy Street, Cairo, 11562, Egypt.
| | - Yumn A Elsabagh
- Department of Rheumatology and Clinical Immunology, Internal Medicine, Kasr Al-Ainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha M El-Sawalhi
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 23 Kasr El-Ainy Street, Cairo, 11562, Egypt.
| | - Nabila A Ismail
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 23 Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 23 Kasr El-Ainy Street, Cairo, 11562, Egypt
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| |
Collapse
|
3
|
Hu SL, Liu SC, Lin CY, Fong YC, Wang SS, Chen LC, Yang SF, Tang CH. Genetic associations of visfatin polymorphisms with clinicopathologic characteristics of prostate cancer in Taiwanese males. Int J Med Sci 2024; 21:2494-2501. [PMID: 39439457 PMCID: PMC11492887 DOI: 10.7150/ijms.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
The most general cancer in men is prostate cancer (PCa), with its risk increasing due to age and obesity. Visfatin, a member of adipokines, is related to cancer progression and metastasis, but its relationship in PCa remains undetermined. In addition, no knowledge is available regarding relations between visfatin polymorphisms and clinicopathological characteristics in PCa. We sought to investigate the functions of four visfatin gene polymorphisms and clinicopathological characteristics on the hazard of developing PCa in 695 Taiwanese males with PCa. Carriers of the GA+AA heterozygote of SNP rs61330082 were at a markedly higher risk of biochemical recurrence than those with the GG genotype. Visfatin rs61330082 and rs11977021 were related with a high risk of perineural invasion, lymphovascular invasion, and biochemical recurrence in prostate-specific antigen (PSA) > 10 PCa patients. The Cancer Genome Atlas database noted that visfatin mRNA level did not prominently differ with pathological T/N stage and overall survival. This finding is the first to document a connection between visfatin polymorphisms and clinicopathological characteristics of PCa in Taiwanese males.
Collapse
Affiliation(s)
- Sung-Lin Hu
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Shan-Chi Liu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chia-Yen Lin
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Shian-Shiang Wang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Li-Chai Chen
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
4
|
Hasani A. The Effect of MiR320a on Lung Cancer. Microrna 2024; 13:167-174. [PMID: 38963099 DOI: 10.2174/0122115366296148240530072346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024]
Abstract
Lung cancer has a high mortality rate among cancers in both women and men. Currently, lung cáncer diagnosis is made with clinical examination, low-dose CT scan and molecular-based methods and its treatment options include chemotherapy, surgery, radiotherapy or immunotherapy. However, the life expectancy of lung cancer is not very high, and still it is usually diagnosed very lately, which leads to poorer prognosis. MicroRNAs [miRNAs] are small noncoding RNAs that regulate many diverse activities in the cell that can affect tumorigenesis by regulating many cell functions related to cancer, such as cell cycle, metastasis, angiogenesis, metabolism, and apoptosis. Also, it can have a potential diagnostic, therapeutic, and prognostic value for lung cancer. MiR320a is a promising microRNA that may help us in the diagnosis, treatment and prognosis of lung cancer, but some aspects of its clinical application are still vague, especially its effect on heavy smokers, delivery mechanism, toxicity and lack of reliable critical value. In this paper, we examined its comprehensive molecular interactions that lead to its tumor suppressor effect, and we reviewed its clinical application until now.
Collapse
Affiliation(s)
- Arian Hasani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
- Autonomous Nervous System (ANS) Association, Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Jia S, Yu Z, Bai L. Exerkines and osteoarthritis. Front Physiol 2023; 14:1302769. [PMID: 38107476 PMCID: PMC10722202 DOI: 10.3389/fphys.2023.1302769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic joint disease, with physical exercise being a widely endorsed strategy in its management guidelines. Exerkines, defined as cytokines secreted in response to acute and chronic exercise, function through endocrine, paracrine, and/or autocrine pathways. Various tissue-specific exerkines, encompassing exercise-induced myokines (muscle), cardiokines (heart), and adipokines (adipose tissue), have been linked to exercise therapy in OA. Exerkines are derived from these kines, but unlike them, only kines regulated by exercise can be called exerkines. Some of these exerkines serve a therapeutic role in OA, such as irisin, metrnl, lactate, secreted frizzled-related protein (SFRP), neuregulin, and adiponectin. While others may exacerbate the condition, such as IL-6, IL-7, IL-15, IL-33, myostatin, fractalkine, follistatin-like 1 (FSTL1), visfatin, activin A, migration inhibitory factor (MIF), apelin and growth differentiation factor (GDF)-15. They exerts anti-/pro-apoptosis/pyroptosis/inflammation, chondrogenic differentiation and cell senescence effect in chondrocyte, synoviocyte and mesenchymal stem cell. The modulation of adipokine effects on diverse cell types within the intra-articular joint emerges as a promising avenue for future OA interventions. This paper reviews recent findings that underscore the significant role of tissue-specific exerkines in OA, delving into the underlying cellular and molecular mechanisms involved.
Collapse
Affiliation(s)
- Shuangshuo Jia
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyao Yu
- Imaging Department, Dalian Medical University, Dalian, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Sampath SJP, Venkatesan V, Ghosh S, Kotikalapudi N. Obesity, Metabolic Syndrome, and Osteoarthritis-An Updated Review. Curr Obes Rep 2023; 12:308-331. [PMID: 37578613 DOI: 10.1007/s13679-023-00520-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MetS), also called the 'deadly quartet' comprising obesity, diabetes, dyslipidemia, and hypertension, has been ascertained to have a causal role in the pathogenesis of osteoarthritis (OA). This review is aimed at discussing the current knowledge on the contribution of metabolic syndrome and its various components to OA pathogenesis and progression. RECENT FINDINGS Lately, an increased association identified between the various components of metabolic syndrome (obesity, diabetes, dyslipidemia, and hypertension) with OA has led to the identification of the 'metabolic phenotype' of OA. These metabolic perturbations alongside low-grade systemic inflammation have been identified to inflict detrimental effects upon multiple tissues of the joint including cartilage, bone, and synovium leading to complete joint failure in OA. Recent epidemiological and clinical findings affirm that adipokines significantly contribute to inflammation, tissue degradation, and OA pathogenesis mediated through multiple signaling pathways. OA is no longer perceived as just a 'wear and tear' disease and the involvement of the metabolic components in OA pathogenesis adds up to the complexity of the disease. Given the global surge in obesity and its allied metabolic perturbations, this review aims to throw light on the current knowledge on the pathophysiology of MetS-associated OA and the need to address MetS in the context of metabolic OA management. Better regulation of the constituent factors of MetS could be profitable in preventing MetS-associated OA. The identification of key roles for several metabolic regulators in OA pathogenesis has also opened up newer avenues in the recognition and development of novel therapeutic agents.
Collapse
Affiliation(s)
- Samuel Joshua Pragasam Sampath
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India.
| | | | - Sudip Ghosh
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India
| | - Nagasuryaprasad Kotikalapudi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School Teaching Hospital, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Mao J, Zhang L. MiR-320a upregulation improves IL-1β-induced osteoarthritis via targeting the DAZAP1 and MAPK pathways. J Orthop Surg Res 2023; 18:541. [PMID: 37507717 PMCID: PMC10386766 DOI: 10.1186/s13018-023-03984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE Osteoarthritis (OA), a constant illness described by articular cartilage degeneration, usually manifested by joint pain and helpless development. Numerous literatures suggest that microRNAs play an important regulatory role in OA, yet the role of miR-320a in OA remains largely obscure. MATERIALS AND METHODS To evaluate the expression of miR-320a mRNA, quantitative real-time polymerase chain reaction was used. Cell counting kit-8 assay, Edu staining, Annexin V-FITC/PI apoptosis detection assay, Caspases 3 staining, and trypan staining were conducted to monitor cell proliferation and apoptosis. Western blot was applied to examine DAZAP1 and ERK/JNK/MAPK associated protein expression. Luciferase reporter gene experiments were performed to confirm the relationships between miR-320a and DAZAP1. ELISA assay was adopted to analyze the secretion of inflammation cytokines IL-6, IL-8, and TNF-α. RESULTS In an in vitro osteoarthritis model caused by IL-1β, miR-320a expression was markedly reduced. Overexpression of miR-320a restored IL-1β-inhibited chondrocyte proliferation, induced apoptosis and inflammatory response. Mechanistically, miR-320a affected HC-A cell proliferation, apoptosis and inflammatory response by regulating DAZAPI. Meanwhile, the ERK/JNK/MAPK pathway is also involved in the regulatory role of miR-320a on OA. CONCLUSION Our results show an important role for miR-320a and provide new therapeutic targets for avoiding and treating osteoarthritis.
Collapse
Affiliation(s)
- Jing Mao
- Department of Rheumatology and Immunology, Jingzhou First People's Hospital, Yangtze University, Jingzhou, Hubei, China.
| | - Lei Zhang
- Department of Dermatology, Jingzhou First People's Hospital, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
8
|
Wu J, Zhang Z, Ma X, Liu X. Advances in Research on the Regulatory Roles of lncRNAs in Osteoarthritic Cartilage. Biomolecules 2023; 13:biom13040580. [PMID: 37189327 DOI: 10.3390/biom13040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative bone and joint disease that can lead to disability and severely affect the quality of life of patients. However, its etiology and pathogenesis remain unclear. It is currently believed that articular cartilage lesions are an important marker of the onset and development of osteoarthritis. Long noncoding RNAs (lncRNAs) are a class of multifunctional regulatory RNAs that are involved in various physiological functions. There are many differentially expressed lncRNAs between osteoarthritic and normal cartilage tissues that play multiple roles in the pathogenesis of OA. Here, we reviewed lncRNAs that have been reported to play regulatory roles in the pathological changes associated with osteoarthritic cartilage and their potential as biomarkers and a therapeutic target in OA to further elucidate the pathogenesis of OA and provide insights for the diagnosis and treatment of OA.
Collapse
|
9
|
Peng H, Lin H. Integrative analysis of microRNA-320a-related genes in osteoarthritis cartilage. Front Surg 2023; 9:1005243. [PMID: 36700022 PMCID: PMC9869261 DOI: 10.3389/fsurg.2022.1005243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Objectives To investigate microRNA-320a-related differentially expressed genes (DEGs) and pathways in osteoarthritis (OA) by bioinformatic analysis. Methods The target genes of microRNA-320a were searched and collected from MiRTarBase microRNA Targets dataset, the TargetScan Predicted Nonconserved microRNA Targets dataset and the TargetScan Predicted Conserved microRNA Targets dataset. OA-related microRNAs and OA-related target genes were collected from GeneCards databases. The pathway enrichment analysis of miRNAs ware performed by Funrich analysis tool. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was obtained from Database for Annotation, Visualization and Integrated Discovery (DAVID). GeneMANIA and STRING are used for protein-protein interaction (PPI) network analysis. Module analysis was performed by Cytoscape. Results A total of 176 OA related miRNAs were searched and collected for enrichment analysis, and microRNA-320a was one of OA related miRNAs. Enrichment pathway and analysis of 1721 miRNA-320a-related target genes from MiRTarBase and TargetScan were performed using the online tools Metascape. And results shown that the biological processes were remarkably enriched in chromatin organization, cellular response to DNA damage stimuli, mRNA metabolic process, protein ubiquitination, and regulation of cell adhesion. And then we analysed miRNA-320a-targeted OA genes via KEGG, GO enrichment and PPI Network. Our results showed that miRNA-320a played a role in OA through FoxO signaling pathway, PI3K-Akt signaling pathway, focal adhesion, MAPK signaling pathway, HIF-1 signaling pathway and cellular senescence. And we speculate that MAPK signaling pathway plays a key role in the effect of miRNA-320a on OA. Conclusion This study implied microRNA-320a-related DEGs and dysregulated pathways in OA. The aim is to screen miRNA-320a-related genes and pathways in OA and, eventually, to improve the understanding of underlying mechanisms of miRNA-320a in OA.
Collapse
Affiliation(s)
- Hao Peng
- The Third Clinical College of Southern Medical University, Guangzhou, China
| | - Haibin Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China,Correspondence: Haibin Lin
| |
Collapse
|
10
|
González-Rodríguez M, Ruiz-Fernández C, Cordero-Barreal A, Ait Eldjoudi D, Pino J, Farrag Y, Gualillo O. Adipokines as targets in musculoskeletal immune and inflammatory diseases. Drug Discov Today 2022; 27:103352. [PMID: 36099964 DOI: 10.1016/j.drudis.2022.103352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Adipokines are the principal mediators in adipose signaling. Nevertheless, besides their role in energy storage, these molecules can be produced by other cells, such as immune cells or chondrocytes. Given their pleiotropic effects, research over the past few years has also focused on musculoskeletal diseases, showing that these adipokines might have relevant roles in worsening the disease or improving the treatment response. In this review, we summarize recent advances in our understanding of adipokines and their role in the most prevalent musculoskeletal immune and inflammatory disorders.
Collapse
Affiliation(s)
- María González-Rodríguez
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Drug Research and Development, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Medicine Clinical Research, Santiago de Compostela, Spain
| | - Alfonso Cordero-Barreal
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Programme in Molecular Medicine, Santiago de Compostela, Spain
| | - Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain; Departamento de Cirurgía y Especialidades Médico-Cirúrgicas Área de Traumatología e Ortopedia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Yousof Farrag
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Wang YH, Tsai CH, Liu SC, Chen HT, Chang JW, Ko CY, Hsu CJ, Chang TK, Tang CH. miR-150-5p and XIST interaction controls monocyte adherence: Implications for osteoarthritis therapy. Front Immunol 2022; 13:1004334. [PMID: 36203618 PMCID: PMC9530358 DOI: 10.3389/fimmu.2022.1004334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Recent literature highlights the importance of microRNAs (miRNAs) functioning as diagnostic biomarkers and therapeutic agents in osteoarthritis (OA) and regulators of gene expression. In OA pathogenesis, cell adhesion molecules (CAMs), especially vascular cell adhesion protein 1 (VCAM-1), recruit monocyte infiltration to inflamed synovial tissues and thus accelerate OA progression. Up until now, little has been known about the regulatory mechanisms between miRNAs, long non-coding RNAs (lncRNAs) and VCAM-1 during OA progression. The evidence in this article emphasizes that the functional feature of miR-150-5p is an interaction with the lncRNA X-inactive specific transcript (XIST), which regulates VCAM-1-dependent monocyte adherence in OA synovial fibroblasts (OASFs). Levels of VCAM-1, CD11b (a monocyte marker) and XIST expression were higher in human synovial tissue samples and OASFs, while levels of miR-150-5p were lower in human OA synovial tissue compared with non-OA specimens. XIST enhanced VCAM-1-dependent monocyte adherence to OASFs. Upregulation of miR-150-5p inhibited the effects of XIST upon monocyte adherence. Administration of miR-150-5p effectively ameliorated OA severity in anterior cruciate ligament transection (ACLT) rats. The interaction of miR-150-5p and XIST regulated VCAM-1-dependent monocyte adherence and attenuated OA progression. Our findings suggest that miR-150-5p is a promising small-molecule therapeutic strategy for OA.
Collapse
Affiliation(s)
- Yu-Han Wang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Kuo Chang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, New Taipei, Taiwan
- *Correspondence: Chih-Hsin Tang, ; Ting-Kuo Chang,
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- *Correspondence: Chih-Hsin Tang, ; Ting-Kuo Chang,
| |
Collapse
|
12
|
IL-17 Facilitates VCAM-1 Production and Monocyte Adhesion in Osteoarthritis Synovial Fibroblasts by Suppressing miR-5701 Synthesis. Int J Mol Sci 2022; 23:ijms23126804. [PMID: 35743247 PMCID: PMC9224118 DOI: 10.3390/ijms23126804] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is characterized by the infiltration and adhesion of monocytes into the inflamed joint synovium. Interleukin (IL)-17 is a critical inflammatory mediator that participates in the progression of OA, although the mechanisms linking IL-17 and monocyte infiltration are not well understood. Our analysis of synovial tissue samples retrieved from the Gene Expression Omnibus (GEO) dataset exhibited higher monocyte marker (CD11b) and vascular cell adhesion molecule 1 (VCAM-1) levels in OA samples than in normal, healthy samples. The stimulation of human OA synovial fibroblasts (OASFs) with IL-17 increased VCAM-1 production and subsequently enhanced monocyte adhesion. IL-17 affected VCAM-1-dependent monocyte adhesion by reducing miR-5701 expression through the protein kinase C (PKC)-α and c-Jun N-terminal kinase (JNK) signaling cascades. Our findings improve our understanding about the effect of IL-17 on OA progression and, in particular, VCAM-1 production and monocyte adhesion, which may help with the design of more effective OA treatments.
Collapse
|
13
|
Lee KT, Su CH, Liu SC, Chen BC, Chang JW, Tsai CH, Huang WC, Hsu CJ, Chen WC, Wu YC, Tang CH. Cordycerebroside A inhibits ICAM-1-dependent M1 monocyte adhesion to osteoarthritis synovial fibroblasts. J Food Biochem 2022; 46:e14108. [PMID: 35165902 DOI: 10.1111/jfbc.14108] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is represented by the accumulation and adhesion of M1 macrophages into synovium tissues in the joint microenvironment and subsequent inflammatory response. Cordycerebroside A, a cerebroside compound isolated from Cordyceps militaris, exhibits anti-inflammatory activity, but has not yet been examined in M1 macrophages during OA disease. Our results indicate higher expression of M1 macrophage markers in synovium tissue from OA patients compared with normal healthy controls. Records from the Gene Expression Omnibus (GEO) data set and our clinic samples revealed higher levels of ICAM-1 (a critical adhesion molecule during OA disease) and CD86 (a M1 macrophage marker) in OA synovial tissue than in healthy tissue. The same effects were found in rats with OA induced by anterior cruciate ligament transaction (ACLT). We also found that cordycerebroside A inhibited ICAM-1 synthesis and antagonized M1 macrophage adhesion to OA synovial fibroblasts by inhibiting the ERK/AP-1 pathway. Thus, cordycerebroside A displayed novel anti-arthritic effects. PRACTICAL APPLICATIONS: Here we report a higher level of M1 macrophage markers and ICAM-1 in synovium tissue from OA patients compared with normal healthy controls by using GEO data set and our clinic samples. The same effects were revealed in rats with OA induced by ACLT. Cordycerebroside A significantly suppressed ICAM-1 production and diminished M1 macrophage adhesion to OA synovial fibroblasts. Therefore, cordycerebroside A exhibited novel anti-OA functions.
Collapse
Affiliation(s)
- Kun-Tsan Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan.,Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chin-Horng Su
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedics, Yuan-Lin Christian Hospital, Changhua, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Bo-Cheng Chen
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Division of Sports Medicine & Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yang-Chang Wu
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,Chinese Medicine Research and Development Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Lee HP, Liu SC, Wang YH, Chen BC, Chen HT, Li TM, Huang WC, Hsu CJ, Wu YC, Tang CH. Cordycerebroside A suppresses VCAM-dependent monocyte adhesion in osteoarthritis synovial fibroblasts by inhibiting MEK/ERK/AP-1 signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104712] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Dakroub A, Nasser SA, Kobeissy F, Yassine HM, Orekhov A, Sharifi-Rad J, Iratni R, El-Yazbi AF, Eid AH. Visfatin: An emerging adipocytokine bridging the gap in the evolution of cardiovascular diseases. J Cell Physiol 2021; 236:6282-6296. [PMID: 33634486 DOI: 10.1002/jcp.30345] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Visfatin/nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine expressed predominately in visceral fat tissues. High circulating levels of visfatin/NAMPT have been implicated in vascular remodeling, vascular inflammation, and atherosclerosis, all of which pose increased risks of cardiovascular events. In this context, increased levels of visfatin have been correlated with several upregulated pro-inflammatory mediators, such as IL-1, IL-1Ra, IL-6, IL-8, and TNF-α. Furthermore, visfatin is associated with leukocyte recruitment by endothelial cells and the production of adhesion molecules such as vascular cell adhesion molecule 1, intercellular cell adhesion molecule 1, and E-selectin, which are well known to mediate the progression of atherosclerosis. Moreover, diverse angiogenic factors have been found to mediate visfatin-induced angiogenesis. These include matrix metalloproteinases, vascular endothelial growth factor, monocyte chemoattractant protein 1, and fibroblast growth factor 2. This review aims to provide a comprehensive overview of the pro-inflammatory and angiogenic actions of visfatin, with a focus on the pertinent signaling pathways whose dysregulation contributes to the pathogenesis of atherosclerosis. Most importantly, some hypotheses regarding the integration of the aforementioned factors with the plausible atherogenic effect of visfatin are put forth for consideration in future studies. The pharmacotherapeutic potential of modulating visfatin's roles could be important in the management of cardiovascular disease, which continues to be the leading cause of death worldwide.
Collapse
Affiliation(s)
- Ali Dakroub
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Alexander Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Lebanon.,Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Faculty of Pharmacy, Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|