1
|
Park SY, Park JH, Yang JW, Jung EJ, Ju YT, Jeong CY, Kim JY, Park T, Kim TH, Park M, Lee YJ, Jeong SH. SMARCD3 Overexpression Promotes Epithelial-Mesenchymal Transition in Gastric Cancer. Cancers (Basel) 2024; 16:2282. [PMID: 38927986 PMCID: PMC11201906 DOI: 10.3390/cancers16122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigates the role of SMARCD3 in gastric cancer by comparing its expression in signet ring cell (SRC) and well-differentiated (WD) groups within gastric cancer cell lines and tissues. We observed elevated SMARCD3 levels in the SRC group compared to the WD group. Functional analysis was conducted through both SMARCD3 knock-in and knock-out methods. Kaplan-Meier survival analysis indicated that higher SMARCD3 expression correlates with poorer overall survival in gastric cancer patients (HR 2.16, p < 0.001). SMARCD3 knock-out cells showed decreased proliferation, migration, invasion, and expression of epithelial-mesenchymal transition (EMT) markers, contrasting with results from temporary and stable SMARCD3 overexpression experiments, which demonstrated increased cell area and irregularity (p < 0.001). Further analysis revealed that SMARCD3 overexpression in MKN-74 cells significantly enhanced p-AKT-S473 and p-ERK levels (p < 0.05), and in KATO III cells, it increased β-catenin and PI3Kp85 activities (p < 0.05). Conversely, these activities decreased in SNU 601 cells following SMARCD3 depletion. The study concludes that SMARCD3 overexpression may serve as a negative prognostic marker and a potential therapeutic target in gastric cancer treatment due to its role in promoting EMT.
Collapse
Affiliation(s)
- Sun Yi Park
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Ji-Ho Park
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Eun-Jung Jung
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (E.-J.J.); (T.-H.K.)
| | - Young-Tae Ju
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Chi-Young Jeong
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Ju-Yeon Kim
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Taejin Park
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (E.-J.J.); (T.-H.K.)
| | - Tae-Han Kim
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (E.-J.J.); (T.-H.K.)
| | - Miyeong Park
- Department of Anesthesiology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea
| | - Young-Joon Lee
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Sang-Ho Jeong
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (E.-J.J.); (T.-H.K.)
| |
Collapse
|
2
|
Guo Z, Cao B, Hu Z, Wu J, Zhou W, Zhang W, Shi Z. Immunotherapy, prognostic, and tumor biomarker based on pancancer analysis, SMARCD3. Aging (Albany NY) 2024; 16:10074-10107. [PMID: 38862250 PMCID: PMC11210247 DOI: 10.18632/aging.205921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND SMARCD3 has recently been shown to be an important gene affecting cancer, playing an important role in medulloblastoma and pancreatic ductal adenocarcinoma. Therefore, we conducted this research to investigate the potential involvement of SMARCD3 across cancers and to offer recommendations for future studies. METHODS Utilizing information on 33 malignancies in the UCSC Xena database, SMARCD3 expression and its prognostic value were assessed. The tumor microenvironment was evaluated with the "CIBERSORT" and "ESTIMATE" algorithms. SMARCD3 and immune-related genes were analyzed using the TISIDB website. The pathways related to the target genes were examined using GSEA. MSI (microsatellite instability), TMB (tumor mutational burden), and immunotherapy analysis were used to evaluate the impact of target genes on the response to immunotherapy. RESULTS There is heterogeneity in terms of the expression and prognostic value of SMARCD3 among various cancers, but it is a risk factor for many cancers including uterine corpus endometrial cancer (UCEC), renal clear cell carcinoma (KIRC), and gastric adenocarcinoma (STAD). GSEA revealed that SMARCD3 is related to chromatin remodeling and transcriptional activation, lipid metabolism, and the activities of various immune cells. The TMB and MSI analyses suggested that SMARCD3 affects the immune response efficiency of KIRC, LUAD and STAD. Immunotherapy analysis suggested that SMARCD3 may be a potential immunotherapy target. RT-qPCR demonstrated the variation in SMARCD3 expression in KIRC, LUAD, and STAD. CONCLUSION Our study revealed that SMARCD3 affects the prognosis and immunotherapy response of some tumors, providing a direction for further research on this gene.
Collapse
Affiliation(s)
- Zishun Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Bingji Cao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Zhuozheng Hu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiajun Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Weijun Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhihua Shi
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|
3
|
An L, Dong K, Chi S, Wei S, Zhang J, Yu Z, Zhang Q, Zhang T, Cheng S, Shi R, Jin Z, Zhou X, Zhao Y, Wang H. lncRNA UCA1 promotes tumor progression by targeting SMARCD3 in cervical cancer. Mol Carcinog 2024; 63:384-399. [PMID: 38116886 DOI: 10.1002/mc.23659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Long noncoding RNA urothelial carcinoma associated 1 (UCA1) has been identified as a key molecule in human cancers. However, its functional implications remain unspecified in the context of cervical cancer (CC). This research aims to identify the regulatory mechanism of UCA1 in CC. UCA1 was identified through microarray and confirmed through a quantitative real-time polymerase chain reaction. Proteins that bind with UCA1 were recognized using RNA pull-down assays along with RNA immunoprecipitation. Ubiquitination assays and coimmunoprecipitation were performed to explore the molecular mechanisms of the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily d, member 3 (SMARCD3) downregulated in CC. The effects of UCA1 and SMARCD3 on the progression of CC were investigated through gain- and loss-of-function assays and xenograft tumor formation in vivo. In this study, UCA1 was found to be upregulated in CC cells as well as in human plasma exosomes for the first time. Functional studies indicated that UCA1 promotes CC progression. Mechanically, UCA1 downregulated the SMARCD3 protein stabilization by promoting SMARCD3 ubiquitination. Taken together, we revealed that the UCA1/SMARCD3 axis promoted CC progression, which could provide a new therapeutic target for CC.
Collapse
Affiliation(s)
- Lanfen An
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuqi Chi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicheng Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuangshuang Cheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhishan Jin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Morris MT, Jain A, Sun B, Kurbatov V, Muca E, Zeng Z, Jin Y, Roper J, Lu J, Paty PB, Johnson CH, Khan SA. Multi-omic analysis reveals metabolic pathways that characterize right-sided colon cancer liver metastasis. Cancer Lett 2023; 574:216384. [PMID: 37716465 PMCID: PMC10620771 DOI: 10.1016/j.canlet.2023.216384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
There are well demonstrated differences in tumor cell metabolism between right sided (RCC) and left sided (LCC) colon cancer, which could underlie the robust differences observed in their clinical behavior, particularly in metastatic disease. As such, we utilized liquid chromatography-mass spectrometry to perform an untargeted metabolomics analysis comparing frozen liver metastasis (LM) biobank samples derived from patients with RCC (N = 32) and LCC (N = 58) to further elucidate the unique biology of each. We also performed an untargeted RNA-seq and subsequent network analysis on samples derived from an overlapping subset of patients (RCC: N = 10; LCC: N = 18). Our biobank redemonstrates the inferior survival of patients with RCC-derived LM (P = 0.04), a well-established finding. Our metabolomic results demonstrate increased reactive oxygen species associated metabolites and bile acids in RCC. Conversely, carnitines, indicators of fatty acid oxidation, are relatively increased in LCC. The transcriptomic analysis implicates increased MEK-ERK, PI3K-AKT and Transcription Growth Factor Beta signaling in RCC LM. Our multi-omic analysis reveals several key differences in cellular physiology which taken together may be relevant to clinical differences in tumor behavior between RCC and LCC liver metastasis.
Collapse
Affiliation(s)
- Montana T Morris
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Abhishek Jain
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Boshi Sun
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Vadim Kurbatov
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Engjel Muca
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Zhaoshi Zeng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Ying Jin
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Jatin Roper
- Department of Medicine/Gastroenterology, Duke University School of Medicine, 124 Davison Building, Durham, NC, 27710, USA
| | - Jun Lu
- Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06378, USA
| | - Philip B Paty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA.
| | - Sajid A Khan
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
5
|
Li Y, Xiong C, Wu LL, Zhang BY, Wu S, Chen YF, Xu QH, Liao HF. Tumor subtypes and signature model construction based on chromatin regulators for better prediction of prognosis in uveal melanoma. Pathol Oncol Res 2023; 29:1610980. [PMID: 37362244 PMCID: PMC10287976 DOI: 10.3389/pore.2023.1610980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Background: Uveal Melanoma (UM) is the most prevalent primary intraocular malignancy in adults. This study assessed the importance of chromatin regulators (CRs) in UM and developed a model to predict UM prognosis. Methods: Gene expression data and clinical information for UM were obtained from public databases. Samples were typed according to the gene expression of CRs associated with UM prognosis. The prognostic key genes were further screened by the protein interaction network, and the risk model was to predict UM prognosis using the least absolute shrinkage and selection operator (LASSO) regression analysis and performed a test of the risk mode. In addition, we performed gene set variation analysis, tumor microenvironment, and tumor immune analysis between subtypes and risk groups to explore the mechanisms influencing the development of UM. Results: We constructed a signature model consisting of three CRs (RUVBL1, SIRT3, and SMARCD3), which was shown to be accurate, and valid for predicting prognostic outcomes in UM. Higher immune cell infiltration in poor prognostic subtypes and risk groups. The Tumor immune analysis and Tumor Immune Dysfunction and Exclusion (TIDE) score provided a basis for clinical immunotherapy in UM. Conclusion: The risk model has prognostic value for UM survival and provides new insights into the treatment of UM.
Collapse
Affiliation(s)
- Yue Li
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Chao Xiong
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Li Li Wu
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Bo Yuan Zhang
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Sha Wu
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Yu Fen Chen
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Qi Hua Xu
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Hong Fei Liao
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Yu X, Li W, Feng Y, Gao Z, Wu Q, Xia Y. The prognostic value of hedgehog signaling in bladder cancer by integrated bioinformatics. Sci Rep 2023; 13:6241. [PMID: 37069207 PMCID: PMC10110581 DOI: 10.1038/s41598-023-33140-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Bladder cancer is the second most prevalent urological malignancy. It's a big contributor to cancer-related deaths throughout the globe. Researchers discovered that the hedgehog signaling (HhS) pathway contributed to the onset and spread of many different kinds of cancer. Nevertheless, the present understanding of the function of HhS in the bladder cancer molecular landscape is incomplete. Raw data were gotten from the IMvigor210, the Gene Expression Omnibus, and The Cancer Genome Atlas databases. Bioinformatics was used to examine the HhS score of each sample, and the enrichment of differentially expressed genes (DEGs), differentiation characteristics, immunological infiltration, and metabolic activity. The HhS prognostic signature was developed with significant assistance from the least absolute shrinkage and selection operator regression and Cox regression. An HhS-related nomogram was developed to assist in the prediction of patients' survival probability. We found that HhS was linked to poor prognosis in bladder cancer, and its activation was linked to the Basal subtype of bladder cancer. Bladder cancer with high HhS activity has higher glycolysis, nucleotide metabolism, amino acid metabolism, and other cancer-promoting metabolic activities. Furthermore, HhS mediates an immunosuppressive microenvironment in bladder cancer on the basis that HhS negatively correlates with the CD8 + T cells and correlates positively with immune checkpoints and T cell exhaustion scores. Finally, an HhS-related signature was developed for predicting the prognosis of patients with bladder cancer. Targeting HhS may be a potential therapy choice for bladder cancer.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, People's Republic of China
| | - Yanjun Feng
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, People's Republic of China
| | - Zhijie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| | - Yue Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
7
|
The functions and molecular mechanisms of Tribbles homolog 3 (TRIB3) implicated in the pathophysiology of cancer. Int Immunopharmacol 2023; 114:109581. [PMID: 36527874 DOI: 10.1016/j.intimp.2022.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Currently, cancer ranks as the second leading cause of death worldwide, and at the same time, the burden of cancer continues to increase. The underlying molecular pathways involved in the initiation and development of cancer are the subject of considerable research worldwide. Further understanding of these pathways may lead to new cancer treatments. Growing data suggest that Tribble's homolog 3 (TRIB3) is essential in oncogenesis in many types of cancer. The mammalian tribbles family's proteins regulate various cellular and physiological functions, such as the cell cycle, stress response, signal transduction, propagation, development, differentiation, immunity, inflammatory processes, and metabolism. To exert their activities, Tribbles proteins must alter key signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/AKT pathways. Recent evidence supports that TRIB3 dysregulation has been linked to various diseases, including tumor development and chemoresistance. It has been speculated that TRIB3 may either promote or inhibit the onset and development of cancer. However, it is still unclear how TRIB3 performs this dual function in cancer. In this review, we present and discuss the most recent data on the role of TRIB3 in cancer pathophysiology and chemoresistance. Furthermore, we describe in detail the molecular mechanism TRIB3 regulates in cancer.
Collapse
|
8
|
Yang W, Luo C, Chen S. Development and validation of a chromatin regulator prognostic signature in colon adenocarcinoma. Front Genet 2022; 13:986325. [PMID: 36506326 PMCID: PMC9727087 DOI: 10.3389/fgene.2022.986325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Aberrant expression of chromatin regulators (CRs) could lead to the development of various diseases including cancer. However, the biological function and prognosis role of CRs in colon adenocarcinoma (COAD) remains unclear. We performed the clustering analyses for expression profiling of COAD downloaded from The Cancer Genome Atlas. We developed a chromatin regulator prognostic model, which was validated in an independent cohort data. Time-intendent receiver operating characteristics curve was used to evaluate predict ability of model. Univariate and multivariate cox regression were used to assess independence of risk score. Nomogram was established to assess individual risk. Gene ontology, and Kyoto Encyclopedia of genes and genomes, gene set variation analysis and gene set enrichment analysis were performed to explore the function of CRs. Immune infiltration and drug sensitivity were also performed to assess effect of CRs on treatment in COAD. COAD can be separated into two subtypes with different clinical characteristics and prognosis. The C2 had elevated immune infiltration levels and low tumor purity. Using 12 chromatin regulators, we developed and validated a prognostic model that can predict the overall survival of COAD patients. We built a risk score that can be an independent prognosis predictor of COAD. The nomogram score system achieved the best predict ability and were also confirmed by decision curve analysis. There were significantly different function and pathway enrichment, immune infiltration levels, and tumor mutation burden between high-risk and low-risk group. The external validation data also indicated that high-risk group had higher stable disease/progressive disease response rate and poorer prognosis than low-risk group. Besides, the signature genes included in the model could cause chemotherapy sensitivity to some small molecular compounds. Our integrative analyses for chromatin regulators could provide new insights for the risk management and individualized treatment in COAD.
Collapse
Affiliation(s)
- Wenlong Yang
- Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Wenlong Yang,
| | - Chenhua Luo
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shan Chen
- Department of Pharmacy, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Li X, Huo X, Zhao C, Chen Z, Xu Z, Yu J, Sun X. A novel chromatin regulator signature predicts the prognosis, clinical features and immunotherapy of colon cancer. Epigenomics 2022; 14:1325-1341. [PMID: 36545887 DOI: 10.2217/epi-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To elucidate the potential function and prognostic value of chromatin regulators (CRs) in colon cancer. Materials & methods: A comprehensive analysis of CR RNA expression data from public databases was conducted. Results: The authors successfully established and validated a 17 CR-based signature using public databases. Ten CRs of the signature were eventually verified at the protein level using the Human Protein Atlas database. Functional enrichment showed that CRs were significantly enriched in cancer-related pathways. This signature was remarkably relevant to immune cell infiltration, immune checkpoints, tumor immune dysfunction and exclusion (TIDE) score and drug sensitivity. Conclusion: The authors identified a novel, reliable prognostic signature for colon cancer. The study provided new insights into the function of CRs and has important clinical implications for immunotherapy for colon cancer.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiongwei Huo
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chenye Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
10
|
Prognostic Gene Expression-Based Signature in Clear-Cell Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14153754. [PMID: 35954418 PMCID: PMC9367562 DOI: 10.3390/cancers14153754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
The inaccuracy of the current prognostic algorithms and the potential changes in the therapeutic management of localized ccRCC demands the development of an improved prognostic model for these patients. To this end, we analyzed whole-transcriptome profiling of 26 tissue samples from progressive and non-progressive ccRCCs using Illumina Hi-seq 4000. Differentially expressed genes (DEG) were intersected with the RNA-sequencing data from the TCGA. The overlapping genes were used for further analysis. A total of 132 genes were found to be prognosis-related genes. LASSO regression enabled the development of the best prognostic six-gene panel. Cox regression analyses were performed to identify independent clinical prognostic parameters to construct a combined nomogram which includes the expression of CERCAM, MIA2, HS6ST2, ONECUT2, SOX12, TMEM132A, pT stage, tumor size and ISUP grade. A risk score generated using this model effectively stratified patients at higher risk of disease progression (HR 10.79; p < 0.001) and cancer-specific death (HR 19.27; p < 0.001). It correlated with the clinicopathological variables, enabling us to discriminate a subset of patients at higher risk of progression within the Stage, Size, Grade and Necrosis score (SSIGN) risk groups, pT and ISUP grade. In summary, a gene expression-based prognostic signature was successfully developed providing a more precise assessment of the individual risk of progression.
Collapse
|
11
|
Santonja Á, Moya-García AA, Ribelles N, Jiménez-Rodríguez B, Pajares B, Fernández-De Sousa CE, Pérez-Ruiz E, Del Monte-Millán M, Ruiz-Borrego M, de la Haba J, Sánchez-Rovira P, Romero A, González-Neira A, Lluch A, Alba E. Role of germline variants in the metastasis of breast carcinomas. Oncotarget 2022; 13:843-862. [PMID: 35782051 PMCID: PMC9245581 DOI: 10.18632/oncotarget.28250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Most cancer-related deaths in breast cancer patients are associated with metastasis, a multistep, intricate process that requires the cooperation of tumour cells, tumour microenvironment and metastasis target tissues. It is accepted that metastasis does not depend on the tumour characteristics but the host’s genetic makeup. However, there has been limited success in determining the germline genetic variants that influence metastasis development, mainly because of the limitations of traditional genome-wide association studies to detect the relevant genetic polymorphisms underlying complex phenotypes. In this work, we leveraged the extreme discordant phenotypes approach and the epistasis networks to analyse the genotypes of 97 breast cancer patients. We found that the host’s genetic makeup facilitates metastases by the dysregulation of gene expression that can promote the dispersion of metastatic seeds and help establish the metastatic niche—providing a congenial soil for the metastatic seeds.
Collapse
Affiliation(s)
- Ángela Santonja
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Spain.,Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,These authors contributed equally to this work
| | - Aurelio A Moya-García
- Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,Departmento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain.,These authors contributed equally to this work
| | - Nuria Ribelles
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain
| | - Begoña Jiménez-Rodríguez
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain
| | - Bella Pajares
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain
| | - Cristina E Fernández-De Sousa
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Spain.,Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain
| | | | - María Del Monte-Millán
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
| | | | - Juan de la Haba
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Biomedical Research Institute, Complejo Hospitalario Reina Sofía, Córdoba, Spain
| | | | - Atocha Romero
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Anna González-Neira
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Lluch
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain.,INCLIVA Biomedical Research Institute, Universidad de Valencia, Valencia, Spain
| | - Emilio Alba
- Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain
| |
Collapse
|
12
|
Zhang J, Cai B, Ma M, Kong S, Zhou Z, Zhang X, Nie Q. LncRNA SMARCD3-OT1 Promotes Muscle Hypertrophy and Fast-Twitch Fiber Transformation via Enhancing SMARCD3X4 Expression. Int J Mol Sci 2022; 23:ijms23094510. [PMID: 35562902 PMCID: PMC9105468 DOI: 10.3390/ijms23094510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/21/2022] Open
Abstract
Long noncoding RNA (lncRNA) plays a crucial part in all kinds of life activities, especially in myogenesis. SMARCD3 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily d, member 3) is a member of the SWI/SNF protein complex and was reported to be required for cell proliferation and myoblast differentiation. In this study, we identified a new lncRNA named SMARCD3-OT1 (SMARCD3overlappinglncRNA), which strongly regulated the development of myogenesis by improving the expression of SMARCD3X4 (SMARCD3transcripts4). We overexpressed and knockdown the expression of SMARCD3-OT1 and SMARCD3X4 to investigate their function on myoblast proliferation and differentiation. Cell experiments proved that SMARCD3-OT1 and SMARCD3X4 promoted myoblast proliferation through the CDKN1A pathway and improved differentiation of differentiated myoblasts through the MYOD pathway. Moreover, they upregulated the fast-twitch fiber-related genes and downregulated the slow-twitch fiber-related genes, which indicated that they facilitated the slow-twitch fiber to transform into the fast-twitch fiber. The animals’ experiments supported the results above, demonstrating that SMARCD3-OT1 could induce muscle hypertrophy and fast-twitch fiber transformation. In conclusion, SMARCD3-OT1 can improve the expression of SMARCD3X4, thus inducing muscle hypertrophy. In addition, SMARCD3-OT1 can facilitate slow-twitch fibers to transform into fast-twitch fibers.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (B.C.); (M.M.); (S.K.); (Z.Z.); (X.Z.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- National-Local Joint Engineering Research Center for Livestock Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Bolin Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (B.C.); (M.M.); (S.K.); (Z.Z.); (X.Z.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- National-Local Joint Engineering Research Center for Livestock Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Manting Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (B.C.); (M.M.); (S.K.); (Z.Z.); (X.Z.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- National-Local Joint Engineering Research Center for Livestock Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shaofen Kong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (B.C.); (M.M.); (S.K.); (Z.Z.); (X.Z.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- National-Local Joint Engineering Research Center for Livestock Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (B.C.); (M.M.); (S.K.); (Z.Z.); (X.Z.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- National-Local Joint Engineering Research Center for Livestock Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (B.C.); (M.M.); (S.K.); (Z.Z.); (X.Z.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- National-Local Joint Engineering Research Center for Livestock Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (B.C.); (M.M.); (S.K.); (Z.Z.); (X.Z.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- National-Local Joint Engineering Research Center for Livestock Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
13
|
Wang RQ, He FZ, Meng Q, Lin WJ, Dong JM, Yang HK, Yang Y, Zhao M, Qiu WT, Xin YJ, Zhou ZL. Tribbles pseudokinase 3 ( TRIB3) contributes to the progression of hepatocellular carcinoma by activating the mitogen-activated protein kinase pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1253. [PMID: 34532390 PMCID: PMC8421934 DOI: 10.21037/atm-21-2820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/05/2021] [Indexed: 11/06/2022]
Abstract
Background Tribble pseudokinase 3 (TRIB3) plays a key role in regulating the malignancy of many tumors. This study examined its function in cancer cells and explored the potential mechanisms of action. Methods The expression of TRIB3 was examined in hepatocellular carcinomas (HCCs) using The Cancer Genome Atlas (TCGA) database. A TRIB3 lentivirus with a flag label was constructed and transfected into Huh7 and Hep3B human hepatoma cell lines to generate cells that stably overexpress TRIB3. A small interfering RNA (siRNA) was designed to knockdown TRIB3 mRNA in HepG2 and Huh7. Cell viability and cell colony formation assays were conducted. Flow cytometry was performed to assess the cell cycle in cells overexpressing TRIB3. Western blotting were performed to examine the expression of (Mitogen-activated protein kinase, MAPKK) (MEK), phosphorylated-MEK (p-MEK), extracellular signal-regulated kinase (ERK), and p-MEK in cells with TRIB3 knockdown. The correlation between TRIB3 and SMARCD3 was assessed using co-immunoprecipitation assays and immunofluorescence. Results TRIB3 was significantly overexpressed in advanced grade HCC tissues and was closely correlated with poor prognosis. TRIB3 overexpression promoted the cell growth and cell cycle but had little effect on migration capabilities in Huh7 and Hep3B cells. Conversely, knockdown of TRIB3 had slow down the cell growth in Huh7 and HepG2 cells detected by CCK8 and colony formation assay. The expression of MEK and ERK at both the protein and mRNA levels were downregulated when TRIB3 was knocked down. The protein expression of p-ERK and p-MEK were also downregulated upon TRIB3 silencing. SMARCD3 is a transcript factor that is belongs to the SWI/SNF complex and has been shown to regulate many genes. Indeed, co-immunoprecipitation assays demonstrated that TRIB3 interacts with SMARCD3 in the nucleus, suggesting that it may regulate TRIB3 in HCCs. Conclusions This study demonstrated that TRIB3 promotes the malignancy of HCC cells and its expression may be a potential diagnostic biomarker for HCC progression.
Collapse
Affiliation(s)
- Rui-Qi Wang
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Fa-Zhong He
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Qian Meng
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Wei-Jie Lin
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Jia-Mei Dong
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Hai-Kui Yang
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Min Zhao
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Wen-Tao Qiu
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Yong-Jie Xin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
14
|
Gerovska D, Garcia-Gallastegi P, Crende O, Márquez J, Larrinaga G, Unzurrunzaga M, Araúzo-Bravo MJ, Badiola I. GeromiRs Are Downregulated in the Tumor Microenvironment during Colon Cancer Colonization of the Liver in a Murine Metastasis Model. Int J Mol Sci 2021; 22:ijms22094819. [PMID: 34062897 PMCID: PMC8124834 DOI: 10.3390/ijms22094819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a phenomenon broadly related to ageing in various ways such as cell cycle deregulation, metabolic defects or telomerases dysfunction as principal processes. Although the tumor cell is the main actor in cancer progression, it is not the only element of the disease. Cells and the matrix surrounding the tumor, called the tumor microenvironment (TME), play key roles in cancer progression. Phenotypic changes of the TME are indispensable for disease progression and a few of these transformations are produced by epigenetic changes including miRNA dysregulation. In this study, we found that a specific group of miRNAs in the liver TME produced by colon cancer called geromiRs, which are miRNAs related to the ageing process, are significantly downregulated. The three principal cell types involved in the liver TME, namely, liver sinusoidal endothelial cells, hepatic stellate (Ito) cells and Kupffer cells, were isolated from a murine hepatic metastasis model, and the miRNA and gene expression profiles were studied. From the 115 geromiRs and their associated hallmarks of aging, which we compiled from the literature, 75 were represented in the used microarrays, 26 out of them were downregulated in the TME cells during colon cancer colonization of the liver, and none of them were upregulated. The histone modification hallmark of the downregulated geromiRs is significantly enriched with the geromiRs miR-15a, miR-16, miR-26a, miR-29a, miR-29b and miR-29c. We built a network of all of the geromiRs downregulated in the TME cells and their gene targets from the MirTarBase database, and we analyzed the expression of these geromiR gene targets in the TME. We found that Cercam and Spsb4, identified as prognostic markers in a few cancer types, are associated with downregulated geromiRs and are upregulated in the TME cells.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, C/Doctor Beguiristain s/n, 20014 San Sebastián, Spain;
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, C/Doctor Beguiristain s/n, 20014 San Sebastián, Spain
| | - Patricia Garcia-Gallastegi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (P.G.-G.); (O.C.); (J.M.)
| | - Olatz Crende
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (P.G.-G.); (O.C.); (J.M.)
| | - Joana Márquez
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (P.G.-G.); (O.C.); (J.M.)
| | - Gorka Larrinaga
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- BioCruces Health Research Institute, 48903 Barakaldo, Spain
| | - Maite Unzurrunzaga
- Centro Salud Legazpi OSI Goierri-Urola Garaia-Osakidetza, 20230 Legazpia, Spain;
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, C/Doctor Beguiristain s/n, 20014 San Sebastián, Spain;
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, C/Doctor Beguiristain s/n, 20014 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, C/María Díaz Harokoa 3, 48013 Bilbao, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), 28029 Madrid, Spain
- TransBioNet Thematic Network of Excellence for Transitional Bioinformatics, Barcelona Supercomputing Center, 08034 Barcelona, Spain
- Computational Biology and Bioinformatics Group, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Correspondence: (M.J.A.-B.); (I.B.); Tel.: +34-94-3006108 (M.J.A.-B.); +34-94-6015776 (I.B.)
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (P.G.-G.); (O.C.); (J.M.)
- Nanokide Therapeutics SL, Zitek Ed, Rectorado Bajo, Bº Sarriena sn, 48940 Leioa, Spain
- Correspondence: (M.J.A.-B.); (I.B.); Tel.: +34-94-3006108 (M.J.A.-B.); +34-94-6015776 (I.B.)
| |
Collapse
|