1
|
Zhang M, Tang M, Yan K, Zhang Y, Li Y, Tang J, Xu S, Yan X, Hu J, Wang Y. Effects of supplemental medusa (Rhopilema esculentum) on intestinal microbiota and metabolites in silver pomfret (Pampus argenteus). JOURNAL OF FISH BIOLOGY 2024. [PMID: 39360517 DOI: 10.1111/jfb.15926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024]
Abstract
Pampus argenteus demonstrates a preference for Rhopilema esculentum as prey, yet the ramifications of consuming supplemental medusa on fish microbiota and metabolism remain elusive. To elucidate these effects, 300 juvenile fish were divided into two groups: control group (C, given commercial food only) and supplemental medusa (SM) group (given supplemental medusa + commercial feed). After 15 days, fish in the SM group exhibited a significant increase in fatness, the amylase activity in the intestine significantly increased, and the intestinal microvilli were arranged more neatly. The comprehensive approach involving 16S rRNA amplicon sequencing and metabolomics was employed, leading to the identification of five genera within the SM group, namely Lactococcus, Cohaesibacter, Maritalea, Sulfitobacter, and Carnobacterium. Functional prediction analysis of the microbiota indicated that the consumption of supplemental medusa facilitated processes such as glycolysis/gluconeogenesis and amino acid absorption. Metabolomics analysis revealed significant enrichment of 85 differential metabolites, most of them belonging to fatty acids and conjugates. These differential metabolites primarily participated in processes such as amino acid metabolism, fatty acid synthesis, and disease. Notably, the consumption of medusa resulted in a significant reduction in nine lysophospholipids associated with cardiovascular disease and inflammation. Pearson's correlation coefficient analysis revealed associations between specific microorganisms and metabolites, indicating that Cobetia, Weissella, and Macrococcus exhibited an increased abundance in the SM group, positively correlating with apocynin, 12-Hete, and delta 9-THC-d3. The indicator bacteria Psychrobacter reduced in the SM group, exhibiting a negative correlation with cystathionine (a compound involved in glutathione synthesis). Overall, the supplementation of medusa may confer a beneficial effect on the immunity of the fish. This study contributes to the theoretical framework for fish feed development.
Collapse
Affiliation(s)
- Man Zhang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Mengke Tang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Kaiheng Yan
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Youyi Zhang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yaya Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Jie Tang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Shanliang Xu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiabao Hu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yajun Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Garcia-Fernandez H, Alcala-Diaz JF, Quintana-Navarro GM, Lopez-Moreno J, Luque-Cordoba D, Ruiz-Diaz Narvaez E, Arenas-de Larriva AP, Gutierrez-Mariscal FM, Torres-Peña JD, Rodriguez-Cano D, Luque RM, Priego-Capote F, Lopez-Miranda J, Camargo A. Trimethylamine Oxidation into the Proatherogenic Trimethylamine N-Oxide Is Higher in Coronary Heart Disease Men: From the CORDIOPREV Study. World J Mens Health 2024; 42:42.e81. [PMID: 39344118 DOI: 10.5534/wjmh.230366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 10/01/2024] Open
Abstract
PURPOSE Cardiovascular disease (CVD) is more prevalent in men than women, but the mechanisms responsible for this are not fully understood. We aimed to evaluate differences in trimethylamine (TMA), a microbial metabolite and its oxidized form, trimethylamine N-oxide (TMAO), which is thought to promote atherosclerosis, between men and women with coronary heart disease (CHD), using as a reference a non-CVD population. MATERIALS AND METHODS This study was carried out within the framework of the CORDIOPREV study (NCT00924937; June 19, 2009), a clinical trial which included 827 men and 175 women with CHD, with a non-CVD population of 375 individuals (270 men and 105 women) as a reference group. Plasma TMA and TMAO were measured by HPLC-MS/MS. The carotid study was ultrasonically assessed bilaterally by the quantification of intima-media thickness of both common carotid arteries (IMT-CC). RESULTS We found higher TMAO levels and TMAO/TMA ratio in CHD men than CHD women (p=0.034 and p=0.026, respectively). No TMA sex differences were found in CHD patients. The TMA and TMAO levels and TMAO/TMA ratio were lower, and no differences between sexes were found in the non-CVD population. TMAO levels in CHD patients were consistent with higher IMT-CC and more carotid plaques (p=0.032 and p=0.037, respectively) and lower cholesterol efflux in CHD men than CHD women (p<0.001). CONCLUSIONS Our results suggest that CHD men have augmented TMAO levels compared with CHD women, presumably as a consequence of higher rate of TMA to TMAO oxidation, which could be associated with CVD, as these sex differences are not observed in a non-CVD population.
Collapse
Affiliation(s)
- Helena Garcia-Fernandez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofía University Hospital, Cordoba, Spain
- Department of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan F Alcala-Diaz
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofía University Hospital, Cordoba, Spain
- Department of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Gracia M Quintana-Navarro
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofía University Hospital, Cordoba, Spain
- Department of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Lopez-Moreno
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofía University Hospital, Cordoba, Spain
- Department of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Diego Luque-Cordoba
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- Department of Analytical Chemistry and Nanochemistry University Institute, University of Cordoba, Cordoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Eugenia Ruiz-Diaz Narvaez
- Department of Clinical Nutrition and Diet Therapy, Clinics Hospital, Faculty of Medical Sciences, National University of Asuncion, San Lorenzo, Paraguay
| | - Antonio P Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofía University Hospital, Cordoba, Spain
- Department of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco M Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofía University Hospital, Cordoba, Spain
- Department of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose D Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofía University Hospital, Cordoba, Spain
- Department of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Raul M Luque
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Feliciano Priego-Capote
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- Department of Analytical Chemistry and Nanochemistry University Institute, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofía University Hospital, Cordoba, Spain
- Department of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Camargo
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofía University Hospital, Cordoba, Spain
- Department of Medical and Surgical Sciences, University of Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Sisk-Hackworth L, Akhavan SR, Krutkin DD, Kelley ST, Thackray VG. Genetic hypogonadal (Gnrh1 hpg) mouse model uncovers influence of reproductive axis on maturation of the gut microbiome during puberty. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601610. [PMID: 39005422 PMCID: PMC11245025 DOI: 10.1101/2024.07.01.601610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The gut microbiome plays a key role in human health and gut dysbiosis is linked to many sex-specific diseases including autoimmune, metabolic, and neurological disorders. Activation of the hypothalamic-pituitary-gonadal (HPG) axis during puberty leads to sexual maturation and development of sex differences through the action of gonadal sex steroids. While the gut microbiome also undergoes sex differentiation, the mechanisms involved remain poorly understood. Using a genetic hypogonadal (hpg) mouse model, we sampled the fecal microbiome of male and female wild-type and hpg mutant mice before and after puberty to determine how microbial taxonomy and function are influenced by age, sex, and the HPG axis. We showed that HPG axis activation during puberty is required for sexual maturation of the gut microbiota composition, community structure, and metabolic functions. We also demonstrated that some sex differences in taxonomic composition and amine metabolism developed independently of the HPG axis, indicating that sex chromosomes are sufficient for certain sex differences in the gut microbiome. In addition, we showed that age, independent of HPG axis activation, led to some aspects of pubertal maturation of the gut microbiota community composition and putative functions. These results have implications for microbiome-based treatments, indicating that sex, hormonal status, and age should be considered when designing microbiome-based therapeutics.
Collapse
Affiliation(s)
- Laura Sisk-Hackworth
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Shayan R Akhavan
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Dennis D Krutkin
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Scott T Kelley
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Varykina G Thackray
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Garcia-Fernandez H, Arenas-de Larriva AP, Lopez-Moreno J, Gutierrez-Mariscal FM, Romero-Cabrera JL, Molina-Abril H, Torres-Peña JD, Rodriguez-Cano D, Malagon MM, Ordovas JM, Delgado-Lista J, Perez-Martinez P, Lopez-Miranda J, Camargo A. Sex-specific differences in intestinal microbiota associated with cardiovascular diseases. Biol Sex Differ 2024; 15:7. [PMID: 38243297 PMCID: PMC10797902 DOI: 10.1186/s13293-024-00582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVD), including coronary heart disease (CHD), display a higher prevalence in men than women. This study aims to evaluate the variations in the intestinal microbiota between men and women afflicted with CHD and delineate these against a non-CVD control group for each sex. METHODS Our research was conducted in the framework of the CORDIOPREV study, a clinical trial which involved 837 men and 165 women with CHD. We contrasted our findings with a reference group of 375 individuals (270 men, 105 women) without CVD. The intestinal microbiota was examined through 16S metagenomics on the Illumina MiSeq platform and the data processed with Quiime2 software. RESULTS Our results showed a sex-specific variation (beta diversity) in the intestinal microbiota, while alpha-biodiversity remained consistent across both sexes. Linear discriminant analysis effect size (LEfSe) analysis revealed sex-centric alterations in the intestinal microbiota linked to CVD. Moreover, using random forest (RF) methodology, we identified seven bacterial taxa-g_UBA1819 (Ruminococcaceae), g_Bilophila, g_Subdoligranulum, g_Phascolarctobacterium, f_Barnesiellaceae, g_Ruminococcus, and an unknown genus from the Ruminococcaceae family (Ruminococcaceae incertae sedis)-as key discriminators between men and women diagnosed with CHD. The same taxa also emerged as critical discriminators between CHD-afflicted and non-CVD individuals, when analyzed separately by sex. CONCLUSION Our findings suggest a sex-specific dysbiosis in the intestinal microbiota linked to CHD, potentially contributing to the sex disparity observed in CVD incidence. Trial registration Clinical Trials.gov.Identifier NCT00924937.
Collapse
Affiliation(s)
- Helena Garcia-Fernandez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
| | - Antonio P Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
| | - Javier Lopez-Moreno
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
| | - Francisco M Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan L Romero-Cabrera
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
| | | | - Jose D Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Maria M Malagon
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Jose M Ordovas
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- IMDEA Food Institute, Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain.
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain.
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain.
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Camargo
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Hospital Universitario Reina Sofía, Cordoba, Spain.
- Department of Medical and Surgical Sciences, Universidad de Cordoba, Cordoba, Spain.
- Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Cordoba, Spain.
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Giatti S, Diviccaro S, Cioffi L, Cosimo Melcangi R. Post-Finasteride Syndrome And Post-Ssri Sexual Dysfunction: Two Clinical Conditions Apparently Distant, But Very Close. Front Neuroendocrinol 2024; 72:101114. [PMID: 37993021 DOI: 10.1016/j.yfrne.2023.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Post-finasteride syndrome and post-SSRI sexual dysfunction, are two poorly explored clinical conditions in which men treated for androgenetic alopecia with finasteride or for depression with SSRI antidepressants show persistent side effects despite drug suspension (e.g., sexual dysfunction, psychological complaints, sleep disorders). Because of some similarities in the symptoms, common pathological mechanisms are proposed here. Indeed, as discussed, clinical studies and preclinical data obtained so far suggest an important role for brain modulators (i.e., neuroactive steroids), neurotransmitters (i.e., serotonin, and cathecolamines), and gut microbiota in the context of the gut-brain axis. In particular, the observed interconnections of these signals in these two clinical conditions may suggest similar etiopathogenetic mechanisms, such as the involvement of the enzyme converting norepinephrine into epinephrine (i.e., phenylethanolamine N-methyltransferase). However, despite the current efforts, more work is still needed to advance the understanding of these clinical conditions in terms of diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
6
|
Sisk-Hackworth L, Brown J, Sau L, Levine AA, Tam LYI, Ramesh A, Shah RS, Kelley-Thackray ET, Wang S, Nguyen A, Kelley ST, Thackray VG. Genetic hypogonadal mouse model reveals niche-specific influence of reproductive axis and sex on intestinal microbial communities. Biol Sex Differ 2023; 14:79. [PMID: 37932822 PMCID: PMC10626657 DOI: 10.1186/s13293-023-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The gut microbiome has been linked to many diseases with sex bias including autoimmune, metabolic, neurological, and reproductive disorders. While numerous studies report sex differences in fecal microbial communities, the role of the reproductive axis in this differentiation is unclear and it is unknown how sex differentiation affects microbial diversity in specific regions of the small and large intestine. METHODS We used a genetic hypogonadal mouse model that does not produce sex steroids or go through puberty to investigate how sex and the reproductive axis impact bacterial diversity within the intestine. Using 16S rRNA gene sequencing, we analyzed alpha and beta diversity and taxonomic composition of fecal and intestinal communities from the lumen and mucosa of the duodenum, ileum, and cecum from adult female (n = 20) and male (n = 20) wild-type mice and female (n = 17) and male (n = 20) hypogonadal mice. RESULTS Both sex and reproductive axis inactivation altered bacterial composition in an intestinal section and niche-specific manner. Hypogonadism was significantly associated with bacteria from the Bacteroidaceae, Eggerthellaceae, Muribaculaceae, and Rikenellaceae families, which have genes for bile acid metabolism and mucin degradation. Microbial balances between males and females and between hypogonadal and wild-type mice were also intestinal section-specific. In addition, we identified 3 bacterial genera (Escherichia Shigella, Lachnoclostridium, and Eggerthellaceae genus) with higher abundance in wild-type female mice throughout the intestinal tract compared to both wild-type male and hypogonadal female mice, indicating that activation of the reproductive axis leads to female-specific differentiation of the gut microbiome. Our results also implicated factors independent of the reproductive axis (i.e., sex chromosomes) in shaping sex differences in intestinal communities. Additionally, our detailed profile of intestinal communities showed that fecal samples do not reflect bacterial diversity in the small intestine. CONCLUSIONS Our results indicate that sex differences in the gut microbiome are intestinal niche-specific and that sampling feces or the large intestine may miss significant sex effects in the small intestine. These results strongly support the need to consider both sex and reproductive status when studying the gut microbiome and while developing microbial-based therapies.
Collapse
Affiliation(s)
- Laura Sisk-Hackworth
- University of California San Diego, La Jolla, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Jada Brown
- University of California San Diego, La Jolla, CA, USA
| | - Lillian Sau
- University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Reeya S Shah
- University of California San Diego, La Jolla, CA, USA
| | | | - Sophia Wang
- University of California San Diego, La Jolla, CA, USA
| | - Anita Nguyen
- University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
7
|
Diviccaro S, Falvo E, Piazza R, Cioffi L, Herian M, Brivio P, Calabrese F, Giatti S, Caruso D, Melcangi RC. Gut microbiota composition is altered in a preclinical model of type 1 diabetes mellitus: Influence on gut steroids, permeability, and cognitive abilities. Neuropharmacology 2023; 226:109405. [PMID: 36572179 DOI: 10.1016/j.neuropharm.2022.109405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Sex steroid hormones are not only synthesized from the gonads but also by other tissues, such as the brain (i.e., neurosteroids) and colon (i.e., gut steroids). Gut microbiota can be shaped from sex steroid hormones synthesized from the gonads and locally interacts with gut steroids as in turn modulates neurosteroids. Type 1 diabetes mellitus (T1DM) is characterized by dysbiosis and also by diabetic encephalopathy. However, the interactions of players of gut-brain axis, such as gut steroids, gut permeability markers and microbiota, have been poorly explored in this pathology and, particularly in females. On this basis, we have explored, in streptozotocin (STZ)-induced adult female rats, whether one month of T1DM may alter (I) gut microbiome composition and diversity by 16S next-generation sequencing, (II) gut steroid levels by liquid chromatography-tandem mass spectrometry, (III) gut permeability markers by gene expression analysis, (IV) cognitive behavior by the novel object recognition (NOR) test and whether correlations among these aspects may occur. Results obtained reveal that T1DM alters gut β-, but not α-diversity. The pathology is also associated with a decrease and an increase in colonic pregnenolone and allopregnanolone levels, respectively. Additionally, diabetes alters gut permeability and worsens cognitive behavior. Finally, we reported a significant correlation of pregnenolone with Blautia, claudin-1 and the NOR index and of allopregnanolone with Parasutterella, Gammaproteobacteria and claudin-1. Altogether, these results suggest new putative roles of these two gut steroids related to cognitive deficit and dysbiosis in T1DM female experimental model. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Rocco Piazza
- Dipartimento di Medicina e Chirurgia, Università di Milano - Bicocca, Milan, Italy
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Monika Herian
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paola Brivio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
8
|
Interaction between gut microbiota and sex hormones and their relation to sexual dimorphism in metabolic diseases. Biol Sex Differ 2023; 14:4. [PMID: 36750874 PMCID: PMC9903633 DOI: 10.1186/s13293-023-00490-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Metabolic diseases, such as obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D), are now a widespread pandemic in the developed world. These pathologies show sex differences in their development and prevalence, and sex steroids, mainly estrogen and testosterone, are thought to play a prominent role in this sexual dimorphism. The influence of sex hormones on these pathologies is not only reflected in differences between men and women, but also between women themselves, depending on the hormonal changes associated with the menopause. The observed sex differences in gut microbiota composition have led to multiple studies highlighting the interaction between steroid hormones and the gut microbiota and its influence on metabolic diseases, ultimately pointing to a new therapy for these diseases based on the manipulation of the gut microbiota. This review aims to shed light on the role of sexual hormones in sex differences in the development and prevalence of metabolic diseases, focusing on obesity, MetS and T2D. We focus also the interaction between sex hormones and the gut microbiota, and in particular the role of microbiota in aspects such as gut barrier integrity, inflammatory status, and the gut-brain axis, given the relevance of these factors in the development of metabolic diseases.
Collapse
|
9
|
Paroxetine effects in adult male rat colon: Focus on gut steroidogenesis and microbiota. Psychoneuroendocrinology 2022; 143:105828. [PMID: 35700562 DOI: 10.1016/j.psyneuen.2022.105828] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 01/12/2023]
Abstract
Paroxetine, a selective serotonin reuptake inhibitor (SSRI), is prescribed to treat psychiatric disorders, although an off-label SSRI use is also for functional gastrointestinal disorders. The mutual correlation between serotonin and peripheral sex steroids has been reported, however little attention to sex steroids synthesized by gut, has been given so far. Indeed, whether SSRIs, may also influence the gut steroid production, immediately after treatment and/or after suspension, is still unclear. The finding that gut possesses steroidogenic capability is of particular relevance, also for the existence of the gut-microbiota-brain axis, where gut microbiota represents a key orchestrator. On this basis, adult male rats were treated daily for two weeks with paroxetine or vehicle and, 24 h after treatment and at 1 month of withdrawal, steroid environment and gut microbiota were evaluated. Results obtained reveal that paroxetine significantly affects steroid levels, only in the colon but not in plasma. In particular, steroid modifications observed immediately after treatment are not overlap with those detected at withdrawal. Additionally, paroxetine treatment and its withdrawal impact gut microbiota populations differently. Altogether, these results suggest a biphasic effect of the drug treatment in the gut both on steroidogenesis and microbiota.
Collapse
|
10
|
Dwaib HS, AlZaim I, Ajouz G, Eid AH, El-Yazbi A. Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Mol Pharmacol 2022; 102:481-500. [PMID: 34732528 DOI: 10.1124/molpharm.121.000338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022] Open
Abstract
The evolving view of gut microbiota has shifted toward describing the colonic flora as a dynamic organ in continuous interaction with systemic physiologic processes. Alterations of the normal gut bacterial profile, known as dysbiosis, has been linked to a wide array of pathologies. Of particular interest is the cardiovascular-metabolic disease continuum originating from positive energy intake and high-fat diets. Accumulating evidence suggests a role for sex hormones in modulating the gut microbiome community. Such a role provides an additional layer of modulation of the early inflammatory changes culminating in negative metabolic and cardiovascular outcomes. In this review, we will shed the light on the role of sex hormones in cardiovascular dysfunction mediated by high-fat diet-induced dysbiosis, together with the possible involvement of insulin resistance and adipose tissue inflammation. Insights into novel therapeutic interventions will be discussed as well. SIGNIFICANCE STATEMENT: Increasing evidence implicates a role for dysbiosis in the cardiovascular complications of metabolic dysfunction. This minireview summarizes the available data on the sex-based differences in gut microbiota alterations associated with dietary patterns leading to metabolic impairment. A role for a differential impact of adipose tissue inflammation across sexes in mediating the cardiovascular detrimental phenotype following diet-induced dysbiosis is proposed. Better understanding of this pathway will help introduce early approaches to mitigate cardiovascular deterioration in metabolic disease.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| |
Collapse
|
11
|
Diviccaro S, FitzGerald JA, Cioffi L, Falvo E, Crispie F, Cotter PD, O’Mahony SM, Giatti S, Caruso D, Melcangi RC. Gut Steroids and Microbiota: Effect of Gonadectomy and Sex. Biomolecules 2022; 12:biom12060767. [PMID: 35740892 PMCID: PMC9220917 DOI: 10.3390/biom12060767] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 01/02/2023] Open
Abstract
Sex steroids, derived mainly from gonads, can shape microbiota composition; however, the impact of gonadectomy and sex on steroid production in the gut (i.e., gut steroids), and its interaction with microbiota composition, needs to be clarified. In this study, steroid environment and gut steroidogenesis were analysed by liquid chromatography tandem mass spectrometry and expression analyses. Gut microbiota composition as branched- and short-chain fatty acids were determined by 16S rRNA gene sequence analysis and gas chromatography flame ionisation detection, respectively. Here, we first demonstrated that levels of pregnenolone (PREG), progesterone (PROG), and isoallopregnanolone (ISOALLO) were higher in the female rat colon, whereas the level of testosterone (T) was higher in males. Sexual dimorphism on gut steroidogenesis is also reported after gonadectomy. Sex, and more significantly, gonadectomy, affects microbiota composition. We noted that a number of taxa and inferred metabolic pathways were associated with gut steroids, such as positive associations between Blautia with T, dihydroprogesterone (DHP), and allopregnanolone (ALLO), whereas negative associations were noted between Roseburia and T, ALLO, PREG, ISOALLO, DHP, and PROG. In conclusion, this study highlights the novel sex-specific association between microbiota and gut steroids with possible relevance for the gut-brain axis.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (E.F.); (S.G.); (D.C.)
| | - Jamie A. FitzGerald
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; (J.A.F.); (F.C.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland;
| | - Lucia Cioffi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (E.F.); (S.G.); (D.C.)
| | - Eva Falvo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (E.F.); (S.G.); (D.C.)
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; (J.A.F.); (F.C.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland;
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; (J.A.F.); (F.C.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland;
| | - Siobhain M. O’Mahony
- APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland;
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (E.F.); (S.G.); (D.C.)
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (E.F.); (S.G.); (D.C.)
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (E.F.); (S.G.); (D.C.)
- Correspondence:
| |
Collapse
|
12
|
Acharya KD, Friedline RH, Ward DV, Graham ME, Tauer L, Zheng D, Hu X, de Vos WM, McCormick BA, Kim JK, Tetel MJ. Differential effects of Akkermansia-enriched fecal microbiota transplant on energy balance in female mice on high-fat diet. Front Endocrinol (Lausanne) 2022; 13:1010806. [PMID: 36387852 PMCID: PMC9647077 DOI: 10.3389/fendo.2022.1010806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogens protect against weight gain and metabolic disruption in women and female rodents. Aberrations in the gut microbiota composition are linked to obesity and metabolic disorders. Furthermore, estrogen-mediated protection against diet-induced metabolic disruption is associated with modifications in gut microbiota. In this study, we tested if estradiol (E2)-mediated protection against obesity and metabolic disorders in female mice is dependent on gut microbiota. Specifically, we tested if fecal microbiota transplantation (FMT) from E2-treated lean female mice, supplemented with or without Akkermansia muciniphila, prevented high fat diet (HFD)-induced body weight gain, fat mass gain, and hyperglycemia in female recipients. FMT from, and cohousing with, E2-treated lean donors was not sufficient to transfer the metabolic benefits to the E2-deficient female recipients. Moreover, FMT from lean donors supplemented with A. muciniphila exacerbated HFD-induced hyperglycemia in E2-deficient recipients, suggesting its detrimental effect on the metabolic health of E2-deficient female rodents fed a HFD. Given that A. muciniphila attenuates HFD-induced metabolic insults in males, the present findings suggest a sex difference in the impact of this microbe on metabolic health.
Collapse
Affiliation(s)
- Kalpana D. Acharya
- Neuroscience Department, Wellesley College, Wellesley, MA, United States
| | | | - Doyle V. Ward
- Center for Microbiome Research, Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, United States
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Madeline E. Graham
- Neuroscience Department, Wellesley College, Wellesley, MA, United States
| | - Lauren Tauer
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Doris Zheng
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Xiaodi Hu
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- University of Helsinki, Helsinki, Finland
| | - Beth A. McCormick
- Center for Microbiome Research, Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, United States
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Jason K. Kim
- University of Massachusetts Chan Medical School, Worcester, MA, United States
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Marc J. Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA, United States
- *Correspondence: Marc J. Tetel,
| |
Collapse
|
13
|
Diviccaro S, Caputi V, Cioffi L, Giatti S, Lyte JM, Caruso D, O’Mahony SM, Melcangi RC. Exploring the Impact of the Microbiome on Neuroactive Steroid Levels in Germ-Free Animals. Int J Mol Sci 2021; 22:ijms222212551. [PMID: 34830433 PMCID: PMC8622241 DOI: 10.3390/ijms222212551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Steroid hormones are essential biomolecules for human physiology as they modulate the endocrine system, nervous function and behaviour. Recent studies have shown that the gut microbiota is directly involved in the production and metabolism of steroid hormones in the periphery. However, the influence of the gut microbiota on levels of steroids acting and present in the brain (i.e., neuroactive steroids) is not fully understood. Therefore, using liquid chromatography–tandem mass spectrometry, we assessed the levels of several neuroactive steroids in various brain areas and the plasma of germ-free (GF) male mice and conventionally colonized controls. The data obtained indicate an increase in allopregnanolone levels associated with a decrease in those of 5α-androstane-3α, 17β-diol (3α-diol) in the plasma of GF mice. Moreover, an increase of dihydroprogesterone and isoallopregnanolone in the hippocampus, cerebellum, and cerebral cortex was also reported. Changes in dihydrotestosterone and 3α-diol levels were also observed in the hippocampus of GF mice. In addition, an increase in dehydroepiandrosterone was associated with a decrease in testosterone levels in the hypothalamus of GF mice. Our findings suggest that the absence of microbes affects the neuroactive steroids in the periphery and the brain, supporting the evidence of a microbiota-mediated modulation of neuroendocrine pathways involved in preserving host brain functioning.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (V.C.); (J.M.L.); (S.M.O.)
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (V.C.); (J.M.L.); (S.M.O.)
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Fayetteville, AR 72701, USA
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
| | - Siobhain M. O’Mahony
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (V.C.); (J.M.L.); (S.M.O.)
- Department of Anatomy and Neuroscience, University College Cork, T12 ND89 Cork, Ireland
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (S.D.); (L.C.); (S.G.); (D.C.)
- Correspondence: ; Tel.: +39-02-50318238; Fax: +39-02-50318202
| |
Collapse
|
14
|
Phungviwatnikul T, Alexander C, Do S, He F, Suchodolski JS, de Godoy MRC, Swanson KS. Effects of Dietary Macronutrient Profile on Apparent Total Tract Macronutrient Digestibility and Fecal Microbiota, Fermentative Metabolites, and Bile Acids of Female Dogs after Spay Surgery. J Anim Sci 2021; 99:6333593. [PMID: 34333604 DOI: 10.1093/jas/skab225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity and estrogen reduction are known to impact the gut microbiota and gut microbial-derived metabolites in some species, but limited information is available in dogs. The aim of this study was to determine the effects of dietary macronutrient profile on apparent total tract macronutrient digestibility, fecal microbiota, and fecal metabolites of adult female dogs after spay surgery. Twenty-eight adult intact female beagles (age: 3.02 ± 0.71 yr, BW: 10.28 ± 0.77 kg; BCS: 4.98 ± 0.57) were used. After a 5-wk baseline phase (wk 0), 24 dogs were spayed and randomly allotted to one of three experimental diets (n=8/group): 1) control (CO) containing moderate protein and fiber (COSP), 2) high-protein, high-fiber (HPHF), or 3) high-protein, high-fiber plus omega-3 and medium-chain fatty acids (HPHFO). Four dogs were sham-operated and fed CO (COSH). All dogs were fed to maintain BW for 12 wk after spay, then allowed to consume twice that amount for 12 wk. Fecal samples were collected at wk 0, 12, and 24 for digestibility, microbiota, and metabolite analysis. All data were analyzed using repeated measures and linear Mixed Models procedure of SAS 9.4, with results reported as change from baseline. Apparent organic matter and energy digestibilities had greater decreases in HPHF and HPHFO than COSH and COSP. Increases in fecal acetate, total short-chain fatty acids, and secondary bile acids were greater and decreases in primary bile acids were greater in HPHF and HPHFO. Principal coordinates analysis of weighted UniFrac distances revealed that HPHF and HPHFO clustered together and separately from COSH and COSP at wk 12 and 24, with relative abundances of Faecalibacterium, Romboutsia, and Fusobacterium increasing to a greater extent and Catenibacterium, Bifidobacterium, Prevotella 9, Eubacterium, and Megamonas decreasing to a greater extent in HPHF or HPHFO. Our results suggest that high-protein, high-fiber diets alter nutrient and energy digestibilities, fecal metabolite concentrations, and fecal gut microbiota, but spay surgery had minor effects. Future research is needed to investigate how food intake, nutrient profile, and changes in hormone production influence gut microbiota and metabolites of dogs individually and how this knowledge may be used to manage spayed pets.
Collapse
Affiliation(s)
| | - Celeste Alexander
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Sungho Do
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Fei He
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Maria R C de Godoy
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.,Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
15
|
Acharya KD, Noh HL, Graham ME, Suk S, Friedline RH, Gomez CC, Parakoyi AER, Chen J, Kim JK, Tetel MJ. Distinct Changes in Gut Microbiota Are Associated with Estradiol-Mediated Protection from Diet-Induced Obesity in Female Mice. Metabolites 2021; 11:metabo11080499. [PMID: 34436440 PMCID: PMC8398128 DOI: 10.3390/metabo11080499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023] Open
Abstract
A decrease in ovarian estrogens in postmenopausal women increases the risk of weight gain, cardiovascular disease, type 2 diabetes, and chronic inflammation. While it is known that gut microbiota regulates energy homeostasis, it is unclear if gut microbiota is associated with estradiol regulation of metabolism. In this study, we tested if estradiol-mediated protection from high-fat diet (HFD)-induced obesity and metabolic changes are associated with longitudinal alterations in gut microbiota in female mice. Ovariectomized adult mice with vehicle or estradiol (E2) implants were fed chow for two weeks and HFD for four weeks. As reported previously, E2 increased energy expenditure, physical activity, insulin sensitivity, and whole-body glucose turnover. Interestingly, E2 decreased the tight junction protein occludin, suggesting E2 affects gut epithelial integrity. Moreover, E2 increased Akkermansia and decreased Erysipleotrichaceae and Streptococcaceae. Furthermore, Coprobacillus and Lactococcus were positively correlated, while Akkermansia was negatively correlated, with body weight and fat mass. These results suggest that changes in gut epithelial barrier and specific gut microbiota contribute to E2-mediated protection against diet-induced obesity and metabolic dysregulation. These findings provide support for the gut microbiota as a therapeutic target for treating estrogen-dependent metabolic disorders in women.
Collapse
Affiliation(s)
- Kalpana D. Acharya
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
| | - Hye L. Noh
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.L.N.); (S.S.); (R.H.F.); (J.K.K.)
| | - Madeline E. Graham
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
| | - Sujin Suk
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.L.N.); (S.S.); (R.H.F.); (J.K.K.)
| | - Randall H. Friedline
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.L.N.); (S.S.); (R.H.F.); (J.K.K.)
| | - Cesiah C. Gomez
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
| | - Abigail E. R. Parakoyi
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
| | - Jun Chen
- Department of Health Sciences Research & Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jason K. Kim
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.L.N.); (S.S.); (R.H.F.); (J.K.K.)
| | - Marc J. Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
- Correspondence:
| |
Collapse
|
16
|
Le Magueresse-Battistoni B. Adipose Tissue and Endocrine-Disrupting Chemicals: Does Sex Matter? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249403. [PMID: 33333918 PMCID: PMC7765367 DOI: 10.3390/ijerph17249403] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Obesity and metabolic-related diseases, among which diabetes, are prominent public health challenges of the 21st century. It is now well acknowledged that pollutants are a part of the equation, especially endocrine-disrupting chemicals (EDCs) that interfere with the hormonal aspect. The aim of the review is to focus on adipose tissue, a central regulator of energy balance and metabolic homeostasis, and to highlight the significant differences in the endocrine and metabolic aspects of adipose tissue between males and females which likely underlie the differences of the response to exposure to EDCs between the sexes. Moreover, the study also presents an overview of several mechanisms of action by which pollutants could cause adipose tissue dysfunction. Indeed, a better understanding of the mechanism by which environmental chemicals target adipose tissue and cause metabolic disturbances, and how these mechanisms interact and sex specificities are essential for developing mitigating and sex-specific strategies against metabolic diseases of chemical origin. In particular, considering that a scenario without pollutant exposure is not a realistic option in our current societies, attenuating the deleterious effects of exposure to pollutants by acting on the gut-adipose tissue axis may constitute a new direction of research.
Collapse
Affiliation(s)
- Brigitte Le Magueresse-Battistoni
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite, France; ; Tel.: +33-(0)-426235919; Fax: +33-(0)-426235916
- CarMeN Laboratory, INSERM U1060, Hopital Lyon-Sud, Bâtiment CENS ELI-2D, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| |
Collapse
|