1
|
Singh P, Tabassum G, Masood M, Anwar S, Syed MA, Dev K, Hassan MI, Haque MM, Dohare R, Singh IK. Investigating the role of prognostic mitophagy-related genes in non-small cell cancer pathogenesis via multiomics and network-based approach. 3 Biotech 2024; 14:273. [PMID: 39444988 PMCID: PMC11493942 DOI: 10.1007/s13205-024-04127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
As one of the most prevalent malignancies, lung cancer displays considerable biological variability in both molecular and clinical characteristics. Lung cancer is broadly categorized into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) with the latter being most prevalent. The primary histological subtypes of NSCLC are lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). In the present work, we primarily extracted mRNA count data from a publicly accessible database followed by differentially expressed genes (DEGs) and differentially expressed mitophagy-related genes (DEMRGs) identification in case of both LUAD and LUSC cohorts. Next, we identified important DEMRGs via clustering approach followed by enrichment, survival, and mutational analyses. Lastly, the finalized prognostic biomarker was validated using wet-lab experimentations. Primarily, we obtained 986 and 1714 DEGs across LUAD and LUSC cohorts. Only 7 DEMRGs from both cohorts had significant membership values as indicated by the clustering analysis. Most significant pathway, Gene Ontology (GO)-biological process (BP), GO-molecular function (MF), GO-cellular compartment (CC) terms were macroautophagy, GTP metabolic process, magnesium ion binding, mitochondrial outer membrane. Among all, only TDRKH reported significant overall survival (OS) and 14% amplification across LUAD patients. Lastly, we validated TDRKH via immunohistochemistry (IHC) and semi-quantitative polymerase chain reaction (PCR). In conclusion, our findings advocate for the exploration of TDRKH and their genetic alterations in precision oncology therapeutic approaches for LUAD, emphasizing the potential for target-driven therapy and early diagnostics. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04127-y.
Collapse
Affiliation(s)
- Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Gulnaz Tabassum
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Mohammad Masood
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Kapil Dev
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology & DBC i4 Center, Deshbandhu College, University of Delhi, New Delhi, 110019 India
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
2
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, Xia Q, Du Z. Wnt/β-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med 2024; 22:565. [PMID: 38872189 PMCID: PMC11170811 DOI: 10.1186/s12967-024-05380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.
Collapse
Affiliation(s)
- Zixu Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - David Westover
- High-Throughput Analytics, Analytical Research and Development, Merck & Co. Inc., Rahway, NJ, USA
| | - Zhantong Tang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Yue Liu
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210018, China
| | - Yunxi Sun
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Runqing Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Xingyue Wang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Shihui Zhou
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Nigaerayi Hesilaiti
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Qi Xia
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Zhenfang Du
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China.
| |
Collapse
|
3
|
Holic L. Common skin cancers and their association with other non-cutaneous primary malignancies: a review of the literature. Med Oncol 2024; 41:157. [PMID: 38758457 DOI: 10.1007/s12032-024-02385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
It has long been recognized that a history of skin cancer puts one at risk for additional primary skin cancers. However, more variable data exists for the risk of developing a non-cutaneous primary cancer following a diagnosis of skin cancer. The data are most variable for Basal Cell Carcinoma (BCC), the most common and least aggressive type of skin cancer. While early studies imply that BCC does not impart a larger risk of other primary non-cutaneous cancers, more recent studies with larger populations suggest otherwise. The cancers most significantly associated with BCC are lip, oropharyngeal, and salivary gland cancer. There is also burgeoning evidence to suggest a link between BCC and prostate, breast, and colorectal cancer, but more data are needed to draw a concrete conclusion. Squamous Cell Carcinoma (SCC), the second most common type of skin cancer, has a slightly more defined risk to other non-cutaneous primary malignancies. There is a notable link between SCC and non-Hodgkin's lymphoma (NHL), possibly due to immunosuppression. There is also an increased risk of other cancers derived from squamous epithelium following SCC, including oropharyngeal, lip, and salivary gland cancer. Some studies also suggest an increased risk of respiratory tract cancer following SCC, possibly due to shared risk factors. Melanoma, a more severe type of skin cancer, shows a well-defined risk of additional primary non-cutaneous malignancies. The most significant of these risks include NHL, thyroid cancer, prostate cancer, and breast cancer along with a host of other cancers. Each of these three main skin cancer types has a profile of genetic mutations that have also been linked to non-cutaneous malignancies. In this review, we discuss a selection of these genes to highlight the complex interplay between different tumorigenesis processes.
Collapse
Affiliation(s)
- Lindsay Holic
- Chicago Medical School at Rosalind Franklin University, North Chicago, IL, USA.
| |
Collapse
|
4
|
Stafford MYC, McKenna DJ. MiR-182 Is Upregulated in Prostate Cancer and Contributes to Tumor Progression by Targeting MITF. Int J Mol Sci 2023; 24:ijms24031824. [PMID: 36768146 PMCID: PMC9914973 DOI: 10.3390/ijms24031824] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Altered expression of microRNA-182-5p (miR-182) has been consistently linked with many cancers, but its specific role in prostate cancer remains unclear. In particular, its contribution to epithelial-to-mesenchymal transition (EMT) in this setting has not been well studied. Therefore, this paper profiles the expression of miR-182 in prostate cancer and investigates how it may contribute to progression of this disease. In vitro experiments on prostate cancer cell lines and in silico analyses of The Cancer Genome Atlas (TCGA) prostate adenocarcinoma (PRAD) datasets were performed. PCR revealed miR-182 expression was significantly increased in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of TCGA PRAD data similarly showed upregulation of miR-182 was significantly associated with prostate cancer and clinical markers of disease progression. Functional enrichment analysis confirmed a significant association of miR-182 and its target genes with EMT. The EMT-linked gene MITF (melanocyte inducing transcription factor) was subsequently shown to be a novel target of miR-182 in prostate cancer cells. Further TCGA analysis suggested miR-182 expression can be an indicator of patient outcomes and disease progression following therapy. In summary, this is the first study to report that miR-182 over-expression in prostate cancer may contribute to EMT by targeting MITF expression. We propose miR-182 as a potentially useful diagnostic and prognostic biomarker for prostate cancer and other malignancies.
Collapse
|
5
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
6
|
Uveal Melanoma Cell Line Proliferation Is Inhibited by Ricolinostat, a Histone Deacetylase Inhibitor. Cancers (Basel) 2022; 14:cancers14030782. [PMID: 35159049 PMCID: PMC8833954 DOI: 10.3390/cancers14030782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 12/26/2022] Open
Abstract
Metastatic uveal melanoma (MUM) is characterized by poor patient survival. Unfortunately, current treatment options demonstrate limited benefits. In this study, we evaluate the efficacy of ACY-1215, a histone deacetylase inhibitor (HDACi), to attenuate growth of primary ocular UM cell lines and, in particular, a liver MUM cell line in vitro and in vivo, and elucidate the underlying molecular mechanisms. A significant (p = 0.0001) dose-dependent reduction in surviving clones of the primary ocular UM cells, Mel270, was observed upon treatment with increasing doses of ACY-1215. Treatment of OMM2.5 MUM cells with ACY-1215 resulted in a significant (p = 0.0001), dose-dependent reduction in cell survival and proliferation in vitro, and in vivo attenuation of primary OMM2.5 xenografts in zebrafish larvae. Furthermore, flow cytometry revealed that ACY-1215 significantly arrested the OMM2.5 cell cycle in S phase (p = 0.0001) following 24 h of treatment, and significant apoptosis was triggered in a time- and dose-dependent manner (p < 0.0001). Additionally, ACY-1215 treatment resulted in a significant reduction in OMM2.5 p-ERK expression levels. Through proteome profiling, the attenuation of the microphthalmia-associated transcription factor (MITF) signaling pathway was linked to the observed anti-cancer effects of ACY-1215. In agreement, pharmacological inhibition of MITF signaling with ML329 significantly reduced OMM2.5 cell survival and viability in vitro (p = 0.0001) and reduced OMM2.5 cells in vivo (p = 0.0006). Our findings provide evidence that ACY-1215 and ML329 are efficacious against growth and survival of OMM2.5 MUM cells.
Collapse
|
7
|
Jiang W, Xu J, Liao Z, Li G, Zhang C, Feng Y. Prognostic Signature for Lung Adenocarcinoma Patients Based on Cell-Cycle-Related Genes. Front Cell Dev Biol 2021; 9:655950. [PMID: 33869220 PMCID: PMC8044954 DOI: 10.3389/fcell.2021.655950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Objective To screen lung adenocarcinoma (LUAC)-specific cell-cycle-related genes (CCRGs) and develop a prognostic signature for patients with LUAC. Methods The GSE68465, GSE42127, and GSE30219 data sets were downloaded from the GEO database. Single-sample gene set enrichment analysis was used to calculate the cell cycle enrichment of each sample in GSE68465 to identify CCRGs in LUAC. The differential CCRGs compared with LUAC data from The Cancer Genome Atlas were determined. The genetic data from GSE68465 were divided into an internal training group and a test group at a ratio of 1:1, and GSE42127 and GSE30219 were defined as external test groups. In addition, we combined LASSO (least absolute shrinkage and selection operator) and Cox regression analysis with the clinical information of the internal training group to construct a CCRG risk scoring model. Samples were divided into high- and low-risk groups according to the resulting risk values, and internal and external test sets were used to prove the validity of the signature. A nomogram evaluation model was used to predict prognosis. The CPTAC and HPA databases were chosen to verify the protein expression of CCRGs. Results We identified 10 LUAC-specific CCRGs (PKMYT1, ETF1, ECT2, BUB1B, RECQL4, TFRC, COCH, TUBB2B, PITX1, and CDC6) and constructed a model using the internal training group. Based on this model, LUAC patients were divided into high- and low-risk groups for further validation. Time-dependent receiver operating characteristic and Cox regression analyses suggested that the signature could precisely predict the prognosis of LUAC patients. Results obtained with CPTAC, HPA, and IHC supported significant dysregulation of these CCRGs in LUAC tissues. Conclusion This prognostic prediction signature based on CCRGs could help to evaluate the prognosis of LUAC patients. The 10 LUAC-specific CCRGs could be used as prognostic markers of LUAC.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiameng Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zirui Liao
- Medical College, Orthopedic Institute, Soochow University, Suzhou, China
| | - Guangbin Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|