1
|
Guan C, Zhang X, Yu L. A Review of Recent Advances in the Molecular Mechanisms Underlying Brain Metastasis in Lung Cancer. Mol Cancer Ther 2024; 23:627-637. [PMID: 38123448 DOI: 10.1158/1535-7163.mct-23-0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Brain metastasis from lung cancer is a prevalent mode of treatment failure associated with a poor prognosis. The incidence of brain metastasis has recently shown a dramatic increase. The early detection and risk stratification of lung cancer-related brain metastasis would be highly advantageous for patients. However, our current knowledge and comprehension of the underlying mechanisms driving brain metastasis in lung cancer pose significant challenges. This review summarizes the mechanisms underlying brain metastasis, focusing on the intricate interplay between lung cancer-derived tumor cells and the unique characteristics of the brain, recent advancements in the identification of driver genes, concomitant genes, epigenetic features, including miRNAs and long noncoding RNAs, as well as the molecular characterization of brain metastasis originating from other organs, which may further enhance risk stratification and facilitate precise treatment strategies.
Collapse
Affiliation(s)
- Chao Guan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoye Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Sun C, Deng H, Li Q, Wang P, Chen Y, Sun Y, Han C. HOXB9 promotes laryngeal squamous cell carcinoma progression by upregulating MMP12. Funct Integr Genomics 2024; 24:78. [PMID: 38632141 DOI: 10.1007/s10142-024-01357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Transcriptional factor HOXB9, a part of the HOX gene family, plays a crucial role in the development of diverse cancer types. This study aimed to elucidate the regulatory mechanism of HOXB9 on the proliferation and invasion of laryngeal squamous cell carcinoma (LSCC) cells to provide guidance for the development and prognosis of LSCC. The CRISPR/Cas9 method was employed in LSCC cell lines to knock out the HOXB9 gene and validate its effects on the proliferation, migration, invasion, and regulation of LSCC cells. CCK-8 and flow cytometry were used to detect cell viability and proliferation; Tunnel was used to detect cell apoptosis, and transwell was used to detect cell migration and invasion. The effect of HOXB9 on tumor growth was tested in nude mice. The downstream target genes regulated by HOXB9 were screened by microarray analysis and verified by Western blotting, immunohistochemistry, chromatin immunoprecipitation, and double-luciferase reporter assays. The current research investigated molecular pathways governed by HOXB9 in the development of LSCC. Additionally, both laboratory- and living-organism-based investigations revealed that disrupting the HOXB9 gene through the CRISPR/CAS9 mechanism restrained cellular growth, movement, and infiltration, while enhancing cellular apoptosis. Detailed analyses of LSCC cell strains and human LSCC samples revealed that HOXB9 promoted LSCC progression by directly elevating the transcriptional activity of MMP12. HOXB9 could influence changes in LSCC cell functions, and the mechanism of action might be exerted through its downstream target gene, MMP12.
Collapse
Affiliation(s)
- Chuanhui Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550001, Guiyang, Guizhou, People's Republic of China
| | - Hua Deng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550001, Guiyang, Guizhou, People's Republic of China
| | - Qiuying Li
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xue Fu Road, 150001, Harbin, Heilongjiang, People's Republic of China
| | - Peng Wang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xue Fu Road, 150001, Harbin, Heilongjiang, People's Republic of China
| | - Yujiang Chen
- Department of Pathology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan Bei Road, 550001, Guiyang, Guizhou, People's Republic of China
| | - Yanan Sun
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xue Fu Road, 150001, Harbin, Heilongjiang, People's Republic of China.
| | - Changsong Han
- Department of Pathology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan Bei Road, 550001, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
3
|
Andus I, Prall F, Linnebacher M, Linnebacher CS. Establishment, characterization, and drug screening of low-passage patient individual non-small cell lung cancer in vitro models including the rare pleomorphic subentity. Front Oncol 2023; 13:1089681. [PMID: 37228492 PMCID: PMC10203569 DOI: 10.3389/fonc.2023.1089681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction For pre-clinical drug development and precision oncology research, robust cancer cell models are essential. Patient-derived models in low passages retain more genetic and phenotypic characteristics of their original tumors than conventional cancer cell lines. Subentity, individual genetics, and heterogeneity greatly influence drug sensitivity and clinical outcome. Materials and methods Here, we report on the establishment and characterization of three patient-derived cell lines (PDCs) of different subentities of non-small cell lung cancer (NSCLC): adeno-, squamous cell, and pleomorphic carcinoma. The in-depth characterization of our PDCs included phenotype, proliferation, surface protein expression, invasion, and migration behavior as well as whole-exome and RNA sequencing. Additionally, in vitro drug sensitivity towards standard-of-care chemotherapeutic regimens was evaluated. Results The pathological and molecular properties of the patients' tumors were preserved in the PDC models HROLu22, HROLu55, and HROBML01. All cell lines expressed HLA I, while none were positive for HLA II. The epithelial cell marker CD326 and the lung tumor markers CCDC59, LYPD3, and DSG3 were also detected. The most frequently mutated genes included TP53, MXRA5, MUC16, and MUC19. Among the most overexpressed genes in tumor cells compared to normal tissue were the transcription factors HOXB9, SIM2, ZIC5, SP8, TFAP2A, FOXE1, HOXB13, and SALL4; the cancer testis antigen CT83; and the cytokine IL23A. The most downregulated genes on the RNA level encode the long non-coding RNA LANCL1-AS1, LINC00670, BANCR, and LOC100652999; the regulator of angiogenesis ANGPT4; the signaling molecules PLA2G1B and RS1; and the immune modulator SFTPD. Furthermore, neither pre-existing therapy resistances nor drug antagonistic effects could be observed. Conclusion In summary, we successfully established three novel NSCLC PDC models from an adeno-, a squamous cell, and a pleomorphic carcinoma. Of note, NSCLC cell models of the pleomorphic subentity are very rare. The detailed characterization including molecular, morphological, and drug-sensitivity profiling makes these models valuable pre-clinical tools for drug development applications and research on precision cancer therapy. The pleomorphic model additionally enables research on a functional and cell-based level of this rare NCSLC subentity.
Collapse
Affiliation(s)
- Ingo Andus
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Center Rostock, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Christina S. Linnebacher
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
4
|
Homeobox B9 Promotes the Progression of Hepatocellular Carcinoma via TGF-β1/Smad and ERK1/2 Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1080315. [PMID: 36158877 PMCID: PMC9507699 DOI: 10.1155/2022/1080315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
Objectives Homeobox B9 (HOXB9), a homeodomain-containing transcription factor, may play a role in hepatocellular carcinoma (HCC) progression. However, the exact mechanisms underlying its action remain unclear. Materials and methods. Immunohistochemistry was used to investigate the expression of HOBX9 and its prognostic values in HCC patients. HCC cells were transfected with pBabe-HOXB9 and shHOXB9 plasmids, and MTT assay, Transwell assays, and xenograft mouse models were employed to determine the effects of HOXB9 on HCC cell proliferation, migration, and invasion in vitro and in vivo. The biological mechanisms involved in the role of HOXB9 were determined with Western blot and RT-qPCR methods. Results HOXB9 expression was significantly increased in HCC tissues and cell lines. Patients with higher HOXB9 levels were associated with poor prognosis. Overexpression of HOXB9 in BEL-7405 cells promoted proliferation, migration, and invasion, whereas knockdown of HOXB9 in HepG2 cells significantly reduced cell proliferation, migration, and invasion abilities. Mechanically, a positive correlation was found between HOXB9 expression and transforming growth factor-β1 (TGF-β1) and extracellular signal-regulated kinase (ERK)1/2 pathway in HCC tissues. HOXB9 overexpression stimulated TGF-β1/Smads signaling pathway in BEL-7405 cells. In contrast, HOXB9 knockdown inhibited the TGF-β1/Smads signaling pathway in HepG2 cells. In addition, the treatment with TGF-β1 inhibitor, LY364947, significantly reserved HOXB9 overexpression-induced cell proliferation, migration, and invasion abilities. Conclusions These findings validated that HOXB9 promoted proliferation, migration, and invasion in HCC cells by stimulating the TGF-β1/Smads and ERK1/2 signaling pathway. HOXB9 could be a promising prognostic biomarker and a potential therapeutic target in HCC.
Collapse
|
5
|
Wang T, Guo H, Li Q, Wu W, Yu M, Zhang L, Li C, Song J, Wang Z, Zhang J, Tang Y, Kang L, Zhang H, Zhan J. The AMPK-HOXB9-KRAS axis regulates lung adenocarcinoma growth in response to cellular energy alterations. Cell Rep 2022; 40:111210. [PMID: 36001969 DOI: 10.1016/j.celrep.2022.111210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/20/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
HOXB9 is an important transcription factor associated with unfavorable outcomes in patients with lung adenocarcinoma (LUAD). However, its degradation mechanism remains unclear. Here, we show that HOXB9 is a substrate of AMP kinase alpha (AMPKα). AMPK mediates HOXB9 T133 phosphorylation and downregulates the level of HOXB9 in mice and LUAD cells. Mechanistically, phosphorylated HOXB9 promoted E3 ligase Praja2-mediated HOXB9 degradation. Blocking HOXB9 phosphorylation by depleting AMPKα1/2 or employing the HOXB9 T133A mutant promoted tumor cell growth in cell culture and mouse xenografts via upregulation of HOXB9 and KRAS that is herein identified as a target of HOXB9. Clinically, AMPK activation levels in LUAD samples were positively correlated with pHOXB9 levels; higher pHOXB9 levels were associated with better survival of patients with LUAD. We thus present a HOXB9 degradation mechanism and demonstrate an AMPK-HOXB9-KRAS axis linking glucose-level-regulated AMPK activation to HOXB9 stability and KRAS gene expression, ultimately controlling LUAD progression.
Collapse
Affiliation(s)
- Tianzhuo Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Huiying Guo
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Qianchen Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Weijie Wu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Cuicui Li
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Zhenbin Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Yan Tang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Lei Kang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China.
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
6
|
Boroń D, Zmarzły N, Wierzbik-Strońska M, Rosińczuk J, Mieszczański P, Grabarek BO. Recent Multiomics Approaches in Endometrial Cancer. Int J Mol Sci 2022; 23:ijms23031237. [PMID: 35163161 PMCID: PMC8836055 DOI: 10.3390/ijms23031237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Endometrial cancer is the most common gynecological cancers in developed countries. Many of the mechanisms involved in its initiation and progression remain unclear. Analysis providing comprehensive data on the genome, transcriptome, proteome, and epigenome could help in selecting molecular markers and targets in endometrial cancer. Multiomics approaches can reveal disturbances in multiple biological systems, giving a broader picture of the problem. However, they provide a large amount of data that require processing and further integration prior to analysis. There are several repositories of multiomics datasets, including endometrial cancer data, as well as portals allowing multiomics data analysis and visualization, including Oncomine, UALCAN, LinkedOmics, and miRDB. Multiomics approaches have also been applied in endometrial cancer research in order to identify novel molecular markers and therapeutic targets. This review describes in detail the latest findings on multiomics approaches in endometrial cancer.
Collapse
Affiliation(s)
- Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland; (N.Z.); (M.W.-S.)
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland
- Correspondence: (D.B.); (B.O.G.)
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland; (N.Z.); (M.W.-S.)
| | - Magdalena Wierzbik-Strońska
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland; (N.Z.); (M.W.-S.)
| | - Joanna Rosińczuk
- Katedra Ošetrovatel’stva, Fakulta Zdravotníckych Odborov, Prešovská Univerzita v Prešove, Partizánska 1, 08001 Prešov, Slovakia;
- Department of Nervous System Diseases, Department of Clinical Nursing, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Paweł Mieszczański
- Hospital of Ministry of Interior and Administration, 40-052 Katowice, Poland;
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland; (N.Z.); (M.W.-S.)
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Technology in Katowice, 41-800 Zabrze, Poland
- Correspondence: (D.B.); (B.O.G.)
| |
Collapse
|