1
|
Mei B, Jiang Y, Sun Y. Unveiling Commonalities and Differences in Genetic Regulations via Two-Way Fusion. J Comput Biol 2024; 31:834-870. [PMID: 39133672 DOI: 10.1089/cmb.2023.0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Understanding the genetic regulation, for example, gene expressions (GEs) by copy number variations and methylations, is crucial to uncover the development and progression of complex diseases. Advancing from early studies that are mostly focused on homogeneous groups of patients, some recent studies have shifted their focus toward different patient groups, explored their commonalities and differences, and led to insightful findings. However, the analysis can be very challenging with one GE possibly regulated by multiple regulators and one regulator potentially regulating the expressions of multiple genes, leading to two distinct types of commonalities/differences in the patterns of genetic regulation. In addition, the high dimensionality of both sides of regulation poses challenges to computation. In this study, we develop a two-way fusion integrative analysis approach, which innovatively applies two fusion penalties to simultaneously identify commonalities/differences in the regulated pattern of GEs and regulating pattern of regulators, and adopt a Huber loss function to accommodate the possible data contamination. Moreover, a simple yet efficient iterative optimization algorithm is developed, which does not need to introduce any auxiliary variables and extra tuning parameters and is guaranteed to converge to a globally optimal solution. The advantages of the proposed approach are demonstrated in extensive simulations. The analysis of The Cancer Genome Atlas data on melanoma and lung cancer leads to interesting findings and satisfactory prediction performance.
Collapse
Affiliation(s)
- Biao Mei
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
| | - Yu Jiang
- School of Public Health, University of Memphis, Memphis, Tennessee, USA
| | - Yifan Sun
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beijing, China
| |
Collapse
|
2
|
Shi X, Xiao B, Feng R. Identification of a glycolysis-related miRNA Signature for Predicting Breast cancer Survival. Mol Biotechnol 2024; 66:1988-2006. [PMID: 37535159 DOI: 10.1007/s12033-023-00837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Breast cancer (BC) is a common type of cancer and has a poor prognosis. In this study, we collected the mRNA and miRNA expression profiles of BC patients were obtained from The Cancer Genome Atlas (TCGA) to explore a novel prognostic strategy for BC patients using bioinformatics tools. We found that six glycolysis-related miRNAs (GRmiRs, including hsa-mir-1247, hsa-mir148b, hsa-mir-133a-2, has-mir-1307, hsa-mir-195 and hsa-mir-1258) were correlated with prognosis of BC samples. The risk score model was established based on 6 prognosis-associated GRmiRs. The outcome of high risk group was significantly poorer. Cox regression analysis showed that risk score was an independent prognostic factor. Differentially expressed genes identified between high and low risk groups were mainly enriched in inflammation and immune-related signaling pathways. The proportion of infiltration of 12 kinds of immune cells in high and low risk groups were significantly different. Risk score was closely associated with many immune indexes. Multiple DEGRGs and miRNAs were associated with drugs. In conclusion, glycolysis-related miRNA signature effectively predicts BC prognosis.
Collapse
Affiliation(s)
- Xuejing Shi
- Department of Galactophore, Tianjin Central Hospital of Gynecology and Obstetrics, No. 156 Nankai Sanma Road, Tianjin, Nankai District, 300100, P.R. China
| | - Baoqiang Xiao
- Department of General Surgery, Tianjin Hospital, Tianjin, Hexi District, 300211, P.R. China
| | - Rui Feng
- Department of Galactophore, Tianjin Central Hospital of Gynecology and Obstetrics, No. 156 Nankai Sanma Road, Tianjin, Nankai District, 300100, P.R. China.
| |
Collapse
|
3
|
Cai A, Chen Y, Wang LS, Cusick JK, Shi Y. Depicting Biomarkers for HER2-Inhibitor Resistance: Implication for Therapy in HER2-Positive Breast Cancer. Cancers (Basel) 2024; 16:2635. [PMID: 39123362 PMCID: PMC11311605 DOI: 10.3390/cancers16152635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
HER2 (human epidermal growth factor receptor 2) is highly expressed in a variety of cancers, including breast, lung, gastric, and pancreatic cancers. Its amplification is linked to poor clinical outcomes. At the genetic level, HER2 is encoded by the ERBB2 gene (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), which is frequently mutated or amplified in cancers, thus spurring extensive research into HER2 modulation and inhibition as viable anti-cancer strategies. An impressive body of FDA-approved drugs, including anti-HER2 monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and HER2-tyrosine kinase inhibitors (TKIs), have demonstrated success in enhancing overall survival (OS) and disease progression-free survival (PFS). Yet, drug resistance remains a persistent challenge and raises the risks of metastatic potential and tumor relapse. Research into alternative therapeutic options for HER2+ breast cancer therefore proves critical for adapting to this ever-evolving landscape. This review highlights current HER2-targeted therapies, discusses predictive biomarkers for drug resistance, and introduces promising emergent therapies-especially combination therapies-that are aimed at overcoming drug resistance in the context of HER2+ breast cancer.
Collapse
Affiliation(s)
- Alvan Cai
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Lily S. Wang
- University of California, Berkeley, CA 94720, USA;
| | - John K. Cusick
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA
| |
Collapse
|
4
|
Zhou Q, Gao X, Xu H, Lu X. Non-apoptotic regulatory cell death scoring system to predict the clinical outcome and drug choices in breast cancer. Heliyon 2024; 10:e31342. [PMID: 38813233 PMCID: PMC11133894 DOI: 10.1016/j.heliyon.2024.e31342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Background Breast cancer (BC), the most common cancer among women globally, has been shown by numerous studies to significantly involve non-apoptotic regulatory cell death (RCD) in its pathogenesis and progression. Methods We obtained the RNA sequences and clinical data of BC patients from The Cancer Genome Atlas (TCGA) database for the training set, while datasets GSE96058, GSE86166, and GSE20685 from The Gene Expression Omnibus (GEO) database were utilized as validation cohorts. Initially, we performed non-negative matrix factorization (NMF) clustering analysis on the BC samples from the TCGA database to discern non-apoptotic RCD-related molecular subtypes. To identify prognostically-relevant non-apoptotic RCD genes (NRGs) and construct a prognostic model, we implemented three machine learning algorithms: lasso regression, random forest, and XGBoost analysis. The expression of selected genes was verified using real-time quantitative polymerase chain reaction (RT-qPCR), single-cell RNA-sequencing (scRNA-seq) analysis, and The Human Protein Atlas (HPA) database. The risk signature was evaluated concerning clinical characteristics and drug sensitivity. Furthermore, we developed a nomogram to predict BC patient survival. Results The NMF method successfully compartmentalized patients from the TCGA database into three distinct non-apoptotic RCD-related subtypes, with significant variations observed in immune characteristics and prognostic stratification across these subtypes. We identified 5 differentially expressed NRGs used in establishing the risk signature. Patients with different risk groups exhibited distinct clinicopathological features, drug sensitivity, and prognostic outcomes. A nomogram was subsequently developed, incorporating the NRGs-related risk signature, age, T stage, and N stage, to aid clinical decision-making. Conclusion We identified a novel NRGs-related risk signature, which was expected to become a potential prognostic marker in BC.
Collapse
Affiliation(s)
| | | | - Hui Xu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Xuan Lu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
5
|
Chalise JP, Hu Z, Li M, Shepphird JK, Gu Z, Gyawali P, Itakura K, Larson GP. Identification of an alternative short ARID5B isoform associated with B-ALL survival. Biochem Biophys Res Commun 2024; 703:149659. [PMID: 38382358 DOI: 10.1016/j.bbrc.2024.149659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Utilizing RNA sequence (RNA-Seq) splice junction data from a cohort of 1841 B-cell acute lymphoblastic leukemia (B-ALL) patients we define transcriptionally distinct isoforms of ARID5B, a risk-associated gene identified in genome wide association studies (GWAS), which associate with disease survival. Short (S) and long (L) ARID5B transcripts, which differ in an encoded BAH-like chromatin interaction domain, show remarkable correlation to the isoform splicing pattern. Testing of the ARID5B proximal promoter of the S & L isoforms indicated that both are functionally independent in luciferase reporter assays. Increased short isoform expression is associated with decreased event-free and overall survival. The abundance of short and long transcripts strongly correlates to B-ALL prognostic stratification, where B-ALL subtypes with poor outcomes express a higher proportion of the S-isoform. These data demonstrate that the analysis of independent promoters and alternative splicing events are essential for improved risk stratification and a more complete understanding of disease pathology.
Collapse
Affiliation(s)
- Jaya P Chalise
- Center for RNA Biology and Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Zunsong Hu
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Min Li
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Jennifer K Shepphird
- Clinical Translational Project Development, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Zhaohui Gu
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA; Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Purnima Gyawali
- Center for RNA Biology and Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Keiichi Itakura
- Center for RNA Biology and Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Garrett P Larson
- Center for RNA Biology and Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
6
|
Li K, Wang B, Hu H. Research progress of SWI/SNF complex in breast cancer. Epigenetics Chromatin 2024; 17:4. [PMID: 38365747 PMCID: PMC10873968 DOI: 10.1186/s13072-024-00531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
In the past decade, numerous epigenetic mechanisms have been discovered to be associated with cancer. The mammalian SWI/SNF complex is an ATP-dependent chromatin remodeling complex whose mutations are associated with various malignancies including breast cancer. As the SWI/SNF complex has become one of the most commonly mutated complexes in cancer, targeting epigenetic mutations acquired during breast cancer progress is a potential means of improving clinical efficacy in treatment strategies. This article reviews the composition of the SWI/SNF complex, its main roles and research progress in breast cancer, and links these findings to the latest discoveries in cancer epigenomics to discuss the potential mechanisms and therapeutic potential of SWI/SNF in breast cancer.
Collapse
Affiliation(s)
- Kexuan Li
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Baocai Wang
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Haolin Hu
- Breast Center, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
7
|
Gonzalez-Salinas F, Herrera-Gamboa J, Rojo R, Trevino V. Heterozygous Knockout of ARID4B Using CRISPR/Cas9 Attenuates Some Aggressive Phenotypes in a Breast Cancer Cell Line. Genes (Basel) 2023; 14:2184. [PMID: 38137006 PMCID: PMC10743217 DOI: 10.3390/genes14122184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer is one of the leading causes of death in women around the world. Over time, many genes and mutations that are associated with the development of this disease have been identified. However, the specific role of many genes has not yet been fully elucidated. Higher ARID4B expression has been identified as a risk factor for diverse cancer types. Silencing experiments also showed that ARID4B is associated with developing cancer-associated characteristics. However, no transcriptomic studies have shown the overall cellular effect of loss of function in breast cancer in humans. This study addresses the impact of loss-of-function mutations in breast cancer MCF-7 cells. Using the CRISPR/Cas9 system, we generated mutations that caused heterozygous truncated proteins, isolating three monoclonal lines carrying insertions and deletions in ARID4B. We observed reduced proliferation and migration in in vitro experiments. In addition, from RNA-seq assays, a differential expression analysis shows known and novel deregulated cancer-associate pathways in mutated cells supporting the impact of ARID4B. For example, we found the AKT-PI3K pathway to be altered at the transcript level but through different genes than those reported for ARID4B. Our transcriptomic results also suggest new insights into the role of ARID4B in aggressiveness by the epithelial-to-mesenchymal transition and TGF-β pathways and in metabolism through cholesterol and mevalonate pathways. We also performed exome sequencing to show that no off-target effects were apparent. In conclusion, the ARID4B gene is associated with some aggressive phenotypes in breast cancer cells.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo Leon, Mexico; (F.G.-S.); (J.H.-G.); (R.R.)
| | - Jessica Herrera-Gamboa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo Leon, Mexico; (F.G.-S.); (J.H.-G.); (R.R.)
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo Leon, San Nicolas de los Garza 66455, Nuevo Leon, Mexico
| | - Rocio Rojo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo Leon, Mexico; (F.G.-S.); (J.H.-G.); (R.R.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City 14380, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Nuevo Leon, Mexico; (F.G.-S.); (J.H.-G.); (R.R.)
- Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo Leon, Mexico
- Tecnologico de Monterrey, oriGen Project, Eugenio Garza Sada Avenue 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
8
|
Yan K, Niu L, Wu B, He C, Deng L, Chen C, Lan Z, Lin C, Kuang W, Lin H, Zou J, Zhang W, Luo Z. Copy number variants landscape of multiple cancers and clinical applications based on NGS gene panel. Ann Med 2023; 55:2280708. [PMID: 37967237 PMCID: PMC10653745 DOI: 10.1080/07853890.2023.2280708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The rapid adoption of next-generation sequencing in clinical oncology has enabled detection of molecular biomarkers which are shared between multiple tumour types. Intra-tumour heterogeneity is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the tumour-related copy number variants (CNVs), as key regulators of cancer origination, development, and progression, across various types of cancers are poorly understood. METHODS We performed pan-cancer CNV analysis of cancer-related genes in 15 types of cancers including 1438 cancerous patients by next-generation sequencing using a commercially available pan-cancer panel (Onco PanScan™). Downstream bioinformatics analysis was performed in order to detect CNVs, cluster analysis of the found CNVs, and comparison of the frequency of gained CNVs between different types of cancers. LASSO analysis was used for identification of the most important CNVs. RESULTS We also identified 523 CNVs among which 16 CNVs were common while 22 CNVs were caner-specific CNVs. Meanwhile, FAM58A was most commonly found in all studied cancers in this study and significant differences were found in FAM58A between female and male patients (p = .001). Common CNVs, such as FOXA1, NFKBIA, HEY1, MECOM, CHD7, AGO2, were mutated in 6.79%, 8.45%, 7.51%, 6.43%, 7.59%, 8.16% of tumours, while most of these mutations have proven roles in positive regulation of transcription from RNA polymerase II promoter. 11 features including sex, DIS3, EPHB1, ERBB2, FLT1, HCK, KEAP1, MYD88, PARP3, TBX3, and TOP2A were found as the key features for classification of cancers using CNVs. CONCLUSION The 16 common CNVs between cancers can be used to identify the target of pan-cancer drug design and targeted therapies. Additionally, 22 caner-specific CNVs can be used as unique diagnostic markers for each cancer type.
Collapse
Affiliation(s)
- Kangpeng Yan
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Li Niu
- CheerLand Clinical Laboratory Co., Ltd., Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, China
| | - Boyu Wu
- Department of General Surgery, Shangrao Municipal Hospital, Shangrao, China
| | - Chongwu He
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Lei Deng
- Department of Medical Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Chuan Chen
- Shenzhen Cheerland Biotechnology Co., Ltd., Shenzhen, China
| | - Zhangzhang Lan
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chao Lin
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Weihua Kuang
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Huihong Lin
- Operating Room, Jiangxi Cancer Hospital, Nanchang, China
| | - Jun Zou
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiqiang Luo
- Chest Radiotherapy Department 1, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
9
|
Chi Y, Su M, Zhou D, Zheng F, Zhang B, Qiang L, Ren G, Song L, Bu B, Fang S, Yu B, Zhou J, Yu J, Li H. Dynamic analysis of circulating tumor DNA to predict the prognosis and monitor the treatment response of patients with metastatic triple-negative breast cancer: A prospective study. eLife 2023; 12:e90198. [PMID: 37929934 PMCID: PMC10627511 DOI: 10.7554/elife.90198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023] Open
Abstract
Background Limited data are available on applying circulating tumor DNA (ctDNA) in metastatic triple-negative breast cancer (mTNBC) patients. Here, we investigated the value of ctDNA for predicting the prognosis and monitoring the treatment response in mTNBC patients. Methods We prospectively enrolled 70 Chinese patients with mTNBC who had progressed after ≤2 lines of chemotherapy and collected blood samples to extract ctDNA for 457-gene targeted panel sequencing. Results Patients with ctDNA+, defined by 12 prognosis-relevant mutated genes, had a shorter progression-free survival (PFS) than ctDNA- patients (5.16 months vs. 9.05 months, p=0.001), and ctDNA +was independently associated with a shorter PFS (HR, 95% CI: 2.67, 1.2-5.96; p=0.016) by multivariable analyses. Patients with a higher mutant-allele tumor heterogeneity (MATH) score (≥6.316) or a higher ctDNA fraction (ctDNA%≥0.05) had a significantly shorter PFS than patients with a lower MATH score (5.67 months vs.11.27 months, p=0.007) and patients with a lower ctDNA% (5.45 months vs. 12.17 months, p<0.001), respectively. Positive correlations with treatment response were observed for MATH score (R=0.24, p=0.014) and ctDNA% (R=0.3, p=0.002), but not the CEA, CA125, or CA153. Moreover, patients who remained ctDNA +during dynamic monitoring tended to have a shorter PFS than those who did not (3.90 months vs. 6.10 months, p=0.135). Conclusions ctDNA profiling provides insight into the mutational landscape of mTNBC and may reliably predict the prognosis and treatment response of mTNBC patients. Funding This work was supported by the National Natural Science Foundation of China (Grant No. 81902713), Natural Science Foundation of Shandong Province (Grant No. ZR2019LZL018), Breast Disease Research Fund of Shandong Provincial Medical Association (Grant No. YXH2020ZX066), the Start-up Fund of Shandong Cancer Hospital (Grant No. 2020-PYB10), Beijing Science and Technology Innovation Fund (Grant No. KC2021-ZZ-0010-1).
Collapse
Affiliation(s)
- Yajing Chi
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- School of Medicine, Nankai UniversityTianjinChina
| | - Mu Su
- Department of Bioinformatics, Berry Oncology CorporationBeijingChina
| | - Dongdong Zhou
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Fangchao Zheng
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Baoxuan Zhang
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Ling Qiang
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Guohua Ren
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Lihua Song
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Bing Bu
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Shu Fang
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Bo Yu
- Department of Bioinformatics, Berry Oncology CorporationBeijingChina
| | - Jinxing Zhou
- Department of Bioinformatics, Berry Oncology CorporationBeijingChina
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Huihui Li
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
10
|
Li M, Guo J, Gao J, Wang L, Ding Y. Qualitative study of the perceived experiences and needs coping of primary caregivers of patients with breast cancer during operation in central China. BMJ Open 2023; 13:e072932. [PMID: 37914299 PMCID: PMC10626842 DOI: 10.1136/bmjopen-2023-072932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
PURPOSE The purpose of this study is to gain an in-depth understanding of the intraoperative waiting period experience and needs response of primary caregivers of patients with breast cancer. METHOD Using a purposive sampling method, 16 primary caregivers of patients with breast cancer admitted to the Department of Breast Surgery of Shanxi Bethune Hospital from January to May 2022 were selected as study subjects. Semistructured in-depth interviews were conducted using a qualitative research method. RESULTS Five themes were extracted from the levels of safety and security, information transfer, emotion management, psychological adjustment and role adaptation: safety first and intraoperative care, lack of information and misdirection, negative emotions and tired of coping, ineffective worry and overthinking, and role multiplicity and bearing alone, respectively. CONCLUSION The intraoperative waiting period for primary caregivers of patients with breast cancer felt multidimensional and had less than optimal needs satisfaction. Healthcare professionals should use the existing needs as an entry point to give appropriate interventions to enhance the coping ability of caregivers of patients with breast cancer.
Collapse
Affiliation(s)
- Min Li
- Nursing College, Shanxi Medical University, Taiyuan, Shanxi, China
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan, China
| | - Jun Guo
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan, China
| | - Jinnan Gao
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan, China
| | - Linying Wang
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan, China
| | - Yongxia Ding
- Nursing College, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
11
|
Hsu CY, Yanagi T, Maeda T, Nishihara H, Miyamoto K, Kitamura S, Tokuchi K, Ujiie H. Eribulin inhibits growth of cutaneous squamous cell carcinoma cell lines and a novel patient-derived xenograft. Sci Rep 2023; 13:8650. [PMID: 37244956 DOI: 10.1038/s41598-023-35811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Advanced cutaneous squamous cell carcinoma (cSCC) is treated with chemotherapy and/or radiotherapy, but these typically fail to achieve satisfactory clinical outcomes. There have been no preclinical studies to evaluate the effectiveness of eribulin against cSCC. Here, we examine the effects of eribulin using cSCC cell lines and a novel cSCC patient-derived xenograft (PDX) model. In the cSCC cell lines (A431 and DJM-1 cells), eribulin was found to inhibit tumor cell proliferation in vitro as assessed by cell ATP levels. DNA content analysis by fluorescence-activated cell sorting (FACS) showed that eribulin induced G2/M cell cycle arrest and apoptosis. In xenograft models of cSCC cell lines, the administration of eribulin suppressed tumor growth in vivo. We also developed a cSCC patient-derived xenograft (PDX) which reproduces the histological and genetic characteristics of a primary tumor. Pathogenic mutations in TP53 and ARID2 were detected in the patient's metastatic tumor and in the PDX tumor. The cSCC-PDX responded well to the administration of eribulin and cisplatin. In conclusion, the present study shows the promising antineoplastic effects of eribulin in cSCC. Also, we established a novel cSCC-PDX model that preserves the patient's tumor. This PDX could assist researchers who are exploring innovative therapies for cSCC.
Collapse
Affiliation(s)
- Che-Yuan Hsu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan.
| | - Takuya Maeda
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Kodai Miyamoto
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Shinya Kitamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Keiko Tokuchi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-Ku, Sapporo, 060-8638, Japan
| |
Collapse
|
12
|
Li L, Yang W, Jia D, Zheng S, Gao Y, Wang G. Establishment of a N1-methyladenosine-related risk signature for breast carcinoma by bioinformatics analysis and experimental validation. Breast Cancer 2023:10.1007/s12282-023-01458-1. [PMID: 37178414 DOI: 10.1007/s12282-023-01458-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES Breast carcinoma (BRCA) has resulted in a huge health burden globally. N1-methyladenosine (m1A) RNA methylation has been proven to play key roles in tumorigenesis. Nevertheless, the function of m1A RNA methylation-related genes in BRCA is indistinct. METHODS The RNA sequencing (RNA-seq), copy-number variation (CNV), single-nucleotide variant (SNV), and clinical data of BRCA were acquired via The Cancer Genome Atlas (TCGA) database. In addition, the GSE20685 dataset, the external validation set, was acquired from the Gene Expression Omnibus (GEO) database. 10 m1A RNA methylation regulators were obtained from the previous literature, and further analyzed through differential expression analysis by rank-sum test, mutation by SNV data, and mutual correlation by Pearson Correlation Analysis. Furthermore, the differentially expressed m1A-related genes were selected through overlapping m1A-related module genes obtained by weighted gene co-expression network analysis (WGCNA), differentially expressed genes (DEGs) in BRCA and DEGs between high- and low- m1A score subgroups. The m1A-related model genes in the risk signature were derived by univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. In addition, a nomogram was built through univariate and multivariate Cox analyses. After that, the immune infiltration between the high- and low-risk groups was investigated through ESTIMATE and CIBERSORT. Finally, the expression trends of model genes in clinical BRCA samples were further confirmed by quantitative real-time PCR (RT‒qPCR). RESULTS Eighty-five differentially expressed m1A-related genes were obtained. Among them, six genes were selected as prognostic biomarkers to build the risk model. The validation results of the risk model showed that its prediction was reliable. In addition, Cox independent prognosis analysis revealed that age, risk score, and stage were independent prognostic factors for BRCA. Moreover, 13 types of immune cells were different between the high- and low-risk groups and the immune checkpoint molecules TIGIT, IDO1, LAG3, ICOS, PDCD1LG2, PDCD1, CD27, and CD274 were significantly different between the two risk groups. Ultimately, RT-qPCR results confirmed that the model genes MEOX1, COL17A1, FREM1, TNN, and SLIT3 were significantly up-regulated in BRCA tissues versus normal tissues. CONCLUSIONS An m1A RNA methylation regulator-related prognostic model was constructed, and a nomogram based on the prognostic model was constructed to provide a theoretical reference for individual counseling and clinical preventive intervention in BRCA.
Collapse
Affiliation(s)
- Leilei Li
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Wenhui Yang
- Department of Digestive Oncology, Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, People's Republic of China
| | - Daqi Jia
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Shiqi Zheng
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Yuzhe Gao
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, People's Republic of China.
| | - Guanghui Wang
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, People's Republic of China.
| |
Collapse
|
13
|
Lin G, Qi H, Guo X, Wang W, Zhang M, Gao X. ARID1B blocks methionine-stimulated mTOR activation to inhibit milk fat and protein synthesis in and proliferation of mouse mammary epithelial cells. J Nutr Biochem 2023; 114:109274. [PMID: 36681308 DOI: 10.1016/j.jnutbio.2023.109274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/03/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Met can function through the mTOR signaling pathway, but the molecular mechanism is not fully understood. Here we investigated the role of ARID1B in this regulatory process. ARID1B knockdown promoted milk fat and protein synthesis in and cell proliferation of HC11 cells and increased mTOR mRNA expression and protein phosphorylation, whereas ARID1B gene activation had the opposite effects. ARID1B gene activation totally blocked Met's stimulation on mTOR mRNA expression. ARID1B bound to one region of the mTOR promoter, and Met reduced the binding of ARID1B on this promoter. LY294002 blocked Met-induced reduction of ARID1B mRNA and protein level. Cycloheximide treatment did not affect the decrease of ARID1B by Met. MG132 but not chloroquine restored ARID1B degradation induced by Met. Our data reveal that ARID1B is a key negative regulator of milk fat and protein synthesis in and proliferation of HC11 cells, and blocks Met-stimulated mTOR gene transcription.
Collapse
Affiliation(s)
- Gang Lin
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hao Qi
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xudong Guo
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Wenqiang Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingzhou, China.
| |
Collapse
|
14
|
Martini AG, Smith JP, Medrano S, Sheffield NC, Sequeira-Lopez MLS, Gomez RA. Determinants of renin cell differentiation: a single cell epi-transcriptomics approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524595. [PMID: 36711565 PMCID: PMC9882312 DOI: 10.1101/2023.01.18.524595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rationale Renin cells are essential for survival. They control the morphogenesis of the kidney arterioles, and the composition and volume of our extracellular fluid, arterial blood pressure, tissue perfusion, and oxygen delivery. It is known that renin cells and associated arteriolar cells descend from FoxD1 + progenitor cells, yet renin cells remain challenging to study due in no small part to their rarity within the kidney. As such, the molecular mechanisms underlying the differentiation and maintenance of these cells remain insufficiently understood. Objective We sought to comprehensively evaluate the chromatin states and transcription factors (TFs) that drive the differentiation of FoxD1 + progenitor cells into those that compose the kidney vasculature with a focus on renin cells. Methods and Results We isolated single nuclei of FoxD1 + progenitor cells and their descendants from FoxD1 cre/+ ; R26R-mTmG mice at embryonic day 12 (E12) (n cells =1234), embryonic day 18 (E18) (n cells =3696), postnatal day 5 (P5) (n cells =1986), and postnatal day 30 (P30) (n cells =1196). Using integrated scRNA-seq and scATAC-seq we established the developmental trajectory that leads to the mosaic of cells that compose the kidney arterioles, and specifically identified the factors that determine the elusive, myo-endocrine adult renin-secreting juxtaglomerular (JG) cell. We confirm the role of Nfix in JG cell development and renin expression, and identified the myocyte enhancer factor-2 (MEF2) family of TFs as putative drivers of JG cell differentiation. Conclusions We provide the first developmental trajectory of renin cell differentiation as they become JG cells in a single-cell atlas of kidney vascular open chromatin and highlighted novel factors important for their stage-specific differentiation. This improved understanding of the regulatory landscape of renin expressing JG cells is necessary to better learn the control and function of this rare cell population as overactivation or aberrant activity of the RAS is a key factor in cardiovascular and kidney pathologies.
Collapse
|
15
|
Zhang X, Qiu X, Zhao W, Song L, Zhang X, Yang L, Tao M. Over-Expression of ARID3B Suppresses Tumor Progression and Predicts Better Prognosis in Patients With Gastric Cancer. Cancer Control 2023; 30:10732748231169403. [PMID: 37071790 PMCID: PMC10126794 DOI: 10.1177/10732748231169403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND ARID3B (AT-rich interaction domain 3B) has been demonstrated to be associated with the progression and patient prognosis of several human tumors. We conducted the present study to investigate the biological behavior and clinical relevance of ARID3B in gastric cancer (GC). METHODS Detection of the expression level in GC tissues and cell lines were performed by Western blot and immunohistochemistry. We also retrospectively analyzed the correlation of ARID3B with clinicopathological characteristics and patient prognosis in gastric cancer. The biological functions of ARID3B in GC cells were further explored by transwell migration assays, wound healing assays and cell proliferation assay. RESULTS The present study suggested that the expression of ARID3B was significantly lower in GC tissues than in adjacent normal tissues. IHC staining in tissues of 406 GC patients from training and validation sets verified that ARID3B over-expression correlated with clinicopathological features, such as degree of differentiation and clinical stage. Meanwhile, ARID3B was proved to be an independent prognostic factor for GC prognosis. Furthermore, over-expression of ARID3B suppressed proliferation in GC cells according CCK8 assay. We found that over-expression of ARID3B inhibited GC cell migration by transwell assay and wound healing assay. Furthermore, EMT markers were detected in ARID3B over-expression GC cells, which showed that ARID3B may inhibit metastasis of GC cells. CONCLUSION Our results firstly revealed that the expression level of ARID3B was closely correlated with clinicopathological features and may serve as an independent prognostic factor for GC patients. More importantly, ARID3B could suppress GC progression, including cell proliferation, migration and metastasis.
Collapse
Affiliation(s)
- Xunlei Zhang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinyue Qiu
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wenjing Zhao
- Cancer Research Center, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Li Song
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xingsong Zhang
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong Jiangsu, China
| | - Lei Yang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Oncology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Shukla P, Dange P, Mohanty BS, Gadewal N, Chaudhari P, Sarin R. ARID2 suppression promotes tumor progression and upregulates cytokeratin 8, 18 and β-4 integrin expression in TP53-mutated tobacco-related oral cancer and has prognostic implications. Cancer Gene Ther 2022; 29:1908-1917. [PMID: 35869277 DOI: 10.1038/s41417-022-00505-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
Mutations in ARID2 and TP53 genes are found to be implicated in the tobacco related tumorigeneses. However, the effect of loss of ARID2 in the TP53 mutated background in tobacco related cancer including oral cancer has not been investigated yet. Hence, in this study we knockdown ARID2 using shRNA mediated knockdown strategy in TP53 mutated oral squamous cell carcinoma (OSCC) cell line and studied its tumorigenic role. Our study revealed that suppression of ARID2 in TP53 mutated oral cancer cells increases cell motility and invasion, induces drastic morphological changes and leads to a marked increase in the expression levels of cytokeratins, and integrins, CK8, CK18 and β4-Integrin, markers of cell migration/invasion in oral cancer. ARID2 suppression also showed early onset and increased tumorigenicity in-vivo. Interestingly, transcriptome profiling revealed differentially expressed genes associated with migration and invasion in oral cancer cells including AKR1C2, NCAM2, NOS1, ADAM23 and genes of S100A family in ARID2 knockdown TP53 mutated oral cancer cells. Pathway analysis of differentially regulated genes identified "cancer pathways" and "PI3K/AKT Pathway" to be significantly dysregulated upon suppression of ARID2 in TP53 mutated OSCC cells. Notably, decreased ARID2 expression and increased CK8, CK18 expression leads to poor prognosis in Head and Neck cancer (HNSC) patients as revealed by Pan-Cancer TCGA data analysis. To conclude, our study is the first to demonstrate tumor suppressor role of ARID2 in TP53 mutated background indicating their cooperative role in OSCC, and also highlights its prognostic implications suggesting ARID2 as an important therapeutic target in OSCC.
Collapse
Affiliation(s)
- Pallavi Shukla
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Prerana Dange
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Bhabani Shankar Mohanty
- Comparative Oncology & Small Animal Imaging Facility, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Nikhil Gadewal
- Bioinformatics Centre, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Pradip Chaudhari
- Comparative Oncology & Small Animal Imaging Facility, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Rajiv Sarin
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India.
- Cancer Genetics Clinic, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India.
| |
Collapse
|
17
|
The Prognostic Value of AT-Rich Interaction Domain (ARID) Family Members in Patients with Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1150390. [PMID: 36034939 PMCID: PMC9410793 DOI: 10.1155/2022/1150390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022]
Abstract
Objective Hepatocellular carcinoma (HCC) is one of the most lethal malignancies with a poor prognosis. The AT-rich interaction domain (ARID) family plays an essential regulatory role in the pathogenesis and progression of cancers. This study aims to evaluate the prognostic value and clinical significance of human ARID family genes in HCC. Methods ONCOMINE and The Cancer Genome Atlas (TCGA) databases were employed to retrieve ARIDs expression profile and clinicopathological information of HCC. Kaplan–Meier plotter and MethSurv were applied to the survival analysis of patients with HCC. CBioPortal was used to analyze genetic mutations of ARIDs. Gene Expression Profiling Interactive Analysis (GEPIA) and Metascape were used to perform hub gene identification and functional enrichment. Results Expression levels of 11 ARIDs were upregulated in HCC, and 2 ARIDs were downregulated. Also, 4 ARIDs and 5 ARIDs were correlated with pathologic stages and histologic grades, respectively. Furthermore, higher expression of ARID1A, ARID1B, ARID2, ARID3A, ARID3B, ARID5B, KDM5A, KDM5B, KDM5C, and JARID2 was remarkably correlated with worse overall survival of patients with HCC, and the high ARID3C/KDM5D expression was related to longer overall survival. Multivariate Cox analysis indicated that ARID3A, KDM5C, and KDM5D were independent risk factors for HCC prognosis. Moreover, ARIDs mutations and 127 CpGs methylation in all ARIDs were observed to be significantly associated with the prognosis of HCC patients. Besides, our data showed that ARIDs could regulate tumor-related pathways and distinct immune cells in the HCC microenvironment. Conclusions ARIDs present the potential prognostic value for HCC. Our findings suggest that ARID3A, KDM5C, and KDM5D may be the prognostic biomarkers for patients with HCC.
Collapse
|
18
|
Duan C, Ma R, Zeng X, Chen B, Hou D, Liu R, Li X, Liu L, Li T, Huang H. SARS-CoV-2 Achieves Immune Escape by Destroying Mitochondrial Quality: Comprehensive Analysis of the Cellular Landscapes of Lung and Blood Specimens From Patients With COVID-19. Front Immunol 2022; 13:946731. [PMID: 35844544 PMCID: PMC9283956 DOI: 10.3389/fimmu.2022.946731] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondria get caught in the crossfire of coronavirus disease 2019 (COVID-19) and antiviral immunity. The mitochondria-mediated antiviral immunity represents the host’s first line of defense against viral infection, and the mitochondria are important targets of COVID-19. However, the specific manifestations of mitochondrial damage in patients with COVID-19 have not been systematically clarified. This study comprehensively analyzed one single-cell RNA-sequencing dataset of lung tissue and two bulk RNA-sequencing datasets of blood from COVID-19 patients. We found significant changes in mitochondrion-related gene expression, mitochondrial functions, and related metabolic pathways in patients with COVID-19. SARS-CoV-2 first infected the host alveolar epithelial cells, which may have induced excessive mitochondrial fission, inhibited mitochondrial degradation, and destroyed the mitochondrial calcium uniporter (MCU). The type II alveolar epithelial cell count decreased and the transformation from type II to type I alveolar epithelial cells was blocked, which exacerbated viral immune escape and replication in COVID-19 patients. Subsequently, alveolar macrophages phagocytized the infected alveolar epithelial cells, which decreased mitochondrial respiratory capacity and activated the ROS–HIF1A pathway in macrophages, thereby aggravating the pro-inflammatory reaction in the lungs. Infected macrophages released large amounts of interferon into the blood, activating mitochondrial IFI27 expression and destroying energy metabolism in immune cells. The plasma differentiation of B cells and lung-blood interaction of regulatory T cells (Tregs) was exacerbated, resulting in a cytokine storm and excessive inflammation. Thus, our findings systematically explain immune escape and excessive inflammation seen during COVID-19 from the perspective of mitochondrial quality imbalance.
Collapse
Affiliation(s)
- Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Chenyang Duan, ; He Huang,
| | - Ruiyan Ma
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xue Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongyao Hou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuehan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangming Liu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Chenyang Duan, ; He Huang,
| |
Collapse
|
19
|
A novel heterozygous missense variant of the ARID4A gene identified in Han Chinese families with schizophrenia-diagnosed siblings that interferes with DNA-binding activity. Mol Psychiatry 2022; 27:2777-2786. [PMID: 35365808 DOI: 10.1038/s41380-022-01530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/08/2022]
Abstract
ARID4A plays an important role in regulating gene expression and cell proliferation. ARID4A belongs to the AT-rich interaction domain (ARID)-containing family, and a PWWP domain immediately precedes its ARID region. The molecular mechanism and structural basis of ARID4A are largely unknown. Whole-exome sequencing (WES) revealed that a novel heterozygous missense variant, ARID4A c.1231 C > G (p.His411Asp), was associated with schizophrenia (SCZ) in this study. We determined the crystal structure of the PWWP-ARID tandem at 2.05 Å, revealing an unexpected mode in which ARID4A assembles with its PWWP and ARID from a structural and functional supramodule. Our results further showed that compared with the wild type, the p.His411Asp ARID mutant protein adopts a less compact conformation and exhibits a weaker dsDNA-binding ability. The p.His411Asp mutation decreased the number of cells that were arrested in the G0-G1 phase and caused more cells to progress to the G2-M phase. In addition, the missense mutation promoted the proliferation of HEK293T cells. In conclusion, our data provide evidence that ARID4A p.His411Asp could cause a conformational change in the ARID4A ARID domain, influence the DNA binding function, and subsequently disturb the cell cycle arrest in the G1 phase. ARID4A is likely a susceptibility gene for SCZ; thus, these findings provide new insight into the role of ARID4A in psychiatric disorders.
Collapse
|
20
|
Comprehensive Landscape of ARID Family Members and Their Association with Prognosis and Tumor Microenvironment in Hepatocellular Carcinoma. J Immunol Res 2022; 2022:1688460. [PMID: 35402625 PMCID: PMC8986425 DOI: 10.1155/2022/1688460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
As one of the most lethal forms of cancers, hepatocellular carcinoma (HCC) claims many lives around the world, and it is especially common in China. The ARID family plays key roles in the pathogenesis and development of human cancers. The potential of several functional genes used as novel biomarkers has attracted more and more attention. However, the prognostic values of the ARID family in HCC patients are rarely known by people. In this study, we performed comprehensive analysis using TCGA datasets, finding that the expressions of ARID4B, ARID2, ARID3B, JARID2, ARID1A, ARID1B, and ARID3A were increased in HCC specimens compared to nontumor specimens, while the expressions of ARID4A and ARID3C were decreased in HCC specimens. According to the Pearson correlation data, the methylation levels of the majority of ARID members were negatively correlated. Upregulation of ARID3A, ARID5B, and ARID1A was related to a poor HCC outcome according to the data of multivariate assays. Then, we built a LASSO Cox regression model based on ARID3A, ARID5B, and ARID1A in HCC. Overall survival rates were considerably lower for those with high risk scores compared to those with low risk scores. Finally, we studied the associations between risk scores and several types of infiltrating immune cells. The data revealed that the risk score was positively related to the infiltration of CD8+ T cells, B cell, T cell CD8+, neutrophil, macrophage, and myeloid dendritic cell. This study conducted a thorough analysis of the ARID members, resulting in new insights for further examination of the ARID family members as prospective targets in the treatment of HCC.
Collapse
|
21
|
Nyati KK, Kishimoto T. Recent Advances in the Role of Arid5a in Immune Diseases and Cancer. Front Immunol 2022; 12:827611. [PMID: 35126382 PMCID: PMC8809363 DOI: 10.3389/fimmu.2021.827611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 12/09/2022] Open
Abstract
AT-rich interactive domain 5a (Arid5a) is a nucleic acid binding protein. In this review, we highlight recent advances in the association of Arid5a with inflammation and human diseases. Arid5a is known as a protein that performs dual functions. In in vitro and in vivo studies, it was found that an inflammation-dependent increase in Arid5a expression mediates both transcriptional and post-transcriptional regulatory effects that are implicated in immune regulation and cellular homeostasis. A series of publications demonstrated that inhibiting Arid5a augmented several processes, such as preventing septic shock, experimental autoimmune encephalomyelitis, acute lung injury, invasion and metastasis, immune evasion, epithelial-to-mesenchymal transition, and the M1-like tumor-associated macrophage (TAM) to M2-like TAM transition. In addition, Arid5a controls adipogenesis and obesity in mice to maintain metabolic homeostasis. Taken together, recent progress indicates that Arid5a exhibits multifaceted, both beneficial and detrimental, roles in health and disease and suggest the relevance of Arid5a as a potential therapeutic target.
Collapse
|
22
|
Cheng X, Zhao JX, Dong F, Cao XC. ARID1A Mutation in Metastatic Breast Cancer: A Potential Therapeutic Target. Front Oncol 2021; 11:759577. [PMID: 34804958 PMCID: PMC8599951 DOI: 10.3389/fonc.2021.759577] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 12/05/2022] Open
Abstract
Distant metastasis is the principal cause of mortality for breast cancer patients. Targeting specific mutations that have been acquired during the evolution process of advanced breast cancer is a potential means of enhancing the clinical efficacy of treatment strategies. In metastatic breast cancer, ARID1A is the most prevalent mutation of the SWI/SNF complex, which regulates DNA repair, recombination, and gene transcription. The low expression of ARID1A is associated with poor disease-free survival and overall survival of patients with luminal A or HER2-rich breast cancer. In addition, ARID1A plays a prominent role in maintaining luminal characteristics and has an advantage for identifying responses to treatment, including endocrine therapies, HDAC inhibitors and CDK4/6 inhibitors. The therapeutic vulnerabilities initiated by ARID1A alterations encourage us to explore new approaches to cope with ARID1A mutant-related drug resistance or metastasis. In this review, we describe the mutation profiles of ARID1A in metastatic breast cancer and the structure and function of ARID1A and the SWI/SNF complex as well as discuss the potential mechanisms of ARID1A-mediated endocrine resistance and therapeutic potential.
Collapse
Affiliation(s)
- Xuan Cheng
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jian-Xiong Zhao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Feng Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|