1
|
Rotaru M, Singeap AM, Ciobica A, Huiban L, Stanciu C, Romila L, Burlui V, Mavroudis I, Trifan A. Oral Health and "Modern" Digestive Diseases: Pathophysiologic and Etiologic Factors. Biomedicines 2024; 12:1854. [PMID: 39200318 PMCID: PMC11351600 DOI: 10.3390/biomedicines12081854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
In the contemporary era of medicine, exploring the complexity of the human body and its intricate interactions has become a central concern for health researchers. The main purpose of this article is to summarize the current understanding of relevant pathophysiological factors such as chronic inflammation, dysbiosis (microbial imbalance), and metabolic disorders, as well as etiological factors including dietary habits, lifestyle choices, obesity, metabolic syndrome, and genetic predispositions, as well as to emphasize potential avenues for upcoming studies and their medical significance. Additionally, this article aims to assess the potential impact of integrated treatment approaches on patient outcomes, emphasizing the need for interdisciplinary collaboration between gastroenterologists, dentists, and other healthcare professionals to develop comprehensive care plans that address both oral and digestive health issues simultaneously. Among the branches with a significant impact on general well-being are oral cavity health and digestive diseases, which have been the subject of intensive research in recent decades. In this context, analysis of the current state of knowledge on oral cavity disorders in relation to "modern" digestive diseases such as non-alcoholic fatty liver disease (NAFLD), small intestinal bacterial overgrowth (SIBO), inflammatory bowel disease (IBD), and irritable bowel syndrome (IBS) becomes essential for a deeper understanding of the interconnections between oral and digestive health. The temporal overlap or succession, whether preceding or following, of oral manifestations and digestive disorders should be taken seriously by both gastroenterologists and dentists to facilitate early diagnosis and explain to patients the correlation between these two body systems. In summary, this article underscores the importance of understanding the intricate relationship between oral and digestive health, advocating for interdisciplinary approaches to improve patient outcomes and guide future research.
Collapse
Affiliation(s)
- Mihaela Rotaru
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I No. 20A, 700505 Iasi, Romania; (M.R.); (A.C.)
| | - Ana-Maria Singeap
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (L.H.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I No. 20A, 700505 Iasi, Romania; (M.R.); (A.C.)
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I No. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei Street No. 54, 050094 Bucharest, Romania
| | - Laura Huiban
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (L.H.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (L.H.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I No. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei Street No. 54, 050094 Bucharest, Romania
| | - Laura Romila
- “Ioan Haulica” Institute, Apollonia University, Pacurari Street No. 11, 700511 Iasi, Romania;
| | - Vasile Burlui
- “Ioan Haulica” Institute, Apollonia University, Pacurari Street No. 11, 700511 Iasi, Romania;
| | - Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK;
- Third Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anca Trifan
- Department of Gastroenterology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania; (L.H.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” Emergency County Hospital, Bd. Independentei No. 1, 700111 Iasi, Romania
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Street No. 16, 700115 Iasi, Romania
| |
Collapse
|
2
|
Xu W, Yang T, Zhang J, Li H, Guo M. Rhodiola rosea: a review in the context of PPPM approach. EPMA J 2024; 15:233-259. [PMID: 38841616 PMCID: PMC11147995 DOI: 10.1007/s13167-024-00367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
A natural "medicine and food" plant, Rhodiola rosea (RR) is primarily made up of organic acids, phenolic compounds, sterols, glycosides, vitamins, lipids, proteins, amino acids, trace elements, and other physiologically active substances. In vitro, non-clinical and clinical studies confirmed that it exerts anti-inflammatory, antioxidant, and immune regulatory effects, balances the gut microbiota, and alleviates vascular circulatory disorders. RR can prolong life and has great application potential in preventing and treating suboptimal health, non-communicable diseases, and COVID-19. This narrative review discusses the effects of RR in preventing organ damage (such as the liver, lung, heart, brain, kidneys, intestines, and blood vessels) in non-communicable diseases from the perspective of predictive, preventive, and personalised medicine (PPPM/3PM). In conclusion, as an adaptogen, RR can provide personalised health strategies to improve the quality of life and overall health status.
Collapse
Affiliation(s)
- Wenqian Xu
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | | | - Jinyuan Zhang
- The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Heguo Li
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Min Guo
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Zhang Y, Wang Y, Liao X, Liu T, Yang F, Yang K, Zhou Z, Fu Y, Fu T, Sysa A, Chen X, Shen Y, Lyu J, Zhao Q. Glutamine prevents high-fat diet-induced hepatic lipid accumulation in mice by modulating lipolysis and oxidative stress. Nutr Metab (Lond) 2024; 21:12. [PMID: 38459503 PMCID: PMC10924388 DOI: 10.1186/s12986-024-00784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is related to metabolic dysfunction and is characterized by excess fat storage in the liver. Several studies have indicated that glutamine could be closely associated with lipid metabolism disturbances because of its important role in intermediary metabolism. However, the effect of glutamine supplementation on MAFLD progression remains unclear. Here, we used a high-fat diet (HFD)-induced MAFLD C57BL/6 mouse model, and glutamine was supplied in the drinking water at different time points for MAFLD prevention and reversal studies. A MAFLD prevention study was performed by feeding mice an HFD concomitant with 4% glutamine treatment for 24 weeks, whereas the MAFLD reversal study was performed based on 4% glutamine treatment for 13 weeks after feeding mice an HFD for 10 weeks. In the prevention study, glutamine treatment ameliorated serum lipid storage, hepatic lipid injury, and oxidative stress in HFD-induced obese mice, although glutamine supplementation did not affect body weight, glucose homeostasis, energy expenditure, and mitochondrial function. In the MAFLD reversal study, there were no noticeable changes in the basic physiological phenotype and hepatic lipid metabolism. In summary, glutamine might prevent, but not reverse, HFD-induced MAFLD in mice, suggesting that a cautious attitude is required regarding its use for MAFLD treatment.
Collapse
Affiliation(s)
- Yongjie Zhang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yangli Wang
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Xin Liao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tong Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fengyuan Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kaiqiang Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhuohua Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yinxu Fu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ting Fu
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Aliaksei Sysa
- Belarusian State University, ISEI BSU, Minsk, Republic of Belarus
| | - Xiandan Chen
- Belarusian State University, ISEI BSU, Minsk, Republic of Belarus
| | - Yao Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Jianxin Lyu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China.
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| | - Qiongya Zhao
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China.
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
- School of Public Health, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
4
|
Sun X, Yu J, Wang Y, Luo J, Zhang G, Peng X. Flaxseed oil ameliorates aging in d-galactose induced rats via altering gut microbiota and mitigating oxidative damage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6432-6442. [PMID: 35567370 DOI: 10.1002/jsfa.12010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/21/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Aging causes decreased antioxidant capacity and chronic inflammation and may even elevate cancer risks. Previous studies reported that flaxseed oil (FO) can alleviate age-related diseases, including improving alcoholic liver disease, atherosclerosis and diabetes. However, whether the intestinal microbiota accountable for this alleviation is still unknown. This study aims to study the antioxidant effects of FO in an aging rat model and the underlying mechanism between the intestinal microbiota and aging. RESULTS Our results presented that serum and liver antioxidant capacities in FO group were up-regulated, and liver inflammation in FO group was reduced. The 16S rDNA sequencing showed that FO regulated the microbial community, including up-regulation of four families of Lactobacillus and six families of Clostridium. In addition, FO had also adjusted the relative abundance of several genera such as Ruminococcaceae_UCG-005 and Prevotella_9, which may be the key bacteria associated with the aging process. Colonic transcriptome analysis showed that there were 1679 differentially expressed genes (DEGs) in the Model group and the FO group (134 up-regulated and 1545 down-regulated). Gene set enrichment analysis (GSEA) revealed FO down-regulates the expression of the upstream genes Ptprc, Lck, Zap70, Lat and Lcp2 in the T cell receptor signaling pathway. CONCLUSION In conclusion, FO improved antioxidant capacity and reduced intestinal microbial disturbances caused by aging damage, indicating that dietary FO has the potential to fight aging damage. This study provides a more comprehensive view of dietary intervention to improve aging. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Juntong Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Guangwen Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Food and Gut Microbiota-Derived Metabolites in Nonalcoholic Fatty Liver Disease. Foods 2022; 11:foods11172703. [PMID: 36076888 PMCID: PMC9455821 DOI: 10.3390/foods11172703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Diet and lifestyle are crucial factors that influence the susceptibility of humans to nonalcoholic fatty liver disease (NAFLD). Personalized diet patterns chronically affect the composition and activity of microbiota in the human gut; consequently, nutrition-related dysbiosis exacerbates NAFLD via the gut–liver axis. Recent advances in diagnostic technology for gut microbes and microbiota-derived metabolites have led to advances in the diagnosis, treatment, and prognosis of NAFLD. Microbiota-derived metabolites, including tryptophan, short-chain fatty acid, fat, fructose, or bile acid, regulate the pathophysiology of NAFLD. The microbiota metabolize nutrients, and metabolites are closely related to the development of NAFLD. In this review, we discuss the influence of nutrients, gut microbes, their corresponding metabolites, and metabolism in the pathogenesis of NAFLD.
Collapse
|