1
|
Huang D, Bai S, Qiu G, Jiang C, Huang M, Wang Y, Zhong M, Fang J, Cheng J, Zhao X, Wu B, Wu D. Myricetin ameliorates airway inflammation and remodeling in asthma by activating Sirt1 to regulate the JNK/Smad3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156044. [PMID: 39299094 DOI: 10.1016/j.phymed.2024.156044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Myricetin has various biological activities and health benefits; however, its effects on airway remodeling in asthma have not been reported. PURPOSE We aimed to investigate the possibility that myricetin improves airway remodeling by activating Sirt1 and has potential as a new treatment for asthma. METHODS RAW 264.7 cells were stimulated with lipopolysaccharide and co-cultured with 3T6 cells in vitro to simulate the in vivo effects of inflammation on airway remodeling. Using an ovalbumin-induced chronic asthma mouse model, we compared changes in inflammatory factors and airway remodeling-related factors under treatment with myricetin and/or the Sirt1 inhibitor EX-527 using western blotting and quantitative PCR. Expression plasmids carrying Smad3 site mutations were transfected into 3T6 cells to identify the Sirt1 deacetylation site on Smad3 protein. RESULTS Myricetin significantly reduced the infiltration of airway inflammatory cells and the production of interleukin (IL)-6 and IL-5, and inhibited mucus secretion by goblet cells, collagen fiber proliferation, and the increase in inflammatory cells in bronchoalveolar lavage fluid from asthmatic mice. Results of in vitro experiments were consistent with those conducted in vivo. Exploring the mechanism of action of myricetin, we found that myricetin downregulated the levels of phosphorylated (p)-JNK, p-Smad3, and acetylated Smad3 proteins by activating Sirt1 both in vivo and in vitro. K341 was identified as the main deacetylation site of Smad3 by myricetin-activated Sirt1. CONCLUSION Myricetin ameliorates airway inflammation and remodeling in asthma by activating Sirt1 to regulate the JNK/Smad3 pathway.
Collapse
Affiliation(s)
- Dan Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Shuyou Bai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guiqiang Qiu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chi Jiang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mei Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yue Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingting Zhong
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiayan Fang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Junfen Cheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Xuanna Zhao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Bin Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Dong Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
2
|
Lu Y, Tang X, Wang W, Yang J, Wang S. The role of deacetylase SIRT1 in allergic diseases. Front Immunol 2024; 15:1422541. [PMID: 39081309 PMCID: PMC11286408 DOI: 10.3389/fimmu.2024.1422541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
The silent information regulator sirtuin 1 (SIRT1) protein is an NAD+-dependent class-III lysine deacetylase that serves as an important post-transcriptional modifier targeting lysine acetylation sites to mediate deacetylation modifications of histones and non-histone proteins. SIRT1 has been reported to be involved in several physiological or pathological processes such as aging, inflammation, immune responses, oxidative stress and allergic diseases. In this review, we summarized the regulatory roles of SIRT1 during allergic disorder progression. Furthermore, we highlight the therapeutic effects of targeting SIRT1 in allergic diseases.
Collapse
Affiliation(s)
- Yun Lu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Tang
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Wenxin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Jiang YZ, Huang XR, Chang J, Zhou Y, Huang XT. SIRT1: An Intermediator of Key Pathways Regulating Pulmonary Diseases. J Transl Med 2024; 104:102044. [PMID: 38452903 DOI: 10.1016/j.labinv.2024.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Silent information regulator type-1 (SIRT1), a nicotinamide adenine dinucleotide+-dependent deacetylase, is a member of the sirtuins family and has unique protein deacetylase activity. SIRT1 participates in physiological as well as pathophysiological processes by targeting a wide range of protein substrates and signalings. In this review, we described the latest progress of SIRT1 in pulmonary diseases. We have introduced the basic information and summarized the prominent role of SIRT1 in several lung diseases, such as acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung cancer, and aging-related diseases.
Collapse
Affiliation(s)
- Yi-Zhu Jiang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xin-Ran Huang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Chang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, China.
| |
Collapse
|
4
|
Liu Y, Zeng M, Li Z, Lin C, Bao J, Ding W, Wang S, Fan Q, Sun Q, Luo H, Huang J, Chen S, Tang H. Linc01588 deletion inhibits the malignant biological characteristics of hydroquinone-induced leukemic cells via miR-9-5p/SIRT1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116295. [PMID: 38581908 DOI: 10.1016/j.ecoenv.2024.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Leukemia caused by environmental chemical pollutants has attracted great attention, the malignant leukemic transformation model of TK6 cells induced by hydroquinone (HQ) has been previously found in our team. However, the type of leukemia corresponding to this malignant transformed cell line model needs further study and interpretation. Furthermore, the molecular mechanism of malignant proliferation of leukemic cells induced by HQ remains unclear. This study is the first to reveal the expression of aberrant genes in leukemic cells of HQ-induced malignant transformation, which may correspond to chronic lymphocytic leukemia (CLL). The expression of Linc01588, a long non-coding RNA (lncRNA), was significantly up-regulated in CLL patients and leukemic cell line model which previously described. After gain-of-function assays and loss-of-function assays, feeble cell viability, severe apoptotic phenotype and the increased secretion of TNF-α were easily observed in malignant leukemic TK6 cells with Linc01588 deletion after HQ intervention. The tumors derived from malignant TK6 cells with Linc01588 deletion inoculated subcutaneously in nude mice were smaller than controls. In CLL and its cell line model, the expression of Linc01588 and miR-9-5p, miR-9-5p and SIRT1 were negative correlation respectively in CLL and cell line model, while the expression of Linc01588 and SIRT1 were positive correlation. The dual-luciferase reporter assay showed that Linc01588 & miR-9-5p, miR-9-5p & SIRT1 could bind directly, respectively. Furthermore, knockdown of miR-9-5p successfully rescued the severe apoptotic phenotype and the increased secretion of TNF-α caused by the Linc01588 deletion, the deletion of Linc01588 in human CLL cell line MEC-2 could also inhibit malignant biological characteristics, and the phenotype caused by the deletion of Linc01588 could also be rescued after overexpression of SIRT1. Moreover, the regulation of SIRT1 expression in HQ19 cells by Linc01588 and miR-9-5 P may be related to the Akt/NF-κB pathway. In brief, Linc01588 deletion inhibits the malignant biological characteristics of HQ-induced leukemic cells via miR-9-5p/SIRT1, and it is a novel and hopeful clue for the clinical targeted therapy of CLL.
Collapse
Affiliation(s)
- Yanquan Liu
- Department of Hematology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan 523808, China; School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Minjuan Zeng
- School of Basic Medicine, Guangdong Medical University, Dongguan Key Laboratory for Development and Application of Experimental Animal Resources in Biomedical Industry, Dongguan 523808, China
| | - Zhengzhen Li
- School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Caixiong Lin
- School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Jie Bao
- Department of Clinical Laboratory, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, China
| | - Weihua Ding
- Central People's Hospital of Zhanjiang, Zhanjiang 524033, China
| | - Shimei Wang
- School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Qin Fan
- School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Qian Sun
- School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Hao Luo
- School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China
| | - Jinqi Huang
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, China
| | | | - Huanwen Tang
- Department of Hematology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan 523808, China; School of Public Health, Guangdong Medical University, Dongguan 523808, China; Dongguan Key Laboratory of Environmental Medicine, Dongguan 523808, China.
| |
Collapse
|
5
|
Pan Y, Liu Y. Echinacoside alleviates airway remodeling and inflammation in an ovalbumin-induced neonatal mouse model of asthma by modulating the SIRT1-NF-κB pathway. Allergol Immunopathol (Madr) 2023; 51:71-77. [PMID: 37422782 DOI: 10.15586/aei.v51i4.859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE Echinacoside (ECH) has been reported to have anti-inflammatory and anti-immune effects, and may be effective for treating asthma. This study aimed to investigate the effect of ECH on asthma. METHODS A mouse model of asthma was established by ovalbumin (OVA) induction, and the effect of ECH on airway remodeling in mice was evaluated using the Periodic Acid-Schiff stain and enzyme-linked immunosorbent serologic assay (ELISA). Additionally, the effect of ECH on collagen deposition in asthmatic mice was assessed using Western blotting (WB) analysis, and response to airway inflammation was evaluated by ELISA. The signaling pathway regulated by ECH was also investigated using WB. RESULTS Our findings demonstrated that ECH restored OVA-induced increase in mucin, -immunoglobulin E, and respiratory resistance. ECH also alleviated OVA-induced collagen -deposition, including collagen I, collagen III, alpha smooth muscle actin, and epithelial (E)-cadherin. Moreover, ECH restored the elevated levels of interleukin (IL)-13, IL-17, and the increased -number of macrophages, eosinophils, lymphocytes, and neutrophills induced by OVA. ECH mainly exerted its regulatory effects by modulating the silent mating type information regulation 2 homolog 1 (Sirtuin 1/SIRT1)-nuclear factor kappa B (NF-κB) signaling pathway in the mouse models of asthma. CONCLUSION This study highlights the therapeutic potential of ECH for attenuating airway remodeling and inflammation in an OVA-induced neonatal mouse model of asthma through the modulation of SIRT1/NF-κB pathway.
Collapse
Affiliation(s)
- Yunbo Pan
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing, China
| | - Yijun Liu
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing, China;
| |
Collapse
|
6
|
Zhong Y, Huang T, Huang J, Quan J, Su G, Xiong Z, Lv Y, Li S, Lai X, Xiang Y, Wang Q, Luo L, Gao X, Shao Y, Tang J, Lai T. The HDAC10 instructs macrophage M2 program via deacetylation of STAT3 and promotes allergic airway inflammation. Theranostics 2023; 13:3568-3581. [PMID: 37441601 PMCID: PMC10334828 DOI: 10.7150/thno.82535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Perturbation of macrophage homeostasis is one of the key mechanisms of airway inflammation in asthma. However, the exact mechanisms remain poorly understood. Objectives: We sought to examine the role of histone deacetylase (HDAC) 10 as an epigenetic regulator that governs macrophage M2 program and promotes airway inflammation in asthma, and to elucidate the underlying mechanisms. Methods: Peripheral blood and airway biopsies were obtained from healthy individuals and asthmatic patients. Asthma was induced by exposure to allergen in mice with myeloid-specific deletion of Hdac10 (Hdac10fl/fl-LysMCre) mice. HDAC10 inhibitor Salvianolic acid B (SAB), STAT3 selective agonist Colivelin, and the specific PI3K/Akt activator 1,3-Dicaffeoylquinic acid (DA) were also used in asthmatic mice. For cell studies, THP1 cells, primary mouse bone marrow derived macrophage (BMDMs) were used and related signaling pathways was investigated. Results: HDAC10 expression was highly expressed by macrophages and promoted M2 macrophage activation and airway inflammation in asthmatic patients and mice. Hdac10fl/fl-LysMCre mice were protected from airway inflammation in experimental asthma model. Hdac10 deficiency significantly attenuated STAT3 expression and decreased M2 macrophage polarization following allergen exposure. Mechanistically, HDAC10 directly binds STAT3 for deacetylation in macrophages, by which it promotes STAT3 expression and activates the macrophage M2 program. Importantly, we identified SAB as a HDAC10 inhibitor that had protective effects against airway inflammation in mice. Conclusions: Our results revealed that HDAC10-STAT3 interaction governs macrophage polarization to promote airway inflammation in asthma, implicating HDAC10 as a therapeutic target.
Collapse
Affiliation(s)
- Yu Zhong
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Tong Huang
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jiewen Huang
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jingyun Quan
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Guomei Su
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhilin Xiong
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yingying Lv
- Department of Respiratory and Critical Care Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523121, China
| | - Shihai Li
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xianwen Lai
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yuanyuan Xiang
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Qu Wang
- The Marine Biomedical Research Institute, Guangdong Medical University; The Marine Biomedical Research Institute of Guangdong Zhanjiang, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University; The Marine Biomedical Research Institute of Guangdong Zhanjiang, China
| | - Xiao Gao
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yiming Shao
- The Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523121, China
| | - Jing Tang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Tianwen Lai
- Institute of Respiratory Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Department of Respiratory and Critical Care Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523121, China
| |
Collapse
|
7
|
Chen S, Wu M, Xiong Z, Huang J, Lv Y, Li Y, Zeng M, Lai T. Myeloid-Specific SIRT6 Deletion Protects Against Particulate Matter (PM 2.5)-Induced Airway Inflammation. Int J Chron Obstruct Pulmon Dis 2023; 18:1135-1144. [PMID: 37323542 PMCID: PMC10266380 DOI: 10.2147/copd.s398796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/30/2023] [Indexed: 06/17/2023] Open
Abstract
Purpose Particulate matter (PM2.5) is a common risk factor for airway inflammation. Alveolar macrophages play a critical role in airway inflammation. Sirtuin 6 (SIRT6) is a class Ill histone deacetylase that exerts an anti-inflammatory effect in airway diseases. However, the role of SIRT6 on PM2.5-induced airway inflammation in macrophages remains unclear. We aimed to determine whether SIRT6 protects against PM2.5-induced airway inflammation in macrophages. Methods The effect of SIRT6 on PM2.5-induced airway inflammation was assessed by using THP1 cells or bone marrow-derived macrophages (BMDMs) exposed to PM2.5 in vitro and myeloid cell-specific SIRT6 conditional knockout mice (Sirt6fl/fl-LysMCre) in vivo. Results PM2.5 increased SIRT6 expression in THP1 cells, but SIRT6 gene silencing decreased PM2.5 induced inflammatory cytokines in THP1 cells. Moreover, the expression of SIRT6 and inflammatory cytokines was also decreased in BMDMs with myeloid-specific deletion of SIRT6 after stimulation of PM2.5. In vivo, Sirt6fl/fl-LysMCre mice substantially decreased airway inflammation in response to PM2.5 exposure. Conclusion Our results revealed that SIRT6 promotes the PM2.5-induced airway inflammation in macrophages and indicated that inhibition of SIRT6 in macrophages may represent therapeutic strategy for airway disorders induced by airborne particulate pollution.
Collapse
Affiliation(s)
- Shaopeng Chen
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
- Blood Donation Service Department, Zhanjiang Blood Center, Zhanjiang, People’s Republic of China
| | - Mindan Wu
- Department of Pulmonary and Critical Care Medicine, Shantou Central Hospital, Shantou, People’s Republic of China
| | - Zhilin Xiong
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
| | - Jiewen Huang
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
| | - Yingying Lv
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
| | - Yuyan Li
- Department of Pulmonary and Critical Care Medicine, Dongguan Hospital of Southern Medical University, Dongguan, People’s Republic of China
| | - Minjuan Zeng
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, People’s Republic of China
| | - Tianwen Lai
- Institute of Respiratory Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People’s Republic of China
| |
Collapse
|
8
|
Sun C, Bai S, Liang Y, Liu D, Liao J, Chen Y, Zhao X, Wu B, Huang D, Chen M, Wu D. The role of Sirtuin 1 and its activators in age-related lung disease. Biomed Pharmacother 2023; 162:114573. [PMID: 37018986 DOI: 10.1016/j.biopha.2023.114573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Aging is a major driving factor in lung diseases. Age-related lung disease is associated with downregulated expression of SIRT1, an NAD+-dependent deacetylase that regulates inflammation and stress resistance. SIRT1 acts by inducing the deacetylation of various substrates and regulates several mechanisms that relate to lung aging, such as genomic instability, lung stem cell exhaustion, mitochondrial dysfunction, telomere shortening, and immune senescence. Chinese herbal medicines have many biological activities, exerting anti-inflammatory, anti-oxidation, anti-tumor, and immune regulatory effects. Recent studies have confirmed that many Chinese herbs have the effect of activating SIRT1. Therefore, we reviewed the mechanism of SIRT1 in age-related lung disease and explored the potential roles of Chinese herbs as SIRT1 activators in the treatment of age-related lung disease.
Collapse
|
9
|
Yue H, Yang X, Wu X, Geng X, Ji X, Li G, Sang N. Maternal NO 2 exposure disturbs the long noncoding RNA expression profile in the lungs of offspring in time-series patterns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114140. [PMID: 36209526 DOI: 10.1016/j.ecoenv.2022.114140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Gestation is a sensitive window to nitrogen dioxide (NO2) exposure, which may disturb fetal lung development and lung function later in life. Animal and epidemiological studies indicated that long noncoding RNAs (lncRNAs) participate in abnormal lung development induced by environmental pollutant exposure. In the present study, pregnant C57BL/6J mice were exposed to 2.5 ppm NO2 (mimicking indoor occupational exposure) or clean air, and lncRNAs expression profiles in the lungs of offspring mice were determined by lncRNA-seq on embryonic day 13.5 (E13.5), E18.5, postnatal day 1 (P1), and P14. The lung histopathology examination of offspring was performed, followed by weighted gene coexpression network analysis (WGCNA), prediction of lncRNAs-target genes, and the biological processes enrichment analysis of lncRNAs. Our results indicated that maternal NO2 exposure induced hypoalveolarization on P14 and differentially expressed lncRNAs showed a time-series pattern. Following WGCNA and enrichment analysis, 2 modules participated in development-related pathways. Importantly, the expressions of related genes were altered, some of which were confirmed to be related to abnormal vascular development and even lung diseases. The research points out that the maternal NO2 exposure leads to abnormal lung development in offspring that might be related to altered lncRNAs expression profiles with time-series-pattern.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xilin Geng
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
10
|
Labiner HE, Sas KM, Baur JA, Sims CA. Sirtuin 1 deletion increases inflammation and mortality in sepsis. J Trauma Acute Care Surg 2022; 93:672-678. [PMID: 35857031 PMCID: PMC10673225 DOI: 10.1097/ta.0000000000003751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sepsis is a hyperinflammatory response to infection that can lead to multiorgan failure and eventually death. Often, the onset of multiorgan failure is heralded by renal dysfunction. Sirtuin 1 (SIRT1) promotes cellular stress resilience by inhibiting inflammation and promoting mitochondrial function. We hypothesize that SIRT1 plays an important role in limiting the inflammatory responses that drive organ failure in sepsis, predominantly via expression in myeloid cells. METHODS We performed cecal ligation and puncture (CLP) on whole body SIRT1 knockout (S1KO) and myeloid cell-specific S1KO (S1KO-LysMCre) mice on a C57BL/6J background. Serum interleukin (IL)-6 was quantified by enzyme-linked immunosorbent assay. Renal mitochondrial complex activity was measured using Oxygraph-2k (Oroboros Instruments, Innsbruck, Austria). Blood urea nitrogen (BUN) was measured from serum. Survival was monitored for up to 5 days. RESULTS Following CLP, S1KO mice had decreased renal mitochondrial complex I-dependent respiratory capacity (241.7 vs. 418.3 mmolO2/mg/min, p = 0.018) and renal mitochondrial complex II-dependent respiratory capacity (932.3 vs. 1,178.4, p = 0.027), as well as reduced rates of fatty acid oxidation (187.3 vs. 250.3, p = 0.022). Sirtuin 1 knockout mice also had increased BUN (48.0 mg/dL vs. 16.0 mg/dL, p = 0.049). Interleukin-6 levels were elevated in S1KO mice (96.5 ng/mL vs. 45.6 ng/mL, p = 0.028) and S1KO-LysMCre mice (35.8 ng/mL vs. 24.5 ng/mL, p = 0.033) compared with controls 12 hours after surgery. Five-day survival in S1KO (33.3% vs. 83.3%, p = 0.025) and S1KO-LysMCre (60% vs. 100%, p = 0.049) mice was decreased compared with controls. CONCLUSION Sirtuin 1 deletion increases systemic inflammation in sepsis. Renal mitochondrial dysfunction, kidney injury, and mortality following CLP were all exacerbated by SIRT1 deletion. Similar effects on inflammation and survival were seen following myeloid cell-specific SIRT1 deletion, indicating that SIRT1 activity in myeloid cells may be a significant contributor for the protective effects of SIRT1 in sepsis.
Collapse
Affiliation(s)
- Hanna E. Labiner
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, 43210
| | - Kelli M. Sas
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, 43210
| | - Joseph A. Baur
- Institute for Diabetes, Obesity and Metabolism and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Carrie A. Sims
- Division of Trauma, Critical Care, and Burn at The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
11
|
Huang D, Sun C, Chen M, Bai S, Zhao X, Wang W, Geng K, Huang W, Zhao T, Wu B, Zhang G, Wu D, Xu Y. Bergenin ameliorates airway inflammation and remodeling in asthma by activating SIRT1 in macrophages to regulate the NF-κB pathway. Front Pharmacol 2022; 13:994878. [PMID: 36313381 PMCID: PMC9606584 DOI: 10.3389/fphar.2022.994878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022] Open
Abstract
Airway inflammation and remodeling are critical pathological changes in asthma, and macrophage activation plays a vital role in this process. Sirtuin 1 (SIRT1) reduces airway inflammation by affecting macrophages in asthma. This study aimed to investigate the potential benefit and underlying mechanism of the SIRT1 agonist bergenin as a treatment for asthma. We performed in vivo and in vitro experiments by establishing a Sirt1fl/fl-LysMcre mouse asthma model and using the alveolar macrophage-like cell line MH-S, respectively. Our results show that Sirt1fl/fl-LysMcre asthmatic mice exhibited more severe airway inflammation and airway remodeling than wild-type mice. As an activator of SIRT1, bergenin attenuated asthmatic airway pathology and reduced production of interleukins 1β, IL-5, IL-6, and matrix metalloproteinase 9 (MMP-9) in wild-type asthmatic mice. However, the therapeutic effects of bergenin were significantly attenuated in Sirt1fl/fl-LysMcre asthmatic mice or following coadministration with the SIRT1 inhibitor EX-527. Further experiments showed that activation of SIRT1 by bergenin deacetylates nuclear factor κB and hinders its nuclear translocation, thereby affecting IL-1β, IL-5, IL-6, and MMP-9 production by regulating transcriptional activity. Our study suggests that bergenin can improve asthma-induced airway inflammation and remodeling by activating SIRT1 in macrophages.
Collapse
Affiliation(s)
- Dan Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaoqun Sun
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Min Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuyou Bai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuanna Zhao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Kang Geng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Wenbo Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Tingting Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Bin Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guilin Zhang
- Guangdong Keguanda Pharmaceutical Technology Co Ltd, Guangzhou, China
- *Correspondence: Guilin Zhang, ; Dong Wu, ; Youhua Xu,
| | - Dong Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Guilin Zhang, ; Dong Wu, ; Youhua Xu,
| | - Youhua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
- *Correspondence: Guilin Zhang, ; Dong Wu, ; Youhua Xu,
| |
Collapse
|
12
|
Liu Y, Shi G. Roles of sirtuins in asthma. Respir Res 2022; 23:251. [PMID: 36117172 PMCID: PMC9482752 DOI: 10.1186/s12931-022-02175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacylases and deacetylases that participate in a variety of cellular processes, including transcriptional activity, energy metabolism, DNA damage response, inflammation, apoptosis, autophagy, and oxidative stress. As a result, sirtuins are linked to multiple pathophysiological processes, such as cardiovascular diseases, metabolic diseases, autoimmune diseases, infectious diseases, and respiratory diseases. Asthma is the most common respiratory disease, which is characterized by airway inflammation and airway remodeling. Accumulating evidence has indicated that sirtuins are involved in the pathogenesis of asthma. Furthermore, some studies have suggested that sirtuin modulators are potential agents for the treatment of asthma via alteration of the expression or activity of sirtuins. In this review, we illustrate the role of sirtuins in asthma, discuss related molecular mechanisms, and evaluate the sirtuins-targeted therapy for asthma.
Collapse
|
13
|
Liao W, Liu W, Yan Y, Li L, Tong J, Huang Y, Guo S, Jiang W, Fu S. Hylocereus undatus flower extract suppresses OVA-induced allergic asthma in BALb/c mice by reducing airway inflammation and modulating gut microbiota. Biomed Pharmacother 2022; 153:113476. [DOI: 10.1016/j.biopha.2022.113476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022] Open
|
14
|
Lin Y, Qiu T, Wei G, Que Y, Wang W, Kong Y, Xie T, Chen X. Role of Histone Post-Translational Modifications in Inflammatory Diseases. Front Immunol 2022; 13:852272. [PMID: 35280995 PMCID: PMC8908311 DOI: 10.3389/fimmu.2022.852272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a defensive reaction for external stimuli to the human body and generally accompanied by immune responses, which is associated with multiple diseases such as atherosclerosis, type 2 diabetes, Alzheimer’s disease, psoriasis, asthma, chronic lung diseases, inflammatory bowel disease, and multiple virus-associated diseases. Epigenetic mechanisms have been demonstrated to play a key role in the regulation of inflammation. Common epigenetic regulations are DNA methylation, histone modifications, and non-coding RNA expression; among these, histone modifications embrace various post-modifications including acetylation, methylation, phosphorylation, ubiquitination, and ADP ribosylation. This review focuses on the significant role of histone modifications in the progression of inflammatory diseases, providing the potential target for clinical therapy of inflammation-associated diseases.
Collapse
Affiliation(s)
- Yingying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yueyue Que
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenxin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
15
|
A Network Pharmacology Approach to Reveal the Underlying Mechanisms of Rhizoma Dioscoreae Nipponicae in the Treatment of Asthma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4749613. [PMID: 35399637 PMCID: PMC8986377 DOI: 10.1155/2022/4749613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
Background In this study, network pharmacological methods were used to analyze the targets of Rhizoma Dioscoreae Nipponicae (RDN) and investigate the potential underlying mechanism of RDN in the treatment of asthma. Methods Asthma-related targets were obtained from the GeneCards and DisGeNET databases. The bioactive components of RDN were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database, and the targets of these compounds were predicted using the BATMAN-TCM database. The network of RDN component targets was constructed using Cytoscape. A protein-protein interaction (PPI) network was constructed in Cytoscape to determine the potential targets of RDN for the treatment of asthma. The hub genes of RDN in the treatment of asthma were screened using network topological parameters. Gene ontology (GO) and the KEGG pathways were analyzed. Molecular docking and in vivo experiments were performed to validate the network pharmacology results. Results A total of four bioactive components and 55 targets were identified. The results of the enrichment analysis suggested that the treatment of asthma with RDN involved signaling pathways, such as those related to systemic lupus erythematosus, alcoholism, viral carcinogenesis, the cell cycle, prostate cancer, transcriptional misregulation in cancer, hepatitis B, thyroid hormone signaling, and PI3K-AKT signaling, as well as other signaling pathways. Molecular docking showed that the active components of RDN could stably bind to the predicted target. In vivo experiments showed that RDN could regulate the expression of target genes and inhibit the activation of the PI3K-AKT signaling pathway. Conclusion To a certain extent, this study reveals the potential bioactive components and molecular mechanisms of RDN in the treatment of asthma and provides new insights for the development of new drugs for asthma.
Collapse
|
16
|
Zhou Y, Zhang F, Ding J. As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases. Immune Netw 2022; 22:e21. [PMID: 35799705 PMCID: PMC9250864 DOI: 10.4110/in.2022.22.e21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yunxin Zhou
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Fan Zhang
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|