1
|
Jain N, Mamgain M, Chowdhury SM, Jindal U, Sharma I, Sehgal L, Epperla N. Beyond Bruton's tyrosine kinase inhibitors in mantle cell lymphoma: bispecific antibodies, antibody-drug conjugates, CAR T-cells, and novel agents. J Hematol Oncol 2023; 16:99. [PMID: 37626420 PMCID: PMC10463717 DOI: 10.1186/s13045-023-01496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
Mantle cell lymphoma is a B cell non-Hodgkin lymphoma (NHL), representing 2-6% of all NHLs and characterized by overexpression of cyclin D1. The last decade has seen the development of many novel treatment approaches in MCL, most notably the class of Bruton's tyrosine kinase inhibitors (BTKi). BTKi has shown excellent outcomes for patients with relapsed or refractory MCL and is now being studied in the first-line setting. However, patients eventually progress on BTKi due to the development of resistance. Additionally, there is an alteration in the tumor microenvironment in these patients with varying biological and therapeutic implications. Hence, it is necessary to explore novel therapeutic strategies that can be effective in those who progressed on BTKi or potentially circumvent resistance. In this review, we provide a brief overview of BTKi, then discuss the various mechanisms of BTK resistance including the role of genetic alteration, cancer stem cells, tumor microenvironment, and adaptive reprogramming bypassing the effect of BTK inhibition, and then provide a comprehensive review of current and emerging therapeutic options beyond BTKi including novel agents, CAR T cells, bispecific antibodies, and antibody-drug conjugates.
Collapse
Affiliation(s)
- Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mukesh Mamgain
- Department of Medical Oncology and Hematology, All India Institute of Medical Sciences, Rishikesh, India
| | - Sayan Mullick Chowdhury
- Division of Hematology, Department of Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Udita Jindal
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Isha Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Lalit Sehgal
- Division of Hematology, Department of Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Narendranath Epperla
- The Ohio State University Comprehensive Cancer Center, Suite 7198, 2121 Kenny Rd, Columbus, OH, 43221, USA.
| |
Collapse
|
2
|
Xu D, Wang Y, Chen Y, Zheng J. Identification of the molecular subtype and prognostic characteristics of pancreatic cancer based on CD8 + T cell-related genes. Cancer Immunol Immunother 2023; 72:647-664. [PMID: 36036290 DOI: 10.1007/s00262-022-03269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
CD8 + T lymphocytes are immune cells that play a crucial anti-tumor role in the human body, and prognostic value of CD8 + T cell-related regulatory genes in PAAD remains elusive. Data on 179 expression profiles across 13 immune cell datasets were downloaded from the GEO database, and the expression profiles of CD8 + T cell-related genes were obtained using WGCNA. Molecular subtypes based on CD8 + T cell-related genes were constructed using the ConsensusClusterPlus algorithm. Lasso regression analysis was performed to build a 10-gene signature. GSVA was performed to explore the pathways related to these ten genes. The IMvigor210 cohort was used to explore the predictive efficacy of the signature in terms of immunotherapy response. Four hundred and forty-six CD8 + T cell-related genes were obtained. One hundred and nine genes in TCGA and GEO datasets were closely related to the prognosis of patients and were included in the next study. PAAD samples were divided into two subtypes (IC1 and IC2) according to consensus cluster analysis. These two immune subtypes were significantly different in terms of immune checkpoint genes, immune function, and drug treatment response. Additionally, the 10-gene signature constructed based on CD8 + T cell-related genes showed a stable prognostic performance in TCGA and GEO cohorts. Moreover, it served as an independent prognostic factor for patients with PAAD. Furthermore, the 10-gene signature could effectively predict the response to immunotherapy. The immunophenotyping-derived prognostic model based on CD8 T cell-related genes provides a basis for the clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Dafeng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yu Wang
- Geriatric Medicine Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yonghai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
3
|
Coming of Age for BTK Inhibitor Therapy: A Review of Zanubrutinib in Waldenström Macroglobulinemia. Cells 2022; 11:cells11203287. [PMID: 36291152 PMCID: PMC9600142 DOI: 10.3390/cells11203287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Waldenström macroglobulinemia (WM) is a rare form of non-Hodgkin B-cell lymphoma with a variable clinical presentation that can impact a patient’s quality of life by causing anemia, peripheral neuropathy, serum hyperviscosity, extramedullary disease, and other symptoms. There are several safe and effective treatment regimens for patients with WM, and the choice of therapy should be made in a personalized fashion considering the patient’s symptoms, comorbidities, and genomic profile. Bruton tyrosine kinase (BTK) inhibitors are a new option to treat patients with WM. Zanubrutinib is a next-generation covalent BTK inhibitor designed to have fewer off-target effects than previous BTK inhibitors. This review summarizes the pharmacokinetic and pharmacodynamic properties of zanubrutinib as well as safety and efficacy findings. Then, it explores the health economic and outcomes research associated with the costs of treating patients with WM and the reasons why zanubrutinib may be a more cost-effective treatment option compared with ibrutinib, a first-generation BTK inhibitor. Future directions for the treatment of WM focus on the use of zanubrutinib in combination therapy. Combinations based on effective ibrutinib or acalabrutinib treatments may be effectively applied with zanubrutinib given the similar mechanism of action for these BTK inhibitors. Combination therapies could also help prevent the development of disease resistance, minimize toxicity, and support treatment regimens of finite duration.
Collapse
|