1
|
Pan D, Wang J, Ye H, Qin Y, Xu S, Ye G, Shen H. Tauroursodeoxycholic acid suppresses biliary epithelial cell apoptosis and endoplasmic reticulum stress by miR-107/NCK1 axis in a FXR-dependent manner. Drug Chem Toxicol 2024:1-9. [PMID: 38192027 DOI: 10.1080/01480545.2024.2301947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/03/2023] [Indexed: 01/10/2024]
Abstract
Tauroursodeoxycholic acid (TUDCA) can activate farnesoid X receptor (FXR) to involve in the formation of gallstones. Here, this study aimed to probe the potential mechanism of TUDCA-FXR network in the formation of bile duct stone. The levels of TUDCA, FXR and NCK1 were decreased, while the level of miR-107 was increased in the serum of bile duct stone patients. FXR expression was positively correlated with TUDCA or NCK1 expression in patients, moreover, TUDCA pretreatment in biliary epithelial cells increased the levels of FXR and NCK1, and rescued the decrease of NCK1 caused by FXR knockdown in cells. Then functional analysis showed FXR knockdown caused apoptosis and endoplasmic reticulum stress (ERS) as well as suppressed proliferation in biliary epithelial cells in vitro, which were attenuated by TUDCA pretreatment or NCK1 overexpression Mechanistically, NCK1 was a target of miR-107, which was up-regulated by FXR silencing, and FXR knockdown-induced decrease of NCK1 was rescued by miR-107 inhibition. Additionally, miR-107 expression was negatively correlated with TUDCA expression in bile duct stone patients, and TUDCA pretreatment in biliary epithelial cells decreased miR-107 expression by FXR. Functionally, the pretreatment of TUDCA or FXR agonist suppressed miR-107-evoked apoptosis and ERS in biliary epithelial cells. In conclusion, TUDCA up-regulates FXR expression to activate NCK1 through absorbing miR-107, thus suppressing the apoptosis and ERS in biliary epithelial cells, these results provided a theoretical basis for elucidating the mechanism of bile duct stone formation.
Collapse
Affiliation(s)
- Debiao Pan
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui City, China
| | - Jun Wang
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui City, China
| | - Hailin Ye
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui City, China
| | - Yong Qin
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui City, China
| | - Shengqian Xu
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui City, China
| | - Guanxiong Ye
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui City, China
| | - Hejuan Shen
- Department of Hepatobiliary Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui City, China
| |
Collapse
|
2
|
Zheng YB, Sheng XM, Jin X, Guan W. MiR-182-5p: A Novel Biomarker in the Treatment of Depression in CSDS-Induced Mice. Int J Neuropsychopharmacol 2024; 27:pyad064. [PMID: 38038373 PMCID: PMC10799762 DOI: 10.1093/ijnp/pyad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Depression is a neuropsychiatric disease with a high disability rate and mainly caused by the chronic stress or genetic factors. There is increasing evidence that microRNAs (miRNAs) play a critical role in the pathogenesis of depression. However, the underlying molecular mechanism for the pathophysiology of depression of miRNA remains entirely unclear so far. METHODS We first established a chronic social defeat stress (CSDS) mice model of depression, and depression-like behaviors of mice were evaluated by a series of behavioral tests. Next, we detected several abundantly expressive miRNAs suggested in previous reports to be involved in depression and found miR-182-5p was selected as a candidate for analysis in the hippocampus. Then western blotting and immunofluorescence were used together to examine whether adeno-associated virus (AAV)-siR-182-5p treatment alleviated chronic stress-induced decrease in hippocampal Akt/GSK3β/cAMP-response element binding protein (CREB) signaling pathway and increase in neurogenesis impairment and neuroinflammation. Furthermore, CREB inhibitor was adopted to examine if blockade of Akt/GSK3β/CREB signaling pathway abolished the antidepressant actions of AAV-siR-182-5p in mice. RESULTS Knockdown of miR-182-5p alleviated depression-like behaviors and impaired neurogenesis of CSDS-induced mice. Intriguingly, the usage of agomiR-182-5p produced significant increases in immobility times and aggravated neuronal neurogenesis damage of mice. More importantly, it suggested that 666-15 blocked the reversal effects of AAV-siR-182-5p on the CSDS-induced depressive-like behaviors in behavioral testing and neuronal neurogenesis within hippocampus of mice. CONCLUSIONS These findings indicated that hippocampal miR-182-5p/Akt/GSK3β/CREB signaling pathway participated in the pathogenesis of depression, and it might give more opportunities for new drug developments based on the miRNA target in the clinic.
Collapse
Affiliation(s)
- Ya-Bin Zheng
- Department of Neurology, The second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao-Ming Sheng
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiang Jin
- Department of Pharmacy, The Second People’s Hospital of Nantong, Nantong, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Sun D, Li S, Huang H, Xu L. Neurotoxicity of melittin: Role of mitochondrial oxidative phosphorylation system in synaptic plasticity dysfunction. Toxicology 2023; 497-498:153628. [PMID: 37678661 DOI: 10.1016/j.tox.2023.153628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Melittin (Mel), a main active peptide component of bee venom, has been proven to possess strong antitumor activity. Previous studies have shown that Mel caused severe cell membrane lysis and acted on the central nervous system (CNS). Here, this study was designed to investigate the effects of Mel on CNS and explore the potential mechanism. We confirmed the neurotoxic effect of melittin by in vivo and in vitro experiments. After subcutaneous administration of Mel (4 mg/kg, 8 mg/kg) for 14 days, the mice exhibited obvious depression-like behavior in a dose dependent manner. Besides, RNA-sequencing analysis revealed that oxidative phosphorylation (OXPHOS) signaling pathway was mostly enriched in hippocampus. Consistently, we found that Mel distinctly inhibited the activity of OXPHOS complex I and induced oxidative stress injury. Moreover, Mel significantly induced synaptic plasticity dysfunction in hippocampus via BDNF/TrkB/CREB signaling pathway. Taken together, the neurotoxic effect of Mel was involved in impairing OXPHOS system and hippocampal synaptic plasticity. These novel findings provide new insights into fully understanding the health risks of Mel and are conducive to the development of Mel related drugs.
Collapse
Affiliation(s)
- Dan Sun
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Haiqin Huang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China
| | - Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
4
|
Zhao H, Wang W, Lin T, Gong L. Serum Metabolomics of Benign Essential Blepharospasm Using Liquid Chromatography and Orbitrap Mass Spectrometry. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6876327. [PMID: 36452462 PMCID: PMC9704060 DOI: 10.1155/2022/6876327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 01/19/2024]
Abstract
Background Benign essential blepharospasm (BEB) is a form of focal dystonia that causes excessive involuntary spasms of the eyelids. Currently, the pathogenesis of BEB remains unclear. This study is aimed at investigating the serum metabolites profiles in patients with BEB and healthy control and to identify the mechanism and biomarkers of this disease. Methods 30 patients with BEB and 33 healthy controls were recruited for this study. We conducted the quantitative and nontargeted metabolomics analysis of the serum samples from 63 subjects by using liquid chromatography and Orbitrap mass spectrometry (LC-Orbitrap MS). Multivariate statistical analysis was performed to detect and identify different metabolites between the two groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and receiver operating characteristic (ROC) curve analysis of the altered metabolites were performed. Results A total of 134 metabolites were found and identified. The metabolites belonged to several metabolic pathways including phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arginine biosynthesis, linoleic acid metabolism, tryptophan metabolism, aminoacyl-tRNA biosynthesis, sphingolipid metabolism, glycosphingolipid biosynthesis, leucine and isoleucine biosynthesis, and vitamin B6 metabolism. Eight metabolites were identified as the potential biomarkers. Conclusions These results demonstrated that serum metabolic profiling of BEB patients was significantly different from healthy controls based on LC-Orbitrap MS. Besides, metabolomics might provide useful information for a better understanding of BEB.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| |
Collapse
|