1
|
Zeng M, Wang Y, Tao X, Fan T, Yin X, Shen C, Wang X. Novel Perspectives in the Management of Colorectal Cancer: Mechanistic Investigations Into the Reversal of Drug Resistance via Active Constituents Derived From Herbal Medicine. Phytother Res 2024; 38:5962-5984. [PMID: 39462152 DOI: 10.1002/ptr.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The high incidence and mortality rate of colorectal cancer have become a significant global health burden. Chemotherapy has been the traditional treatment for colorectal cancer and has demonstrated promising antitumor effects, leading to significant improvements in patient survival. However, the development of chemoresistance poses a major challenge during chemotherapy in colorectal cancer, significantly impeding treatment efficacy and affecting patient prognosis. Despite the development of a variety of novel anticolorectal cancer chemotherapy agents, their effectiveness and side effects vary, possibly due to the complex mechanisms of resistance in colorectal cancer. Abnormal drug metabolism or protein targets are the most direct causes of resistance. Further studies have revealed that these resistance mechanisms involve biochemical processes such as altered protein expression, autophagy, and epithelial-mesenchymal transitions. Herbal active ingredients offer an alternative treatment option and have shown promise in reversing colorectal cancer drug resistance. This paper aims to summarize the role of various biochemical processes and key protein targets in the occurrence and maintenance of resistance mechanisms in colorectal cancer. Additionally, it elaborates on the mechanisms of action of herbal active ingredients in reversing colorectal cancer drug resistance. The article also discusses the limitations and opportunities in developing novel anticolorectal cancer drugs based on herbal medicine.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Cao Z, Niu X, Wang M, Yu S, Wang M, Mu S, Liu C, Wang Y. Anemoside B4 attenuates RANKL-induced osteoclastogenesis by upregulating Nrf2 and dampens ovariectomy-induced bone loss. Biomed Pharmacother 2023; 167:115454. [PMID: 37688987 DOI: 10.1016/j.biopha.2023.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023] Open
Abstract
Increased numbers and functional overactivity of osteoclasts are the pathological basis for bone loss diseases such as osteoporosis, which are characterized by cortical bone thinning, decreased trabecular bone quantity, and reduced bone mineral density. Effective inhibition of osteoclast formation and bone resorption are important means of treating such skeletal diseases. Anemoside B4 (AB4), the main active component of Pulsatilla chinensis, possesses a wide range of anti-inflammatory and immunoregulatory effects. However, its effect and mechanism in osteoclast differentiation remain unclear. In this study, we found through tartrate-resistant acidic phosphatase (TRAcP) staining and immunofluorescence staining that AB4 inhibited the differentiation, fusion, and bone-resorption functions of osteoclasts induced by receptor activator of nuclear factor κB ligand (RANKL) in vitro. Additionally, real time PCR (RT-qPCR) and western blot analysis showed AB4 downregulated the expression of osteoclast marker genes, including Nfatc1, Fos, and Ctsk, while upregulating Nrf2 expression. AB4 (5 mg/kg) alleviated bone loss in ovariectomized mice by inhibiting osteoclast formation. Furthermore, the knockout of Nrf2 weakened the inhibitory effects of AB4 on osteoclast formation and related gene expression. In summary, the results suggest AB4 can inhibit osteoclast differentiation and function by activating Nrf2 and indicate AB4 may be a candidate drug for osteoporosis.
Collapse
Affiliation(s)
- Zhen Cao
- Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou 511442, China
| | - Xuben Niu
- Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Department of General Surgery, School of Medicine, South China University of Technology, Guangzhou 511442, China
| | - Maihuan Wang
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Siwang Yu
- Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - Mingkun Wang
- Department of General Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Silong Mu
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan Liu
- Department of Orthopedic, The Seventh Medical Centre, Chinese PLA General Hospital, Beijing 100700, China.
| | - Yaxi Wang
- Department of Emergency, The Seventh Medical Centre, Chinese PLA General Hospital, Beijing 100700, China.
| |
Collapse
|