1
|
Yang K, Tang J, Li H, Zhang H, Ding J, Li Z, Luo J. LncRNAs in Kawasaki disease and Henoch-Schönlein purpura: mechanisms and clinical applications. Mol Cell Biochem 2024; 479:1969-1984. [PMID: 37639198 DOI: 10.1007/s11010-023-04832-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Kawasaki disease (KD) and Henoch-Schönlein purpura (HSP) are the two most predominant types of childhood vasculitis. In childhood vasculitis, factors such as lack of sensitive diagnostic indicators and adverse effects of drug therapy may cause multiorgan system involvement and complications and even death. Many studies suggest that long noncoding RNAs (lncRNAs) are involved in the mechanism of vasculitis development in children and can be used to diagnose or predict prognosis by lncRNAs. In existing drug therapies, lncRNAs are also involved in drug-mediated treatment mechanisms and are expected to improve drug toxicity. The aim of this review is to summarize the link between lncRNAs and the pathogenesis of KD and HSP. In addition, we review the potential applications of lncRNAs in multiple dimensions, such as diagnosis, treatment, and prognosis prediction. This review highlights that targeting lncRNAs may be a novel therapeutic strategy to improve and treat KD and HSP.
Collapse
Affiliation(s)
- Kangping Yang
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Jiayao Tang
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Haoying Li
- Queen Mary School of Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinghua Luo
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Xiao J, Xie Y, Duan Q, Liu T, Ye R, Duan X, Le Z, Deng N, Liu F. LIM Homeobox 2 Increases Adhesion-Regulating Molecule 1 Transcription to Facilitate the Pathological Progression of Oxidized Low-Density Lipoprotein-Stimulated Atherosclerotic Cell Models. Int Heart J 2023; 64:750-758. [PMID: 37518356 DOI: 10.1536/ihj.22-669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Endothelial-mesenchymal transition (EndMT) and endothelial cell apoptosis have been documented to have a role in atherosclerosis (AS) progression. To deepen knowledge in this aspect, our study investigated the effect of LIM homeobox 2 (LHX2) and adhesion-regulating molecule 1 (ADRM1) on EndMT and endothelial cell apoptosis in the oxidized low-density lipoprotein (ox-LDL) -stimulated AS cell model.Ox-LDL was utilized to treat human umbilical vein endothelial cells (HUVECs) for constructing an AS model in vitro, followed by measurement of LHX2 and ADRM1 expressions. Afterward, gain- and loss-of-function assays were performed in HUVECs, followed by detection of cell viability, invasion, migration, and apoptosis and the expression of inflammatory factors [tumor necrosis factor (TNF) -α, interleukin (IL) -1β, and IL-6], EndMT-related proteins [CD31, vascular epithelium (VE) -cadherin, vimentin, α-smooth muscle actin (SMA), Snai1, Snai2, and Twist1], and the apoptotic protein cleaved caspase-3. Interactions between LHX2 and ADRM1 were analyzed with dual-luciferase reporter gene and chromatin immunoprecipitation assays.High levels of LHX2 and ADRM1 were observed in ox-LDL-induced HUVECs. In ox-LDL-treated HUVECs, LHX2, or ADRM1 knockdown promoted CD31 and VE-cadherin levels, viability, invasion, and migration and reduced apoptosis and the expressions of TNF-α, IL-1β, IL-6, vimentin, α-SMA, Snai1, Snai2, Twist1, and cleaved caspase-3. Mechanistically, LHX2 bound to the ADRM1 promoter to promote ADRM1 transcription. Overexpression of ADRM1 annulled the aforementioned effects of LHX2 knockdown on ox-LDL-induced HUVECs.LHX2 facilitates the pathological progression of ox-LDL-stimulated AS cell models by increasing ADRM1 transcription.
Collapse
Affiliation(s)
- Junqi Xiao
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Yang Xie
- Department of Thyroid Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Qing Duan
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Tao Liu
- Medical Big Data Center, The First Affiliated Hospital of Gannan Medical University
| | - Rong Ye
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Xunhong Duan
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Zhibiao Le
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Nan Deng
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Fengen Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| |
Collapse
|
3
|
Xu S, Qiu Z, Zheng C, Li L, Jiang H, Zhang F, Wang Z. Effect of miR-21-3p on lung injury in rats with traumatic hemorrhagic shock resuscitated with sodium bicarbonate Ringer's solution. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1331. [PMID: 36660723 PMCID: PMC9843335 DOI: 10.21037/atm-22-5148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 12/27/2022]
Abstract
Background Restricted fluid resuscitation is the most important early method for treating traumatic hemorrhagic shock (THS). This study sought to explore whether micro ribonucleic acid (miR)-21-3p affected resuscitated THS rats by regulating the glycocalyx and inflammation. Methods MiRNAs extracted from the lung tissues were analyzed by miRNA microarray assays. A rat model of THS was induced by hemorrhage from a left femur fracture. The pathological change in the lung tissues and glycocalyx structure was observed by hematoxylin and eosin staining and a transmission electron microscope examination. The miR-21-3p expression in the lung tissues and serum was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The levels of glycocalyx-related factors and inflammation-related factors were determined by enzyme linked immunosorbent assays. The expression of glycocalyx-related proteins, cell junction-related proteins, and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor kappa B (NF-κB) signaling pathway-related proteins was analyzed by Western blot. Results After RT-qPCR verification, the variation trend of miR-21-3p was in line with expected trends. The mean arterial pressure (MAP) and heart rate (HR) were decreased, and the lung injury and damage to the glycocalyx were all aggravated in the THS rats resuscitated with sodium bicarbonate Ringer's solution (BRS) or sodium lactate Ringer's solution (LRS). The expression of miR-21-3p was decreased in the THS rats resuscitated with BRS and increased in the THS rats resuscitated with LRS, and the upregulation of miR-21-3p further decreased the MAP and HR, and increased the levels of syndecan-1 (SDC-1), heparanase-1 (HPA1), interleukin (IL)-6, IL-1β, and tumor necrosis factor alpha (TNF-α) in the serum of the THS rats resuscitated with BRS. The upregulation of miR-21-3p also increased the expression of SDC-1, HPA1, β-catenin, matrix metallopeptidase (MMP)2, and MMP9, but decreased the expression of E-cadherin (E-cad) and activated the PI3K/Akt/NF-κB signaling pathway in the THS rats resuscitated with BRS and transfected with miR-21-3p compared to that of the THS rats resuscitated with BRS and transfected with miR-negative control (NC). Conclusions miR-21-3p promoted inflammation and glycocalyx damage by activating the PI3K/Akt/NF-κB signaling pathway, thereby aggravating the lung injury in the THS rats resuscitated with BRS.
Collapse
Affiliation(s)
- Shugen Xu
- Cheeloo College of Medicine, Shandong University, Jinan, China;,Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China;,Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Zhaolei Qiu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China;,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chuanming Zheng
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China;,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lei Li
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China;,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hai Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China;,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fulong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China;,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhenjie Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China;,Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China;,Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China;,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
4
|
Wang B, Sun T, Sun L, Li L, Wan H, Ding Z, Ye X. Amygdalin attenuates PM2.5-induced human umbilical vein endothelial cell injury via the TLR4/NF-κB and Bcl-2/Bax signaling pathways. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1476-1485. [PMID: 36178164 PMCID: PMC9828314 DOI: 10.3724/abbs.2022136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/17/2022] [Indexed: 12/29/2022] Open
Abstract
Mounting evidence supports that long-term exposure to fine particle pollutants (PM2.5) is closely implicated in cardiovascular diseases, especially atherosclerosis. Amygdalin is reported to attenuate external stimuli-induced cardiovascular diseases. However, the underlying mechanisms are still not understood. In this study, we aim to explore the protective effects of amygdalin on PM2.5-induced human umbilical vein endothelial cell (HUVEC) injury and unravel the specific mechanisms by MTT, DCFH-DA, biochemical, immunofluorescence, ELISA, RT-qPCR, flow cytometry, TUNEL and western blot analysis. The results reveal that amygdalin reverses PM2.5-induced cytotoxicity and attenuates intracellular ROS production. Moreover, amygdalin increases the levels of SOD and GSH and alleviates the MDA content. Additionally, amygdalin causes a decline of IL-6, IL-1β, TNF-α and COX-2 levels. Moreover, amygdalin inhibits NF-κB p50 and TLR4 protein expressions and NF-κB p65 nuclear translocation. Concomitantly, a decline of phospho-NF-κB p65/NF-κB p65 and phospho-IκB-α/IκB-α is detected. Meanwhile, amygdalin pretreatment reduces HUVEC apoptosis. In addition, amygdalin triggers an upregulation of Bcl-2 and a downregulation of Bax after stimulation with PM2.5. Collectively, these results suggest that amygdalin suppresses PM2.5-induced HUVEC injury by regulating the TLR4/NF-κB and Bcl-2/Bax signaling pathways, indicating that amygdalin may be a novel target for atherosclerosis treatments.
Collapse
Affiliation(s)
- Bixu Wang
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| | - Tong Sun
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| | - Ling Sun
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| | - Lan Li
- School of Life SciencesZhejiang Chinese Medical UniversityHangzhou310053China
| | - Haitong Wan
- School of Life SciencesZhejiang Chinese Medical UniversityHangzhou310053China
| | - Zhishan Ding
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| | - Xiaoqing Ye
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhou310053China
| |
Collapse
|
5
|
The mir-21 Inhibition Enhanced HUVEC Cellular Viability during Hypoxia-Reoxygenation Injury by Regulating PDCD4. Mediators Inflamm 2022; 2022:9661940. [PMID: 35814945 PMCID: PMC9262501 DOI: 10.1155/2022/9661940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to explore the clinical value of altered plasma mir-21 expression level as a biomarker for the severity of coronary artery disease (CAD) and its molecular impact on HUVEC cellular injuries. Angiographically validated 56 patients with single-vessel CAD disease, 92 patients with double-vessel CAD, 139 complex coronary artery stenosis patients, and 56 healthy individuals (
) were enrolled in this study. The expressions of plasma mir-21 were evidently and progressively higher while PDCD4 levels were significantly and steadily lower in single-, dual-, and multivessel occluded CAD patients than in healthy participants (
). The relative expressions of mir-21 in hypoxia-reoxygenation- (HR-) exposed HUVECs were markedly upregulated, but PDCD4 concentrations were obviously downregulated as compared with normal control cells (
). Moreover, altered circulatory mir-21 expression levels were able to significantly differentiate single- (AUC 0.893), double- (AUC 0.914), and multivessel stenosis CAD (AUC 0.933) patients from healthy subjects. Besides, the plasma mir-21 expressions in elderly (66-85 years) groups were remarkably higher than those in younger aged (25-45 years) subjects. Caspase-3 and ROS expression levels were remarkably elevated, but cellular viability noticeably declined in HR-induced HUVECs than in normoxic cells (
). In contrast, mir-21 inhibition markedly reduced caspase-3 activity and ROS concentrations while significantly ameliorating HUVEC cellular viability in HR conditions. PDCD4 expressions in HR-exposed HUVECs were prominently decreased whereas mir-21 inhibition significantly enhanced PDCD4 levels (
). Upregulated plasma mir-21 can be a valuable clinical biomarker for the detection of the severity of coronary artery stenosis patients. Elevated circulatory mir-21 concentrations have a positive correlation with aging. Inhibitory mir-21 evidently increased HUVEC cellular viability through upregulation of targeting PDCD4 and recommended a newer possible therapeutic molecule for the management of CAD patients.
Collapse
|