1
|
Zhu W, Xu Z, Zhou D, Xu J, He Y, Li ZA. Bioengineering strategies targeting angiogenesis: Innovative solutions for osteonecrosis of the femoral head. J Tissue Eng 2025; 16:20417314241310541. [PMID: 39866964 PMCID: PMC11760140 DOI: 10.1177/20417314241310541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/14/2024] [Indexed: 01/28/2025] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a prevalent orthopedic disorder characterized primarily by compromised blood supply. This vascular deficit results in cell apoptosis, trabecular bone loss, and structural collapse of the femoral head at late stage, significantly impairing joint function. While MRI is a highly effective tool for diagnosing ONFH in its early stages, challenges remain due to the limited availability and high cost of MRI, as well as the absence of routine MRI screening in asymptomatic patients. . In addition, current therapeutic strategies predominantly only relieve symptoms while disease-modifying ONFH drugs are still under investigation/development. Considering that blood supply of the femoral head plays a key role in the pathology of ONFH, angiogenic therapies have been put forward as promising treatment options. Emerging bioengineering interventions targeting angiogenesis hold promising potential for ONFH treatment. In this review, we introduce the advances in research into the pathology of ONFH and summarize novel bioengineering interventions targeting angiogenesis. This review sheds light upon new directions for future research into ONFH.
Collapse
Affiliation(s)
- Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenmu Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ding Zhou
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuchen He
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
2
|
Wang B, Shao W, Zhao Y, Li Z, Wang P, Lv X, Chen Y, Chen X, Zhu Y, Ma Y, Han L, Wu W, Feng Y. Radial extracorporeal shockwave promotes osteogenesis-angiogenesis coupling of bone marrow stromal cells from senile osteoporosis via activating the Piezo1/CaMKII/CREB axis. Bone 2024; 187:117196. [PMID: 39004161 DOI: 10.1016/j.bone.2024.117196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Radial extracorporeal shockwave (r-ESW) and bone marrow stromal cells (BMSCs) have been reported to alleviate senile osteoporosis (SOP), but its regulatory mechanism remains unclear. In this study, we firstly isolated human BMSCs from bone marrow samples and treated with varying r-ESW doses. And we found that r-ESW could enhance the proliferation of SOP-BMSCs in a dose-dependent manner by EdU assay. Subsequently, the impact of r-ESW on the proliferation, apoptosis and multipotency of BMSCs was assessed. And the outcomes of flow cytometry, Alizarin red S (ARS), and tube formation test demonstrated that the optimal shockwave obviously boosted SOP-BMSCs osteogenesis and angiogenesis but exhibited no significant impact on cell apoptosis. Additionally, the signaling of Piezo1 and CaMKII/CREB was examined by Western blotting, qPCR and immunofluorescence. And the results showed that r-ESW promoted the expression of Piezo1, increased intracellular Ca2+ and activated the CaMKII/CREB signaling pathway. Then, the application of Piezo1 siRNA hindered the r-ESW-induced enhancement ability of osteogenesis coupling with angiogenesis of SOP-BMSCs. The use of the CaMKII/CREB signaling pathway inhibitor KN93 suppressed the Piezo1-induced increase in osteogenesis and angiogenesis in SOP-BMSCs. Finally, we also found that r-ESW might alleviate SOP in the senescence-accelerated mouse prone 6 (SAMP6) model by activating Piezo1. In conclusion, our research offers experimental evidence and an elucidated underlying molecular mechanism to support the use of r-ESW as a credible rehabilitative treatment for senile osteoporosis.
Collapse
Affiliation(s)
- Bo Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yubai Zhao
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongjin Chen
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaodong Chen
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Anhui Key Laboratory of Tissue Transformation, Bengbu Medical University, Bengbu 233000, Anhui Province, PR China
| | - Yuanxiao Zhu
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Ma
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lizhi Han
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Anhui Key Laboratory of Tissue Transformation, Bengbu Medical University, Bengbu 233000, Anhui Province, PR China.
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
朱 奇, 路 云, 彭 优, 何 嘉, 韦 泽, 李 智, 陈 郁. [α2-macroglobulin alleviates glucocorticoid-induced avascular necrosis of the femoral head in mice by promoting proliferation, migration and angiogenesis of vascular endothelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:712-719. [PMID: 38708505 PMCID: PMC11073947 DOI: 10.12122/j.issn.1673-4254.2024.04.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To explore the mechanism underlying the protective effect of α2-macroglobulin (A2M) against glucocorticoid-induced femoral head necrosis. METHODS In a human umbilical vein endothelial cell (HUVEC) model with injuries induced by gradient concentrations of dexamethasone (DEX; 10-8-10-5 mol/L), the protective effects of A2M at 0.05 and 0.1 mg/mL were assessed by examining the changes in cell viability, migration, and capacity of angiogenesis using CCK-8 assay, Transwell and scratch healing assays and angiogenesis assay. The expressions of CD31 and VEGF-A proteins in the treated cells were detected using Western blotting. In BALB/c mouse models of avascular necrosis of the femoral head induced by intramuscular injections of methylprednisolone, the effects of intervention with A2M on femoral trabecular structure, histopathological characteristics, and CD31 expression were examined with Micro-CT, HE staining and immunohistochemical staining. RESULTS In cultured HUVECs, DEX treatment significantly reduced cell viability, migration and angiogenic ability in a concentration- and time-dependent manner (P<0.05), and these changes were obviously reversed by treatment with A2M in positive correlation with A2M concentration (P<0.05). DEX significantly reduced the expression of CD31 and VEGF-A proteins in HUVECs, while treatment with A2M restored CD31 and VEGF-A expressions in the cells (P<0.05). The mouse models of femoral head necrosis showed obvious trabecular damages in the femoral head, where a large number of empty lacunae and hypertrophic fat cells could be seen and CD31 expression was significantly decreased (P<0.05). A2M treatment of the mouse models significantly improved trabecular damages, maintained normal bone tissue structures, and increased CD31 expression in the femoral head (P<0.05). CONCLUSION A2M promotes proliferation, migration, and angiogenesis of DEX-treated HUVECs and alleviates methylprednisolone-induced femoral head necrosis by improving microcirculation damages and maintaining microcirculation stability in the femoral head.
Collapse
Affiliation(s)
- 奇 朱
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - 云翔 路
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - 优 彭
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - 嘉乐 何
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - 泽宇 韦
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - 智勇 李
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - 郁鲜 陈
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
4
|
Deniz G, Bilek F, Gulkesen A, Cakir M. Extracorporeal Shock Wave Therapy with Low-Energy Flux Density Treatment Applied to Hemiplegia Patients on Somatosensory Functions and Spatiotemporal Parameters. Eurasian J Med 2024; 56:61-68. [PMID: 39109934 PMCID: PMC11059815 DOI: 10.5152/eurasianjmed.2024.23270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/24/2024] [Indexed: 08/11/2024] Open
Abstract
We aimed to investigate the efect of Extracorporeal Shock Wave Therapy (ESWT) applied to patients with hemiplegia on somatosensory data, spatiotemporal parameters, posture, and muscle tone. This was a double-blind, randomised, controlled trial. Patients were randomised within pairs to either the experimental (ESWT) group (n=20) or the control group (n=20). All patients participated in the same conventional stroke rehabilitation program for 60 minutes of treatment a day, 5 times a week for 6 weeks (30 sessions). Patients assigned to the ESWT group received additional ESWT over the plantar fascia 3 days/week for 6 weeks. Timed Up and Go (TUG) test, Modified Ashworth Scale (MAS) score, Posture Assessment Scale for Stroke Patients (PASS), spatiotemporal parameters, Semmes-Weinstein monofilament (SWM) test, and vibration sensation test (VST) were performed in all participant before and after treatment. In the ESWT and control groups, statistically, significant diferences were obtained in the posttreatment analysis than pre-treatment. Significant diferences were found in foot angle, step cycle duration, swing phase, cadence, gait cycle distance, and VST values after ESWT treatment (P < .01). When combined with a neurological rehabilitation program, it was determined that ESWT applied to the plantar face of the foot in individuals with hemiplegia increased somatosensory functions and was more successful in developing postural control and balance.
Collapse
Affiliation(s)
- Gulnihal Deniz
- Department of Physiotherapy and Rehabilitation, Erzurum Technical University Faculty of Health Sciences, Erzurum, Turkey
| | - Furkan Bilek
- Department of Gerontology, Muğla Sıtkı Koçman University Fethiye Faculty of Health Sciences, Muğla, Turkey
| | - Arif Gulkesen
- Department of Physical Medicine and Rehabilitation, Fırat University Faculty of Medicine, Elazığ, Turkey
| | - Murteza Cakir
- Department of Neurosurgery, Atatürk University Faculty of Medicine, Erzurum, Turkey
- Movement Disorders and Neuromodulation Center, Erzurum, Turkey
| |
Collapse
|
5
|
Wang Y, Hua Z, Tang L, Song Q, Cui Q, Sun S, Yuan Y, Zhang L. Therapeutic implications of extracorporeal shock waves in burn wound healing. J Tissue Viability 2024; 33:96-103. [PMID: 38155029 DOI: 10.1016/j.jtv.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Burns are a common type of trauma that seriously affect not only the physical health, but also the mental health and quality of life of the patient. Extracorporeal shock wave therapy (ESWT) is an emerging treatment that has been used in clinical treatment. It has many advantages, including safety, non-invasiveness, efficiency, short treatment duration, fewer complications, and relatively low prices. In clinical settings, ESWT has played an important role in the healing process of burns and the prevention of sequelae. This article reviews the history of ESWT, the mechanism of ESWT to promote burn healing, and the application of ESWT in burns. Current status of ESWT treatment for burns as well as future perspectives for research have been summarized and proposed. However, patients with burns cannot be considered recovered when the wounds have healed, we need some new technology to adjust to the challenges of the future.
Collapse
Affiliation(s)
- Yashi Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Zuoyu Hua
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Liang Tang
- Department of Rehabilitation Medicine, Anshan Central Hospotal (6 Th Clinical College of China Medical University), Anshan, Liaoning Province, 114001, China
| | - Qifeng Song
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Qian Cui
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Shi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Yin Yuan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China
| | - Lixin Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, China.
| |
Collapse
|
6
|
Gao Y, You Y, Zhang P, Yu Y, Xu Z, Wei H, Liu Z, Yu R, Jin G, Wang H, Zhang S, Li Y, Li W. Cortistatin prevents glucocorticoid-associated osteonecrosis of the femoral head via the GHSR1a/Akt pathway. Commun Biol 2024; 7:132. [PMID: 38278996 PMCID: PMC10817896 DOI: 10.1038/s42003-024-05795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Long-term use of glucocorticoids (GCs) is known to be a predominant cause of osteonecrosis of the femoral head (ONFH). Moreover, GCs can mediate apoptosis of various cell types by exaggerating oxidative stress. We have previously found that Cortistatin (CST) antagonizes oxidative stress and improves cell apoptosis in several conditions. In this study, we detected that the CST expression levels were diminished in patients with ONFH compared with femoral neck fracture (FNF). In addition, a GC-induced rat ONFH model was established, which impaired bone quality in the femoral head. Then, administration of CST attenuated these ONFH phenotypes. Furthermore, osteoblast and endothelial cells were cultured and stimulated with dexamethasone (Dex) in the presence or absence of recombinant CST. As a result, Dex induced impaired anabolic metabolism of osteoblasts and suppressed tube formation in endothelial cells, while additional treatment with CST reversed this damage to the cells. Moreover, blocking GHSR1a, a well-accepted receptor of CST, or blocking the AKT signaling pathway largely abolished the protective function of CST in Dex-induced disorder of the cells. Taken together, we indicate that CST has the capability to prevent GC-induced apoptosis and metabolic disorder of osteoblasts in the pathogenesis of ONFH via the GHSR1a/AKT signaling pathway.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Yunhao You
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pengfei Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Yu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaoning Xu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Wei
- Department of Rehabilitation, Qilu Hospital of Shandong University, Jinan, China
| | - Zhicheng Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruixuan Yu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gaoxin Jin
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Hao Wang
- Department of Trauma Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Shuai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuhua Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China.
| | - Weiwei Li
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
7
|
Huang C, Qing L, Xiao Y, Tang J, Wu P. Insight into Steroid-Induced ONFH: The Molecular Mechanism and Function of Epigenetic Modification in Mesenchymal Stem Cells. Biomolecules 2023; 14:4. [PMID: 38275745 PMCID: PMC10813482 DOI: 10.3390/biom14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a common refractory orthopedic disease, which is one of the common causes of hip pain and dysfunction. ONFH has a very high disability rate, which is associated with a heavy burden to patients, families, and society. The pathogenesis of ONFH is not completely clear. At present, it is believed that it mainly includes coagulation dysfunction, abnormal lipid metabolism, an imbalance of osteogenic/adipogenic differentiation, and poor vascularization repair. The prevention and treatment of ONFH has always been a great challenge for clinical orthopedic surgeons. However, recent studies have emphasized that the use of mesenchymal stem cells (MSCs) to treat steroid-induced ONFH (SONFH) is a promising therapy. This review focuses on the role and molecular mechanism of epigenetic regulation in the progress of MSCs in the treatment of SONFH, and discusses the significance of the latest research in the treatment of SONFH from the perspective of epigenetics.
Collapse
Affiliation(s)
| | | | | | - Juyu Tang
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha 410008, China; (C.H.); (L.Q.); (Y.X.)
| | - Panfeng Wu
- Department of Orthopedics, Hand and Microsurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha 410008, China; (C.H.); (L.Q.); (Y.X.)
| |
Collapse
|
8
|
Fan X, Yan Y, Zhao L, Xu X, Dong Y, Sun W. Establishment of the multi-component bone-on-a-chip: to explore therapeutic potential of DNA aptamers on endothelial cells. Front Cell Dev Biol 2023; 11:1183163. [PMID: 37377731 PMCID: PMC10291622 DOI: 10.3389/fcell.2023.1183163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Despite great efforts to develop microvascular bone chips in previous studies, current bone chips still lacked multi-component of human-derived cells close to human bone tissue. Bone microvascular endothelial cells (BMECs) were demonstrated to be closely related to the glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH). Tumor necrosis factor-alpha (TNF-α) aptamer has been proved to bind to its receptor and block cascade activities. Objective: There are two main objectives in this study: 1) to establish a multi-component bone-on-a-chip within the microfluidic system in vitro, 2) to explore the therapeutic potential of TNF-α aptamer on BMECs in the GC-induced ONFH model. Methods: Histological features of clinical samples were analyzed before BMECs isolation. The functional bone-on-a-chip consists of the vascular channel, stromal channel and structure channel. GC-induced ONFH model was established based on the multi-component of human-derived cells. Truncation and dimerization were performed on a previously reported DNA aptamer (VR11). BMECs apoptosis, cytoskeleton and angiogenesis status in the ONFH model were observed by the TUNEL staining and confocal microscope. Results: The multi-component of BMECs, human embryonic lung fibroblasts and hydroxyapatite were cultured within the microfluidic bone-on-a-chip. TNF-α was found up-regulated in the necrotic regions of femoral heads in clinical samples and similar results were re-confirmed in the ONFH model established in the microfluidic platform by detecting cell metabolites. Molecular docking simulations indicated that the truncated TNF-α aptamer could improve the aptamer-protein interactions. Further results from the TUNEL staining and confocal microscopy showed that the truncated aptamer could protect BMECs from apoptosis and alleviate GC-induced damages to cytoskeleton and vascularization. Conclusion: In summary, a microfluidic multi-component bone-on-a-chip was established with 'off-chip' analysis of cell metabolism. GC-induced ONFH model was achieved based on the platform. Our findings provided initial evidence on the possible potentials of TNF-α aptamer as a new type of TNF-α inhibitor for patients with ONFH.
Collapse
Affiliation(s)
- Xiaoyu Fan
- Peking University Health Science Center, China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yuhan Yan
- Department of Pharmacy, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lianhui Zhao
- Department of Pharmacy, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xin Xu
- Peking Union Medical College, China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yiyang Dong
- Department of Pharmacy, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei Sun
- Peking University Health Science Center, China-Japan Friendship School of Clinical Medicine, Beijing, China
- Orthopedics Department, China-Japan Friendship Hospital, Beijing, China
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Zhang X, Ma Y. Global trends in research on extracorporeal shock wave therapy (ESWT) from 2000 to 2021. BMC Musculoskelet Disord 2023; 24:312. [PMID: 37081473 PMCID: PMC10116688 DOI: 10.1186/s12891-023-06407-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND This study intended to analyze the application of extracorporeal shock wave therapy in medicine and to evaluate the quality of related literature. METHODS All publications were extracted from 2000 to 2021 from the Web of Science Core Collection (WoSCC). The literature characteristics were depicted by VOSviewer (version 1.6.15) and the online bibliometric website ( http://bibliometric.com/ ). The future trends and hotspots were conducted by Bibliographic Item Co-occurrence Matrix Builder (version 2.0) and gCLUTO software. RESULTS We analyzed 1774 articles corresponding to the criteria for ESWT publications from 2000 to 2021. Most studies were conducted within the United States and China which besides have the most cooperation. The most published research institutions are Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, and Kaohsiung Medical University. Six research hotspots were identified by keyword clustering analysis: Cluster0: The effects of ESWT on muscle spasticity; Cluster1: The application of ESWT in osteoarthritis (OA); Cluster2: Therapeutic effect of ESWT on tendon diseases; Cluster3: Early application of ESWT/ESWL in urolithiasis; Cluster4: The Role of angiogenesis in ESWT and the efficiency of ESWT for penile disease; Cluster5: The Special value of radial extracorporeal shock wave therapy (rESWT). CONCLUSIONS A comprehensive and systematic bibliometric analysis of ESWT was conducted in our study. We identified six ESWT-related research hotspots and predicted future research trends. With the gradual increase of research on ESWT, we find that ESWT is used more and more extensively, such in musculoskeletal disease, bone delay union, neurological injury, andrology disorders, lymphedema, and so on. In addition, the mechanism is not destructive damage, as initially thought, but a restorative treatment. Furthermore, delayed union, cellulite, burn, and diabetic foot ulcers may be the future direction of scientific study.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Rehabilitation, The First Affiliated Hospital of China Medical University, 155 Nanjing Street, 110001, Shenyang, P.R. China
| | - Yuewen Ma
- Department of Rehabilitation, The First Affiliated Hospital of China Medical University, 155 Nanjing Street, 110001, Shenyang, P.R. China.
| |
Collapse
|
10
|
Xu X, Fan X, Wu X, Xia R, Liang J, Gao F, Shu J, Yang M, Sun W. Luteolin ameliorates necroptosis in Glucocorticoid-induced osteonecrosis of the femoral head via RIPK1/RIPK3/MLKL pathway based on network pharmacology analysis. Biochem Biophys Res Commun 2023; 661:108-118. [PMID: 37099894 DOI: 10.1016/j.bbrc.2023.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is deeply relevant to damage and dysfunction of bone microvascular endothelial cells (BMECs). Recently, necroptosis, a newly programmed cell death with necrotic appearance, has garnered increasing attention. Luteolin, a flavonoid compound derived from Rhizoma Drynariae, has numerous pharmacological properties. However, the effect of Luteolin on BMECs in GIONFH through the necroptosis pathway has not been extensively investigated. Based on network pharmacology analysis, 23 genes were identified as potential targets for the therapeutic effect of Luteolin in GIONFH via the necroptosis pathway, with RIPK1, RIPK3, and MLKL being the hub genes. Immunofluorescence staining results revealed high expression of vWF and CD31 in BMECs. In vitro experiments showed that incubation with dexamethasone led to reduced proliferation, migration, angiogenesis ability, and increased necroptosis of BMECs. However, pretreatment with Luteolin attenuated this effect. Based on molecular docking analysis, Luteolin exhibited strong binding affinity with MLKL, RIPK1, and RIPK3. Western blotting was utilized to detect the expression of p-MLKL, MLKL, p-RIPK3, RIPK3, p-RIPK1, and RIPK1. Intervention with dexamethasone resulted in a significant increase in the p-RIPK1/RIPK1 ratio, but the effects of dexamethasone were effectively counteracted by Luteolin. Similar findings were observed for the p-RIPK3/RIPK3 ratio and the p-MLKL/MLKL ratio, as anticipated. Therefore, this study demonstrates that Luteolin can reduce dexamethasone-induced necroptosis in BMECs via the RIPK1/RIPK3/MLKL pathway. These findings provide new insights into the mechanisms underlying the therapeutic effects of Luteolin in GIONFH treatment. Additionally, inhibiting necroptosis could be a promising novel approach for GIONFH therapy.
Collapse
Affiliation(s)
- Xin Xu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100029, China.
| | - Xiaoyu Fan
- Peking University Health Science Center, China-Japan Friendship, School of Clinical Medicine, Beijing, 100029, China.
| | - Xinjie Wu
- Peking University Health Science Center, China-Japan Friendship, School of Clinical Medicine, Beijing, 100029, China.
| | - Runzhi Xia
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100029, China.
| | - Jiaming Liang
- Peking University Health Science Center, China-Japan Friendship, School of Clinical Medicine, Beijing, 100029, China.
| | - Fuqiang Gao
- Orthopedics Department, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Jun Shu
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Meng Yang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wei Sun
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100029, China; Orthopedics Department, China-Japan Friendship Hospital, Beijing, 100029, China; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
| |
Collapse
|
11
|
The potential effect of BMSCs with miR-27a in improving steroid-induced osteonecrosis of the femoral head. Sci Rep 2022; 12:21051. [PMID: 36473889 PMCID: PMC9726984 DOI: 10.1038/s41598-022-25407-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Steroid induced osteonecrosis of the femoral head (ONFH) frequently leads to femoral head collapse and subsequent hip arthritis. This study aimed to investigate the potential therapeutic mechanism of miR-27a on steroid-induced ONFH. Levels of IL-6, TNF-α, miR-27a, Runx2, PPAR-γ and ApoA5 were first examined in bone marrow tissues from steroid-induced ONFH and controls. Subsequently, we overexpressed or knocked down miR-27a in bone marrow mesenchymal stem cells (BMSCs) and detected cell proliferation, osteogenic differentiation, adipogenic differentiation. In addition, miR-27a mimics and BMSCs were injected into the established steroid-induced ONFH rats, and the osteoprotective effects of both were evaluated. Dual luciferase reporter was used to test the targeting effect of miR-27a-3p and PPARG. miR-27a and Runx2 were lowly expressed in steroid-induced ONFH, PPAR-γ and ApoA5 were highly expressed. Overexpression of miR-27a in BMSCs promoted cell proliferation and osteogenic differentiation, inhibited adipogenic differentiation. Furthermore, increasing miR-27a and BMSCs obviously reduced bone loss in steroid induced ONFH rats. The expressions of Runx2 in BMSCs and steroid-induced ONFH rats was significantly up-regulated, while IL-6, TNF-α, PPAR-γ and ApoA5 were down-regulated with miR-27a overexpression. Additionally, PPARG was the target of miR-27a-3p. The results of the present study reveal a role for miR-27a in promoting osteogenesis and may have a synergistic effect with BMSCs.
Collapse
|
12
|
徐 鑫, 范 骁, 吴 鑫, 时 利, 王 培, 高 福, 孙 伟, 李 子. [Protective effect of Kaempferol on endothelial cell injury in glucocorticoid induced osteonecrosis of the femoral head]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1277-1287. [PMID: 36310467 PMCID: PMC9626266 DOI: 10.7507/1002-1892.202204028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/23/2022] [Indexed: 01/24/2023]
Abstract
Objective To explore the effect of Kaempferol on bone microvascular endothelial cells (BMECs) in glucocorticoid induced osteonecrosis of the femoral head (GIONFH) in vitro. Methods BMECs were isolated from cancellous bone of femoral head or femoral neck donated voluntarily by patients with femoral neck fracture. BMECs were identified by von Willebrand factor and CD31 immunofluorescence staining and tube formation assay. The cell counting kit 8 (CCK-8) assay was used to screen the optimal concentration and the time point of dexamethasone (Dex) to inhibit the cell activity and the optimal concentration of Kaempferol to improve the inhibition of Dex. Then the BMECs were divided into 4 groups, namely, the cell group (group A), the cells treated with optimal concentration of Dex group (group B), the cells treated with optimal concentration of Dex+1 μmol/L Kaempferol group (group C), and the cells treated with optimal concentration of Dex+5 μmol/L Kaempferol group (group D). EdU assay, in vitro tube formation assay, TUNEL staining assay, Annexin Ⅴ/propidium iodide (PI) staining assay, Transwell migration assay, scratch healing assay, and Western blot assay were used to detect the effect of Kaempferol on the proliferation, tube formation, apoptosis, migration, and protein expression of BMECs treated with Dex. Results The cultured cells were identified as BMECs. CCK-8 assay showed that the optimal concentration and the time point of Dex to inhibit cell activity was 300 μmol/L for 24 hours, and the optimal concentration of Kaempferol to improve the inhibitory activity of Dex was 1 μmol/L. EdU and tube formation assays showed that the cell proliferation rate, tube length, and number of branch points were significantly lower in groups B-D than in group A, and in groups B and D than in group C ( P<0.05). TUNEL and Annexin V/PI staining assays showed that the rates of TUNEL positive cells and apoptotic cells were significantly higher in groups B-D than in group A, and in groups B and D than in group C ( P<0.05). Scratch healing assay and Transwell migration assay showed that the scratch healing rate and the number of migration cells were significantly lower in groups B-D than in group A, and in groups B and D than in group C ( P<0.05). Western blot assay demonstrated that the relative expressions of Cleaved Caspase-3 and Bax proteins were significantly higher in groups B-D than in group A, and in groups B and D than in group C ( P<0.05); the relative expressions of matrix metalloproteinase 2, Cyclin D1, Cyclin E1, VEGFA, and Bcl2 proteins were significantly lower in groups B-D than in group A, and in groups B and D than in group C ( P<0.05). Conclusion Kaempferol can alleviate the damage and dysfunction of BMECs in GIONFH.
Collapse
Affiliation(s)
- 鑫 徐
- 中日友好医院骨科 北京协和医学院研究生院 中国医学科学院(北京 100029)Department of Orthopedics, China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, P. R. China
| | - 骁宇 范
- 中日友好医院骨科 北京协和医学院研究生院 中国医学科学院(北京 100029)Department of Orthopedics, China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, P. R. China
| | - 鑫杰 吴
- 中日友好医院骨科 北京协和医学院研究生院 中国医学科学院(北京 100029)Department of Orthopedics, China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, P. R. China
| | - 利军 时
- 中日友好医院骨科 北京协和医学院研究生院 中国医学科学院(北京 100029)Department of Orthopedics, China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, P. R. China
| | - 培旭 王
- 中日友好医院骨科 北京协和医学院研究生院 中国医学科学院(北京 100029)Department of Orthopedics, China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, P. R. China
| | - 福强 高
- 中日友好医院骨科 北京协和医学院研究生院 中国医学科学院(北京 100029)Department of Orthopedics, China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, P. R. China
| | - 伟 孙
- 中日友好医院骨科 北京协和医学院研究生院 中国医学科学院(北京 100029)Department of Orthopedics, China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, P. R. China
- 北京大学中日友好临床医学院骨科(北京 100029)Department of Orthopedics, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, P. R. China
| | - 子荣 李
- 中日友好医院骨科 北京协和医学院研究生院 中国医学科学院(北京 100029)Department of Orthopedics, China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, P. R. China
| |
Collapse
|
13
|
Fan X, Xu X, Wu X, Xia R, Gao F, Zhang Q, Sun W. The protective effect of DNA aptamer on osteonecrosis of the femoral head by alleviating TNF-α-mediated necroptosis via RIP1/RIP3/MLKL pathway. J Orthop Translat 2022; 36:44-51. [PMID: 35919280 PMCID: PMC9307900 DOI: 10.1016/j.jot.2022.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/24/2022] [Accepted: 07/02/2022] [Indexed: 10/25/2022] Open
|