1
|
Deng S, Shi J, Sun Y, Quan Y, Shen Z, Wang Y, Li H, Xu J. Development of a monoclonal antibody to ITPRIPL1 for immunohistochemical diagnosis of non-small cell lung cancers: accuracy and correlation with CD8 + T cell infiltration. Front Cell Dev Biol 2023; 11:1297211. [PMID: 38188019 PMCID: PMC10770237 DOI: 10.3389/fcell.2023.1297211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction: Cancer biomarkers are substances or processes highly associated with the presence and progression of cancer, which are applicable for cancer screening, progression surveillance, and prognosis prediction in clinical practice. In our previous studies, we discovered that cancer cells upregulate inositol 1,4,5-triphosphate receptor-interacting protein-like 1 (ITPRIPL1), a natural CD3 ligand, to evade immune surveillance and promote tumor growth. We also developed a monoclonal ITPRIPL1 antibody with high sensitivity and specificity. Here, we explored the application of anti-ITPRIPL1 antibody for auxiliary diagnosis of non-small cell lung cancer (NSCLC). Methods: NSCLC patient tissue samples (n = 75) were collected and stained by anti-ITPRIPL1 or anti-CD8 antibodies. After excluding the flaked samples (n = 15), we evaluated the expression by intensity (0-3) and extent (0-100%) of staining to generate an h-score for each sample. The expression status was classified into negative (h-score < 20), low-positive (20-99), and high-positive (≥ 100). We compared the h-scores between the solid cancer tissue and stroma and analyzed the correlation between the h-scores of the ITPRIPL1 and CD8 expression in situ in adjacent tissue slices. Results: The data suggested ITPRIPL1 is widely overexpressed in NSCLC and positively correlates with tumor stages. We also found that ITPRIPL1 expression is negatively correlated with CD8 staining, which demonstrates that ITPRIPL1 overexpression is indicative of poorer immune infiltration and clinical prognosis. Therefore, we set 50 as the cutoff point of ITPRIPL1 expression H scores to differentiate normal and lung cancer tissues, which is of an excellent sensitivity and specificity score (100% within our sample collection). Discussion: These results highlight the potential of ITPRIPL1 as a proteomic immunohistochemical NSCLC biomarker with possible advantages over the existing NSCLC biomarkers, and the ITPRIPL1 antibody can be applied for accurate diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Shouyan Deng
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiawei Shi
- Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yufan Sun
- BioTroy Therapeutics, Shanghai, China
| | | | - Zan Shen
- Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonggang Wang
- Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Li
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Xu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Lin K, Hu K, Chen Q, Wu J. The function and immune role of cuproptosis associated hub gene in Barrett's esophagus and esophageal adenocarcinoma. Biosci Trends 2023; 17:381-392. [PMID: 37866883 DOI: 10.5582/bst.2023.01164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Barrett's esophagus (BE) is a precancerous lesion of esophageal adenocarcinoma (EAC), with approximately 3-5% of patients developing EAC. Cuproptosis is a kind of programmed cell death phenomenon discovered in recent years, which is related to the occurrence and development of many diseases. However, its role in BE and EAC is not fully understood. We used single sample Gene Set Enrichment Analysis (ssGSEA) for differential analysis of BE in the database, followed by enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) and GSEA, Protein-Protein Interaction (PPI), Weighted Gene Co-expression Network Analysis (WGCNA), Receiver Operating Characteristic Curve (ROC) and finally Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) and immunohistochemistry (IHC) of clinical tissues. Two hub genes can be obtained by intersection of the results obtained from the cuproptosis signal analysis based on BE. The ROC curves of these two genes predicted EAC, and the Area Under the Curve (AUC) values could reach 0.950 and 0.946, respectively. The mRNA and protein levels of Centrosome associated protein E (CENPE) and Shc SH2 domain binding protein 1 (SHCBP1) were significantly increased in clinical EAC tissues. When they were grouped by protein expression levels, high expression of CENPE or SHCBP1 had a poor prognosis. The CENPE and SHCBP1 associated with cuproptosis may be a factor promoting the development of BE into EAC which associated with the regulation of NK cells and T cells.
Collapse
Affiliation(s)
- Kailin Lin
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke Hu
- Department of Endocrinology, Minhang Hospital, Fudan University Shanghai, China
| | - Qiwen Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiangchun Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|