1
|
Xu C, Lu Z, Hou G, Zhu M. Exploring the function and prognostic value of RPLP0, RPLP1 and RPLP2 expression in lung adenocarcinoma. J Mol Histol 2024; 55:1079-1091. [PMID: 39207634 PMCID: PMC11567986 DOI: 10.1007/s10735-024-10251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer (NSCLC) and is characterized by its heterogeneity and poor prognosis. The role of ribosomal proteins RPLP0, RPLP1 and RPLP2 in multiple cancers has been implicated. However, their function in LUAD and their correlation with the poor prognosis of LUAD remains elusive. In this study, we performed a comprehensive bioinformatic analysis of the impact of these ribosomal proteins on LUAD. Our findings reveal that RPLP0, RPLP1 and RPLP2 are overexpressed in LUAD, which are likely attributed to abnormal copy number variations and decreased methylation levels of their promoters. LUAD patients with high expression of RPLP0, RPLP1 or RPLP2 have worse clinical outcomes in terms of overall survival (OS), first progression (FP) and post-progression survival (PPS), indicating poor prognosis. Moreover, the expression of RPLP0, RPLP1 and RPLP2 affects immune cell infiltration in LUAD tissues. Finally, we identified multiple existing drugs that may inhibit the expression of RPLP1 and RPLP2. Collectively, our data implicate the oncogenic role of RPLP0, RPLP1 and RPLP2 in LUAD and underscore their prognostic value in LUAD patients.
Collapse
Affiliation(s)
- Chunyan Xu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, China
| | - Zhimin Lu
- Department of Outpatient, The Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Guoxin Hou
- Department of Oncology, The Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| | - Moran Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, China.
| |
Collapse
|
2
|
Li Y, Chen Y, Wang D, Wu L, Li T, An N, Yang H. Elucidating the multifaceted role of MGAT1 in hepatocellular carcinoma: integrative single-cell and spatial transcriptomics reveal novel therapeutic insights. Front Immunol 2024; 15:1442722. [PMID: 39081317 PMCID: PMC11286416 DOI: 10.3389/fimmu.2024.1442722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Background Glycosyltransferase-associated genes play a crucial role in hepatocellular carcinoma (HCC) pathogenesis. This study investigates their impact on the tumor microenvironment and molecular mechanisms, offering insights into innovative immunotherapeutic strategies for HCC. Methods We utilized cutting-edge single-cell and spatial transcriptomics to examine HCC heterogeneity. Four single-cell scoring techniques were employed to evaluate glycosyltransferase genes. Spatial transcriptomic findings were validated, and bulk RNA-seq analysis was conducted to identify prognostic glycosyltransferase-related genes and potential immunotherapeutic targets. MGAT1's role was further explored through various functional assays. Results Our analysis revealed diverse cell subpopulations in HCC with distinct glycosyltransferase gene activities, particularly in macrophages. Key glycosyltransferase genes specific to macrophages were identified. Temporal analysis illustrated macrophage evolution during tumor progression, while spatial transcriptomics highlighted reduced expression of these genes in core tumor macrophages. Integrating scRNA-seq, bulk RNA-seq, and spatial transcriptomics, MGAT1 emerged as a promising therapeutic target, showing significant potential in HCC immunotherapy. Conclusion This comprehensive study delves into glycosyltransferase-associated genes in HCC, elucidating their critical roles in cellular dynamics and immune cell interactions. Our findings open new avenues for immunotherapeutic interventions and personalized HCC management, pushing the boundaries of HCC immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuan Chen
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqiong Wang
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Ling Wu
- Tumor Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Tao Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Na An
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Haikun Yang
- The Gastroenterology Department, Shanxi Provincial People Hospital, Taiyuan, China
| |
Collapse
|
3
|
Wang J, Gao W, Yu H, Xu Y, Bai C, Cong Q, Zhu Y. Research Progress on the Role of Epigenetic Methylation Modification in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1143-1156. [PMID: 38911291 PMCID: PMC11192199 DOI: 10.2147/jhc.s458734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as the prevailing form of primary liver cancer, characterized by a poor prognosis and high mortality rate. A pivotal factor in HCC tumorigenesis is epigenetics, specifically the regulation of gene expression through methylation. This process relies significantly on the action of proteins that modify methylation, including methyltransferases, their associated binding proteins, and demethylases. These proteins are crucial regulators, orchestrating the methylation process by regulating enzymes and their corresponding binding proteins. This orchestration facilitates the reading, binding, detection, and catalysis of gene methylation sites. Methylation ences the development, prolisignificantly influferation, invasion, and prognosis of HCC. Furthermore, methylation modification and its regulatory mechanisms activate distinct biological characteristics in HCC cancer stem cells, such as inducing cancer-like differentiation of stem cells. They also influence the tumor microenvironment (TME) in HCC, modulate immune responses, affect chemotherapy resistance in HCC patients, and contribute to HCC progression through signaling pathway feedback. Given the essential role of methylation in genetic information, it holds promise as a potential tool for the early detection of HCC and as a target to improve drug resistance and promote apoptosis in HCC cells.
Collapse
Affiliation(s)
- Jing Wang
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Wenyue Gao
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Hongbo Yu
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Yuting Xu
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Changchuan Bai
- Internal Department of Chinese Medicine, Dalian Hospital of Traditional Chinese Medicine, Dalian, Liaoning, 116013, People’s Republic of China
| | - Qingwei Cong
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| | - Ying Zhu
- Infectious Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People’s Republic of China
| |
Collapse
|
4
|
Chen W, Que Q, Zhong R, Lin Z, Yi Q, Wang Q. Assessing TGF-β Prognostic Model Predictions for Chemotherapy Response and Oncogenic Role of FKBP1A in Liver Cancer. Curr Pharm Des 2024; 30:3131-3152. [PMID: 39185649 DOI: 10.2174/0113816128326151240820105525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The Transforming Growth Factor-Beta (TGF-β) signaling pathway plays a crucial role in the pathogenesis of diseases. This study aimed to identify differentially expressed TGF-β-related genes in liver cancer patients and to correlate these findings with clinical features and immune signatures. METHODS The TCGA-STAD and LIRI-JP cohorts were utilized for a comprehensive analysis of TGF-β- related genes. Differential gene expression, functional enrichment, survival analysis, and machine learning techniques were employed to develop a prognostic model based on a TGF-β-related gene signature (TGFBRS). RESULTS We developed a prognostic model for liver cancer based on the expression levels of nine TGF-β- related genes. The model indicates that higher TGFBRS values are associated with poorer prognosis, higher tumor grades, more advanced pathological stages, and resistance to chemotherapy. Additionally, the TGFBRS-High subtype was characterized by elevated levels of immune-suppressive cells and increased expression of immune checkpoint molecules. Using a Gradient Boosting Decision Tree (GBDT) machine learning approach, the FKBP1A gene was identified as playing a significant role in liver cancer. Notably, knocking down FKBP1A significantly inhibited the proliferation and metastatic capabilities of liver cancer cells both in vitro and in vivo. CONCLUSION Our study highlights the potential of TGFBRS in predicting chemotherapy responses and in shaping the tumor immune microenvironment in liver cancer. The results identify FKBP1A as a promising molecular target for developing preventive and therapeutic strategies against liver cancer. Our findings could potentially guide personalized treatment strategies to improve the prognosis of liver cancer patients.
Collapse
Affiliation(s)
- Weimei Chen
- Department of Blood Transfusion, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Qinghe Que
- Department of Blood Transfusion, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Rongrong Zhong
- Department of Emergency, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Zhou Lin
- Department of Burn Plastic Surgery and Wound Repair Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Qiaolan Yi
- Department of Clinical Laboratory, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Qingshui Wang
- Second Affiliated Hospital of Fujian University of Traditional Chinese Medical University Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
5
|
Wang Y, Wang G, Hu S, Yin C, Zhao P, Zhou X, Shao S, Liu R, Hu W, Liu GL, Ke W, Song Z. FARSB Facilitates Hepatocellular Carcinoma Progression by Activating the mTORC1 Signaling Pathway. Int J Mol Sci 2023; 24:16709. [PMID: 38069034 PMCID: PMC10706030 DOI: 10.3390/ijms242316709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality. Human phenylalanine tRNA synthetase (PheRS) comprises two α catalytic subunits encoded by the FARSA gene and two β regulatory subunits encoded by the FARSB gene. FARSB is a potential oncogene, but no experimental data show the relationship between FARSB and HCC progression. We found that the high expression of FARSB in liver cancer is closely related to patients' low survival and poor prognosis. In liver cancer cells, the mRNA and protein expression levels of FARSB are increased and promote cell proliferation and migration. Mechanistically, FARSB activates the mTOR complex 1 (mTORC1) signaling pathway by binding to the component Raptor of the mTORC1 complex to play a role in promoting cancer. In addition, we found that FARSB can inhibit erastin-induced ferroptosis by regulating the mTOR signaling pathway, which may be another mechanism by which FARSB promotes HCC progression. In summary, FARSB promotes HCC progression and is associated with the poor prognosis of patients. FARSB is expected to be a biomarker for early screening and treatment of HCC.
Collapse
Affiliation(s)
- Yaofeng Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.W.); (G.W.); (S.H.); (C.Y.); (P.Z.); (X.Z.); (S.S.); (R.L.)
| | - Gengqiao Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.W.); (G.W.); (S.H.); (C.Y.); (P.Z.); (X.Z.); (S.S.); (R.L.)
| | - Shaobo Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.W.); (G.W.); (S.H.); (C.Y.); (P.Z.); (X.Z.); (S.S.); (R.L.)
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.W.); (G.W.); (S.H.); (C.Y.); (P.Z.); (X.Z.); (S.S.); (R.L.)
| | - Peng Zhao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.W.); (G.W.); (S.H.); (C.Y.); (P.Z.); (X.Z.); (S.S.); (R.L.)
| | - Xing Zhou
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.W.); (G.W.); (S.H.); (C.Y.); (P.Z.); (X.Z.); (S.S.); (R.L.)
| | - Shuyu Shao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.W.); (G.W.); (S.H.); (C.Y.); (P.Z.); (X.Z.); (S.S.); (R.L.)
| | - Ran Liu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.W.); (G.W.); (S.H.); (C.Y.); (P.Z.); (X.Z.); (S.S.); (R.L.)
| | - Wenjun Hu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (G.L.L.)
| | - Gang Logan Liu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (G.L.L.)
| | - Wenbo Ke
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.W.); (G.W.); (S.H.); (C.Y.); (P.Z.); (X.Z.); (S.S.); (R.L.)
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.W.); (G.W.); (S.H.); (C.Y.); (P.Z.); (X.Z.); (S.S.); (R.L.)
| |
Collapse
|