1
|
Han Y, Sun Z. Anticancer potential of osthole: targeting gynecological tumors and breast cancer. Pharmacol Rep 2025; 77:87-102. [PMID: 39617816 DOI: 10.1007/s43440-024-00685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/21/2025]
Abstract
Gynecological tumors, such as ovarian, endometrial, and cervical cancers, alongside breast cancer, represent significant malignancies that pose serious threats to women's health worldwide. Standard treatments, including surgery, chemotherapy, radiotherapy, and targeted therapies, are commonly utilized in clinical practice. However, challenges such as high recurrence rates, drug resistance, and adverse side effects underscore the urgent need for more effective therapeutic options. Osthole, a natural coumarin compound derived from Chinese herbal medicine, has demonstrated remarkable antitumor activity against various cancers. Emerging evidence indicates that osthole can inhibit the proliferation, invasion, and metastasis of gynecological and breast cancer cells through various mechanisms, including inducing apoptosis and autophagy, regulating the tumor microenvironment, inhibiting tumor angiogenesis, and enhancing the sensitivity of cancer cells to chemotherapy and radiotherapy. This review highlights the recent advancements in osthole research within the context of gynecological and breast cancers, focusing on its molecular mechanisms, and offers a theoretical foundation for its potential development as an anticancer agent.
Collapse
Affiliation(s)
- Yingqi Han
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, Shangdong Province, 250014, China
| | - Zhengao Sun
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 42 Wenhua West Road, Lixia District, Jinan, Shangdong Province, 250014, China.
| |
Collapse
|
2
|
Gong H, Yang X, An L, Zhang W, Liu X, Shu L, Yang L. PCSK5 downregulation promotes the inhibitory effect of andrographolide on glioblastoma through regulating STAT3. Mol Cell Biochem 2025; 480:521-533. [PMID: 38553549 DOI: 10.1007/s11010-024-04977-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/24/2024] [Indexed: 01/03/2025]
Abstract
Proprotein convertase subtilisin/kexin type 5 (PCSK5) is a member of the proprotein convertase (PC) family, which processes immature proteins into functional proteins and plays an important role in the process of cell migration and transformation. Andrographolide is a non-peptide compound with PC inhibition and antitumor activity. Our research aimed to investigate the functional role of PCSK5 downregulation combined with Andro on GBM progression. Results from the cancer genome atlas (TCGA) and clinical samples revealed a significant upregulation of PCSK5 in GBM tissues than in non-tumor brain tissues. Higher expression of PCSK5 was correlated with advanced GBM stages and worse patient prognosis. PCSK5 knockdown attenuated the epithelial-mesenchymal transition (EMT)-like properties of GBM cells induced by IL-6. PCSK5 knockdown in combination with Andro treatment significantly inhibited the proliferation and invasion of GBM cells in vitro, as well as tumor growth in vivo. Mechanistically, PCSK5 downregulation reduced the expression of p-STAT3 and Matrix metalloproteinases (MMPs), which could be rescued by the p-STAT3 agonist. STAT3 silencing downregulated the expression of MMPs without affecting PCSK5. Furthermore, Andro in combination with PCSK5 silencing significantly inhibited STAT3/MMPs axis. These observations provided evidence that PCSK5 functioned as a potential tumor promoter by regulating p-STAT3/MMPs and the combination of Andro with PCSK5 silencing might be a good strategy to prevent GBM progression.
Collapse
Affiliation(s)
- Huiyuan Gong
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaomin Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Lijun An
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Wangming Zhang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaohua Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liping Shu
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liuqi Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
3
|
Barbalho SM, Torres Pomini K, de Lima EP, da Silva Camarinha Oliveira J, Boaro BL, Cressoni Araújo A, Landgraf Guiguer E, Rici REG, Maria DA, Haber JFDS, Catharin VMCS, Cincotto dos Santos Bueno P, Pereira EDSBM, de Alvares Goulart R, Laurindo LF. Fantastic Frogs and Where to Use Them: Unveiling the Hidden Cinobufagin's Promise in Combating Lung Cancer Development and Progression Through a Systematic Review of Preclinical Evidence. Cancers (Basel) 2024; 16:3758. [PMID: 39594713 PMCID: PMC11592936 DOI: 10.3390/cancers16223758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cinobufagin (CB), a bufadienolide, has shown promising potential as an anticancer agent, particularly in combating lung cancer. This systematic review synthesizes preclinical evidence on CB's effects against lung cancer, focusing on its mechanisms of action, efficacy, and potential clinical implications. We analyzed data from various preclinical studies involving both in vitro cell line models and in vivo animal models. The reviewed studies indicate that CB effectively reduces cell viability, induces apoptosis, and inhibits cell proliferation, migration, and invasion across multiple lung cancer cell lines and xenograft models. Specifically, CB was found to decrease cell viability and increase apoptosis in lung cancer cells by modulating key molecular pathways, including Bcl-2, Bax, cleaved caspases, caveolin-1, FLOT2, Akt, STAT3, and FOXO1. In vivo studies further demonstrated significant inhibition of tumor growth with minimal toxicity. However, limitations include reliance on in vitro models, which may not fully represent in vivo tumor dynamics, and a lack of long-term safety data. The studies also vary in their methodologies and cell line models, which may not accurately encompass all lung cancer subtypes or predict human responses. Despite these limitations, CB's ability to target specific molecular pathways and its promising results in preclinical models suggest it could be a valuable addition to lung cancer treatment strategies. Our review suggests further clinical trials to validate its efficacy and safety in humans. Future research should explore combination therapies and optimize delivery methods to enhance clinical outcomes.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
- UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil (B.L.B.)
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil (B.L.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| | - Rose Eli Grassi Rici
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
- Graduate Program in Anatomy of Domestic and Wild Animals, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-220, SP, Brazil
| | - Durvanei Augusto Maria
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05585-000, SP, Brazil;
| | - Jesselina Francisco dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
| | - Patrícia Cincotto dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
- Department of Odontology, School of Odontology, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (R.E.G.R.); (E.d.S.B.M.P.)
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil; (S.M.B.); (K.T.P.); (E.P.d.L.); (A.C.A.); (E.L.G.); (P.C.d.S.B.); (R.d.A.G.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil (B.L.B.)
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
4
|
Ormiston K, Kulkarni A, Sarathy G, Alsammerai S, Shankar E, Majumder S, Stanford KI, Ganju RK, Ramaswamy B. Obesity and lack of breastfeeding: a perfect storm to augment risk of breast cancer? Front Oncol 2024; 14:1432208. [PMID: 39525621 PMCID: PMC11543574 DOI: 10.3389/fonc.2024.1432208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer with higher rates of recurrence and distant metastasis, as well as decreased 5-year survival rates. Racial disparities are evident in the incidence and mortality rates of triple negative breast cancer particularly increased in young African American women. Concurrently, young African American women have multiple risk factors for TNBC including higher rates of premenopausal abdominal obesity (higher waist-hip ratio) and lower rates of breastfeeding with higher parity, implicating these factors as potentially contributors to poor outcomes. By understanding the mechanisms of how premenopausal obesity and lack of breastfeeding may be associated with increased risk of triple negative breast cancer, we can determine the best strategies for intervention and awareness to improve outcomes in TNBC.
Collapse
Affiliation(s)
- Kate Ormiston
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Anagh Kulkarni
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Gautam Sarathy
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Sara Alsammerai
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Eswar Shankar
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Sarmila Majumder
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute, Department of Surgery, Division of General and Gastrointestinal Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ramesh K. Ganju
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Bhuvaneswari Ramaswamy
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
5
|
Zhu Z, Wang H, Qian X, Xue M, Sun A, Yin Y, Tang J, Zhang J. Inhibitory Impact Of Cinobufagin In Triple-Negative Breast Cancer Metastasis: Involvements Of Macrophage Reprogramming Through Upregulated MME and Inactivated FAK/STAT3 Signaling. Clin Breast Cancer 2024; 24:e244-e257.e1. [PMID: 38378361 DOI: 10.1016/j.clbc.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/30/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Cinobufagin (CBG), a key bioactive component in cinobufacini, exhibits antitumor properties. This study explores CBG's impact on triple-negative breast cancer (TNBC) metastasis and elucidates the underpinning mechanism. METHODS Murine xenograft and orthotopic metastatic TNBC models were generated and treated with CBG. The burden of metastatic tumor in the mouse lung, the epithelial to mesenchymal transition (EMT) markers, and macrophage polarization markers within the tumors were examined. The phenotype of tumor-associated macrophages (TAMs) and mobility of TNBCs in vitro in a macrophage-TNBC cell coculture system were analyzed. Physiological targets of CBG were identified by bioinformatics analyses. RESULTS CBG treatment significantly alleviated lung tumor burden and EMT activity. It triggered an M2-to-M1 shift in TAMs, resulting in decreased TNBC cell migration, invasion, and EMT in vitro. CBG upregulated membrane metalloendopeptidase (MME) expression, suppressing FAK and STAT3 phosphorylation. Silencing of MME, either in mice or TAMs, counteracted CBG effects, reinstating M2 TAM predominance and enhancing TNBC cell metastasis. Cotreatment with Defactinib, a FAK antagonist, reversed M2 TAM polarization and TNBC cell metastasis. Notably, MME silencing in TNBC cells had no impact on CBG-suppressed malignant properties, indicating MME's indirect involvement in TNBC cell behavior through TAM mediation. CONCLUSION This study unveils CBG's ability to enhance MME expression, deactivate FAK/STAT3 signaling, and inhibit TNBC metastasis by suppressing M2-skewed macrophages.
Collapse
Affiliation(s)
- Zhaohui Zhu
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China; Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Hanlu Wang
- Department of Thyroid and Breast Surgery, The Fifth People's Hospital of Huai'an, Huai'an 223300, Jiangsu, PR China
| | - Xu Qian
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Meiling Xue
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Aijun Sun
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Yifei Yin
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223001, Jiangsu, PR China
| | - Jinhai Tang
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China.
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China.
| |
Collapse
|
6
|
Long L, Fei X, Chen L, Yao L, Lei X. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer. Front Oncol 2024; 14:1381251. [PMID: 38699644 PMCID: PMC11063389 DOI: 10.3389/fonc.2024.1381251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its propensity for metastasis and poor prognosis. TNBC evades the body's immune system recognition and attack through various mechanisms, including the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. This pathway, characterized by heightened activity in numerous solid tumors, exhibits pronounced activation in specific TNBC subtypes. Consequently, targeting the JAK2/STAT3 signaling pathway emerges as a promising and precise therapeutic strategy for TNBC. The signal transduction cascade of the JAK2/STAT3 pathway predominantly involves receptor tyrosine kinases, the tyrosine kinase JAK2, and the transcription factor STAT3. Ongoing preclinical studies and clinical research are actively investigating this pathway as a potential therapeutic target for TNBC treatment. This article comprehensively reviews preclinical and clinical investigations into TNBC treatment by targeting the JAK2/STAT3 signaling pathway using small molecule compounds. The review explores the role of the JAK2/STAT3 pathway in TNBC therapeutics, evaluating the benefits and limitations of active inhibitors and proteolysis-targeting chimeras in TNBC treatment. The aim is to facilitate the development of novel small-molecule compounds that target TNBC effectively. Ultimately, this work seeks to contribute to enhancing therapeutic efficacy for patients with TNBC.
Collapse
Affiliation(s)
- Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiangyu Fei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liucui Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang Yao
- Department of Pharmacy, Central Hospital of Hengyang, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|