1
|
Li Y, Yang JY, Lin ML, Liu TZ, Lu WN, Yang Y, Liu ZC, Li JH, Zhang GQ, Guo JS. ACT001 improves OVX-induced osteoporosis by suppressing the NF-κB/NLRP3 signaling pathway. Mol Med 2025; 31:131. [PMID: 40197211 PMCID: PMC11977873 DOI: 10.1186/s10020-025-01189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Osteoporosis (OP) is a common systemic metabolic bone disease characterized by the decrease in bone mass and hyperactivity of osteoclasts. ACT001 is approved as an orphan drug by FDA and has shown multiple protective effects against tissue injury. However, its role in prevention of osteoclast differentiation and the underlying mechanisms have not been elucidated. Herein, we show that ACT001 inhibited RANKL-induced osteoclast differentiation and F-actin ring formation through suppressing the expression of Nfatc1, TRAP, Ctsk, Dc-stamp without obvious cytotoxicity in vitro. ACT001 restrained the phosphorylation of NF-κB and the activation of NLRP3 inflammasome, thereby decreased the expression of pyroptosis-related protein. (GSDMD, caspase-1, IL-1β, IL-18). Consistent with ACT001, the NLRP3 inflammasome inhibitor MCC950 treatment also suppressed the osteoclastogenesis through inhibiting the transcriptional activation of Nfatc1. Furthermore, ACT001 protected ovariectomy-induced bone loss in mice, reduced the number of osteoclasts, downregulated the expression of NLRP3 and IL-1β. These data indicate that ACT001 can reduce RANKL-induced osteoclast differentiation through suppressing the NF-κB/NLRP3 pathway, and attenuate the bone loss induced by estrogen-deficiency, suggesting its therapeutic potential for bone homeostasis maintenance and osteoporosis treatment.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Jin-Yu Yang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Ma-Li Lin
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Tian-Zhu Liu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Wen-Na Lu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Ying Yang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Zhong-Cheng Liu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Jian-Heng Li
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China.
| | - Guo-Qiang Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China.
| | - Jian-Shuang Guo
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
2
|
Li FB, Bao SQ, Sun XL, Ma JX, Ma XL. Extracellular acidification stimulates OGR1 to modify osteoclast differentiation and activity through the Ca2+‑calcineurin‑NFATc1 pathway. Exp Ther Med 2025; 29:28. [PMID: 39720672 PMCID: PMC11667423 DOI: 10.3892/etm.2024.12778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/11/2024] [Indexed: 12/26/2024] Open
Abstract
The aim of the present study was to explore the role of ovarian cancer G protein-coupled receptor 1 (OGR1) in osteoclast differentiation and activity induced by extracellular acid. The impact of extracellular acidification on osteoclasts was investigated. Briefly, osteoclasts were generated from RAW 264.7 cells using 100 ng/ml receptor activator of nuclear factor-κB ligand in cell culture media at pH 6.8 or 7.4. Tartrate-resistant acid phosphatase (TRAP) staining and the bone resorption pit assay were used to detect the effects of extracellular acid on the number and absorptive capacity of osteoclasts. Intracellular Ca2+ levels were analyzed using laser scanning confocal microscopy. Reverse transcription-quantitative PCR was used to detect the expression levels of genes associated with osteoclast formation and bone erosion. The role of OGR1 in the acid-stimulated formation and bone resorption of osteoclasts was also investigated. The results showed that in the pH 6.8 medium group the number of osteoclasts was 511.2±54.72 and the area of bone absorption was 4,184.88±277.14 µm2; both were significantly higher than those in the pH 7.4 medium group (all P<0.01). Inhibition of OGR1 using copper ion (Cu2+) reduced the number of osteoclasts and the area of bone resorption in the pH 6.8 medium group (all P<0.05). Furthermore, extracellular acid (pH 6.8) was able to induce a transient increase of Ca2+ levels in osteoclasts; however, inhibition of OGR1 using Cu2+ effectively attenuated the acid-induced increase of Ca2+ in osteoclasts. In addition, the elevation in Ca2+ levels was inhibited when BAPTA, a cytoplasmic Ca2+ chelator with cellular permeability, was added to the cells; however, the extracellular Ca2+-chelating agent ethylene glycol tetraacetic acid did not inhibit the acid-stimulated increase in Ca2+. Treatment with the phospholipase C inhibitor U73122 also inhibited the acid-stimulated increase of Ca2+ in osteoclasts. Furthermore, the mRNA expression levels of TRAP, matrix metalloproteinase-9, osteoclast-related receptor, nuclear factor-activated T cell 1 (NFATc1), cathepsin K and integrin β3 were elevated in the pH 6.8 medium group compared with those in the pH 7.4 medium group (all P<0.05). By contrast, the inhibition of OGR1 using Cu2+ partially reduced the effects of the acidic environment on osteoclast differentiation and activity-related gene expression (all P<0.05). In addition, the mRNA and protein expression levels of calcineurin were increased in osteoclasts in the pH 6.8 group compared with those in the pH 7.4 group (P<0.05), whereas blocking OGR1 suppressed the expression of acid-induced calcineurin. The mRNA expression levels of NFATc1 in osteoclasts were also increased in the pH 6.8 medium group compared with those in the pH 7.4 medium group (P<0.05). By contrast, the specific calcineurin inhibitor cyclosporine A significantly inhibited the acid-induced expression of NFATc1 in osteoclasts. In conclusion, the present study revealed that extracellular acidification may increase osteoclast differentiation and bone resorption activity. Furthermore, OGR1-mediated Ca2+ elevation could have a crucial role in osteoclasts by regulating the Ca2+-calcineurin-NFATc1 signaling pathway and downstream signaling.
Collapse
Affiliation(s)
- Feng-Bo Li
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Su-Qing Bao
- Department of Endocrinology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Xiao-Lei Sun
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Jian-Xiong Ma
- Institute of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Xin-Long Ma
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
- Institute of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|
3
|
Yang MH, Baek SH, Jung YY, Um JY, Ahn KS. Activation of autophagy, paraptosis, and ferroptosis by micheliolide through modulation of the MAPK signaling pathway in pancreatic and colon tumor cells. Pathol Res Pract 2024; 263:155654. [PMID: 39427586 DOI: 10.1016/j.prp.2024.155654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Micheliolide (MCL), a naturally occurring sesquiterpene lactone, has demonstrated significant anticancer properties through the induction of various programmed cell death mechanisms. This study aimed to explore MCL's effects on autophagy, paraptosis, and ferroptosis in pancreatic and colon cancer cells, along with its modulation of the MAPK signaling pathway. MCL was found to substantially suppress cell viability in these cancer cells, particularly in MIA PaCa-2 and HT-29 cell lines. The study identified that MCL induced autophagy by enhancing the levels of autophagy markers such as Atg7, p-Beclin-1, and Beclin-1, which was attenuated by the autophagy inhibitor 3-MA. Furthermore, MCL was found to facilitate paraptosis, indicated by decreased Alix and in-creased ATF4 and CHOP levels. It also promoted ferroptosis, as demonstrated by the reduced expression of SLC7A11, elevated TFRC levels, and increased intracellular iron. Additionally, MCL activated the MAPK signaling pathway, marked by the phosphorylation of JNK, p38, and ERK, linked with an increase in ROS production that is vital in regulating these cell death mechanisms. These findings propose that MCL is a versatile anticancer agent, capable of activating various cell death pathways by modulating MAPK signaling and ROS levels. These results emphasize the therapeutic promise of MCL in treating cancer, pointing to the necessity of further in vivo investigations to confirm these effects and determine its potential clinical uses.
Collapse
Affiliation(s)
- Min Hee Yang
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Uddin J, Fatima M, Riaz A, Kamal GM, Muhsinah AB, Ahmed AR, Iftikhar R. Pharmacological potential of micheliolide: A focus on anti-inflammatory and anticancer activities. Heliyon 2024; 10:e27299. [PMID: 38496875 PMCID: PMC10944196 DOI: 10.1016/j.heliyon.2024.e27299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Micheliolide (MCL) is a chief constituent of plants such as Magnolia grandiflora L., Michelia compressa (Maxim.) Sarg. and Michelia champaca L. It is known to exhibit significant anticancer activity by various scientific investigations. This review aims to emphasize the anticancer and antiinflammatory activities of MCL. In this review, we summarized the published data in peer-reviewed manuscripts published in English. Our search was based on the following scientific search engines and databases: Scopus, Google Scholar, ScienceDirect, Springer, PubMed, and SciFinder, MCL possesses a broad spectrum of medicinal properties like other sesquiterpene lactones. The anticancer activity of this compound may be attributed to the modulation of several signaling cascades (PI3K/Akt and NF-κB pathways). It also induces apoptosis by arresting the cell cycle at the G1/G0 phase, S phase, and G2/M phase in many cancer cell lines. Very little data is available on its modulatory action on other signaling cascades like MAPK, STAT3, Wnt, TGFβ, Notch, EGFR, etc. This compound can be potentiated as a novel anticancer drug after thorough investigations in vitro, in vivo, and in silico-based studies.
Collapse
Affiliation(s)
- Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Asir, 61421, Saudi Arabia
| | - Mehwish Fatima
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Ammara Riaz
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Ghulam Mustafa Kamal
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir, 61421, Saudi Arabia
| | - Abdul Razzaq Ahmed
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ramsha Iftikhar
- School of Chemistry, University of New South Wales, 2033, Sydney, Australia
| |
Collapse
|