1
|
Ems M, Brichkina A, Lauth M. A safe haven for cancer cells: tumor plus stroma control by DYRK1B. Oncogene 2025; 44:341-347. [PMID: 39863750 PMCID: PMC11790486 DOI: 10.1038/s41388-025-03275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated. In this review, we describe a seemingly paradoxical oncogenic mediator with this potential: The dual-specificity tyrosine-phosphorylation regulated kinase 1B (DYRK1B). DYRK1B promotes proliferative quiescence and yet is overexpressed or amplified in many hyperproliferative malignancies including ovarian cancer and pancreatic cancer. In particular the latter disease is a paradigmatic example for a therapy-recalcitrant and highly stroma-rich cancer entity. Here, recent evidence suggests that DYRK1B exerts its oncogenic features by installing a protective niche for cancer cells by directly affecting cancer cells but also the TME. Specifically, DYRK1B not only fosters cell-intrinsic processes like cell survival, chemoresistance, and disease recurrence, but it also upregulates TME and cancer cell-protective innate immune checkpoints and down-modulates anti-tumoral macrophage functionality. In this article, we outline the well-established cell-autonomous roles of DYRK1B and extend its importance to the TME and the control of the tumor immune stroma. In summary, DYRK1B appears as a single novel key player creating a safe haven for cancer cells by acting cell-intrinsically and-extrinsically, leading to the promotion of cancer cell survival, chemoresistance, and relapse. Thus, DYRK1B appears as an attractive drug target for future therapeutic approaches.
Collapse
Affiliation(s)
- Miriam Ems
- Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany
| | - Anna Brichkina
- Institute of Systems Immunology, Philipps University Marburg, Marburg, Germany
| | - Matthias Lauth
- Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
2
|
Vorwerk VA, Wilms G, Babendreyer A, Becker W. Differential regulation of expression of the protein kinases DYRK1A and DYRK1B in cancer cells. Sci Rep 2024; 14:23926. [PMID: 39397076 PMCID: PMC11471791 DOI: 10.1038/s41598-024-74190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The protein kinases DYRK1A and DYRK1B are pivotal regulators of cell cycle progression by promoting cell cycle exit into quiescence. DYRK1B appears to play a more important role in cancer cell quiescence than DYRK1A, as evidenced by its overexpression or copy number variations in human tumour samples. Nonetheless, the stimuli driving DYRK1B upregulation and the potential divergence in expression patterns between DYRK1A and DYRK1B remain largely elusive. In the present study, we scrutinized the regulatory pathways modulating DYRK1B expression relative to DYRK1A in PANC-1 and A549 cancer cell lines across varying conditions. Serum deprivation, pharmacological mTOR inhibition and increased cell density resulted in the differential upregulation of DYRK1B compared to DYRK1A. We then aimed to assess the role of protein kinases MST1 and MST2, which are key transmitters of cell density dependent effects. Unexpectedly, exposure to the MST1/2 inhibitor XMU-MP-1 resulted in increased DYRK1B levels in A549 cells. Further investigation into the off-target effects of XMU-MP-1 unveiled the inhibition of Aurora kinases (AURKA and AURKB) as a potential causative factor. Consistently, AURK inhibitors VX-680 (tozasertib), MLN8237 (alisertib), AZD1152-HQPA (barasertib) resulted in the upregulation of DYRK1B expression in A549 cells. In summary, our findings indicate that the expression of DYRK1A and DYRK1B is differentially regulated in cancer cells and reveal that the kinase inhibitor XMU-MP-1 increases DYRK1B expression likely through off target inhibition of Aurora kinases.
Collapse
Affiliation(s)
- Vincent Andreas Vorwerk
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, 52074, Aachen, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Wang X, Li X, Wei L, Yu Y, Hazaisihan Y, Tao L, Jia W. Acetylation model predicts prognosis of patients and affects immune microenvironment infiltration in epithelial ovarian carcinoma. J Ovarian Res 2024; 17:150. [PMID: 39030559 PMCID: PMC11264718 DOI: 10.1186/s13048-024-01449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/06/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Epithelial ovarian carcinoma (EOC) is a prevalent gynaecological malignancy. The prognosis of patients with EOC is related to acetylation modifications and immune responses in the tumour microenvironment (TME). However, the relationships between acetylation-related genes, patient prognosis, and the tumour immune microenvironment (TIME) are not yet understood. Our research aims to investigate the link between acetylation and the tumour microenvironment, with the goal of identifying new biomarkers for estimating survival of patients with EOC. METHODS Using data downloaded from the tumour genome atlas (TCGA), genotypic tissue expression (GTEx), and gene expression master table (GEO), we comprehensively evaluated acetylation-related genes in 375 ovarian cancer specimens and identified molecular subtypes using unsupervised clustering. The prognosis, TIME, stem cell index and functional concentration analysis were compared among the three groups. A risk model based on differential expression of acetylation-related genes was established through minimum absolute contraction and selection operator (LASSO) regression analysis, and the predictive validity of this feature was validated using GEO data sets. A nomogram is used to predict a patient's likelihood of survival. In addition, different EOC risk groups were evaluated for timing, tumour immune dysfunction and exclusion (TIDE) score, stemness index, somatic mutation, and drug sensitivity. RESULTS We used the mRNA levels of the differentially expressed genes related to acetylation to classify them into three distinct clusters. Patients with increased immune cell infiltration and lower stemness scores in cluster 2 (C2) exhibited poorer prognosis. Immunity and tumourigenesis-related pathways were highly abundant in cluster 3 (C3). We developed a prognostic model for ten differentially expressed acetylation-related genes. Kaplan-Meier analysis demonstrated significantly worse overall survival (OS) in high-risk patients. Furthermore, the TIME, tumour immune dysfunction and exclusion (TIDE) score, stemness index, tumour mutation burden (TMB), immunotherapy response, and drug sensitivity all showed significant correlations with the risk scores. CONCLUSIONS Our study demonstrated a complex regulatory mechanism of acetylation in EOC. The assessment of acetylation patterns could provide new therapeutic strategies for EOC immunotherapy to improve the prognosis of patients.
Collapse
Affiliation(s)
- Xuan Wang
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Xiaoning Li
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Li Wei
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Yankun Yu
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Yeernaer Hazaisihan
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Lin Tao
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China
| | - Wei Jia
- First Affiliated Hospital, Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China.
| |
Collapse
|
4
|
Massey AJ, Benwell K, Burbridge M, Kotschy A, Walmsley DL. Targeting DYRK1A/B kinases to modulate p21-cyclin D1-p27 signalling and induce anti-tumour activity in a model of human glioblastoma. J Cell Mol Med 2021; 25:10650-10662. [PMID: 34708541 PMCID: PMC8581321 DOI: 10.1111/jcmm.17002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
The dual-specificity tyrosine-regulated kinases DYRK1A and DYRK1B play a key role in controlling the quiescence-proliferation switch in cancer cells. Serum reduction of U87MG 2D cultures or multi-cellular tumour spheroids induced a quiescent like state characterized by increased DYRK1B and p27, and decreased pRb and cyclin D1. VER-239353 is a potent, selective inhibitor of the DYRK1A and DYRK1B kinases identified through fragment and structure-guided drug discovery. Inhibition of DYRK1A/B by VER-239353 in quiescent U87MG cells increased pRb, DYRK1B and cyclin D1 but also increased the cell cycle inhibitors p21 and p27. This resulted in exit from G0 but subsequent arrest in G1. DYRK1A/B inhibition reduced the proliferation of U87MG cells in 2D and 3D culture with greater effects observed under reduced serum conditions. Paradoxically, the induced re-expression of cell cycle proteins by DYRK1A/B inhibition further inhibited cell proliferation. Cell growth arrest induced in quiescent cells by DYRK1A/B inhibition was reversible through the addition of growth-promoting factors. DYRK inhibition-induced DNA damage and synergized with a CHK1 inhibitor in the U87MG spheroids. In vivo, DYRK1A/B inhibition-induced tumour stasis in a U87MG tumour xenograft model. These results suggest that further evaluation of VER-239353 as a treatment for glioblastoma is therefore warranted.
Collapse
Affiliation(s)
| | | | - Mike Burbridge
- Institut de Recherches ServierCroissy‐sur‐SeineFrance
- Present address:
EngitixLondonUK
| | - Andras Kotschy
- Servier Research Institute of Medicinal ChemistryBudapestHungary
| | | |
Collapse
|
5
|
Li L, Wei JR, Song Y, Fang S, Du Y, Li Z, Zeng TT, Zhu YH, Li Y, Guan XY. TROAP switches DYRK1 activity to drive hepatocellular carcinoma progression. Cell Death Dis 2021; 12:125. [PMID: 33500384 PMCID: PMC7838256 DOI: 10.1038/s41419-021-03422-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignancy and lacks effective therapeutic targets. Here, we demonstrated that ectopic expression of trophinin-associated protein (TROAP) dramatically drove HCC cell growth assessed by foci formation in monolayer culture, colony formation in soft agar and orthotopic liver transplantation in nude mice. Inversely, silencing TROAP expression with short-hairpin RNA attenuated the malignant proliferation of HCC cells in vitro and in vivo. Next, mechanistic investigation revealed that TROAP directly bound to dual specificity tyrosine phosphorylation regulated kinase 1A/B (DYRK1A/B), resulting in the cytoplasmic retention of proteins DYRK1A/B and promoting cell cycle process via activation of Akt/GSK-3β signaling. Combination of cisplatin with an inhibitor of DYRK1 AZ191 effectively inhibited tumor growth in mouse model for HCC cells with high level of TROAP. Clinically, TROAP was significantly upregulated by miR-142-5p in HCC tissues, which predicted the poor survival of patients with HCC. Therefore, TROAP/DYRK1/Akt axis may be a promising therapeutic target and prognostic indicator for patients with HCC.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- Department of Clinical Oncology, State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Department of Clinical Oncology Center, The University of Hongkong-Shenzhen Hospital, 518053, Shenzhen, China.
| | - Jia-Ru Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Ye Song
- Affiliated Cancer Hospital & Institutes of Guangzhou Medical University, Guangzhou Key Medical Discipline Construction Project, 510095, Guangzhou, China
| | - Shuo Fang
- The Seventh Affiliated Hospital, Sun Yat-sen University, 518100, Shenzhen, China
| | - Yanyu Du
- The Seventh Affiliated Hospital, Sun Yat-sen University, 518100, Shenzhen, China
| | - Zhuo Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- Department of Clinical Oncology, State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Department of Clinical Oncology Center, The University of Hongkong-Shenzhen Hospital, 518053, Shenzhen, China.
| |
Collapse
|
6
|
Boni J, Rubio-Perez C, López-Bigas N, Fillat C, de la Luna S. The DYRK Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities. Cancers (Basel) 2020; 12:cancers12082106. [PMID: 32751160 PMCID: PMC7465136 DOI: 10.3390/cancers12082106] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
DYRK (dual-specificity tyrosine-regulated kinases) are an evolutionary conserved family of protein kinases with members from yeast to humans. In humans, DYRKs are pleiotropic factors that phosphorylate a broad set of proteins involved in many different cellular processes. These include factors that have been associated with all the hallmarks of cancer, from genomic instability to increased proliferation and resistance, programmed cell death, or signaling pathways whose dysfunction is relevant to tumor onset and progression. In accordance with an involvement of DYRK kinases in the regulation of tumorigenic processes, an increasing number of research studies have been published in recent years showing either alterations of DYRK gene expression in tumor samples and/or providing evidence of DYRK-dependent mechanisms that contribute to tumor initiation and/or progression. In the present article, we will review the current understanding of the role of DYRK family members in cancer initiation and progression, providing an overview of the small molecules that act as DYRK inhibitors and discussing the clinical implications and therapeutic opportunities currently available.
Collapse
Affiliation(s)
- Jacopo Boni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Carlota Rubio-Perez
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
| | - Nuria López-Bigas
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Cristina Fillat
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain;
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-933-160-144
| |
Collapse
|
7
|
Becker W. A wake-up call to quiescent cancer cells - potential use of DYRK1B inhibitors in cancer therapy. FEBS J 2018; 285:1203-1211. [PMID: 29193696 DOI: 10.1111/febs.14347] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/25/2017] [Accepted: 11/24/2017] [Indexed: 12/27/2022]
Abstract
Nondividing cancer cells are relatively resistant to chemotherapeutic drugs and environmental stress factors. Promoting cell cycle re-entry of quiescent cancer cells is a potential strategy to enhance the cytotoxicity of agents that target cycling cells. It is therefore important to elucidate the mechanisms by which these cells are maintained in the quiescent state. The protein kinase dual specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B) is overexpressed in a subset of cancers and maintains cellular quiescence by counteracting G0 /G1 -S phase transition. Specifically, DYRK1B controls the S phase checkpoint by stabilizing the cyclin-dependent kinase (CDK) inhibitor p27Kip1 and inducing the degradation of cyclin D. DYRK1B also stabilizes the DREAM complex that represses cell cycle gene expression in G0 arrested cells. In addition, DYRK1B enhances cell survival by upregulating antioxidant gene expression and reducing intracellular levels of reactive oxygen species (ROS). Substantial evidence indicates that depletion or inhibition of DYRK1B drives cell cycle re-entry and enhances apoptosis of those quiescent cancer cells with high expression of DYRK1B. Furthermore, small molecule DYRK1B inhibitors sensitize cells to the cytotoxic effects of anticancer drugs that target proliferating cells. These encouraging findings justify continued efforts to investigate the use of DYRK1B inhibitors to disrupt the quiescent state and overturn chemoresistance of noncycling cancer cells.
Collapse
Affiliation(s)
- Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Germany
| |
Collapse
|
8
|
Chen H, Shen J, Choy E, Hornicek FJ, Shan A, Duan Z. Targeting DYRK1B suppresses the proliferation and migration of liposarcoma cells. Oncotarget 2017; 9:13154-13166. [PMID: 29568347 PMCID: PMC5862568 DOI: 10.18632/oncotarget.22743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022] Open
Abstract
Liposarcoma is a common subtype of soft tissue sarcoma and accounts for 20% of all sarcomas. Conventional chemotherapeutic agents have limited efficacy in liposarcoma patients. Expression and activation of serine/threonine-protein kinase dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1B (DYRK1B) is associated with growth and survival of many types of cancer cells. However, the role of DYRK1B in liposarcoma remains unknown. In this study, we investigated the functional and therapeutic relevance of DYRK1B in liposarcoma. Tissue microarray and immunohistochemistry analysis showed that higher expression levels of DYRK1B correlated with a worse prognosis. RNA interference-mediated knockdown of DYRK1B or targeting DYRK1B with the kinase inhibitor AZ191 inhibited liposarcoma cell growth, decreased cell motility, and induced apoptosis. Moreover, combined AZ191 with doxorubicin demonstrated an increased anti-cancer effect on liposarcoma cells. These findings suggest that DYRK1B is critical for the growth of liposarcoma cells. Targeting DYRK1B provides a new rationale for treatment of liposarcoma.
Collapse
Affiliation(s)
- Hua Chen
- Department of Emergency Surgery, ShenZhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China, 518020.,Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Jacson Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6902, USA
| | - Aijun Shan
- Department of Emergency Surgery, ShenZhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China, 518020
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6902, USA
| |
Collapse
|
9
|
MacDonald J, Ramos-Valdes Y, Perampalam P, Litovchick L, DiMattia GE, Dick FA. A Systematic Analysis of Negative Growth Control Implicates the DREAM Complex in Cancer Cell Dormancy. Mol Cancer Res 2017; 15:371-381. [PMID: 28031411 DOI: 10.1158/1541-7786.mcr-16-0323-t] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian cancer (EOC) generates multicellular aggregates called spheroids that detach from the primary tumor and disseminate through ascites. Spheroids possess a number of characteristics of tumor dormancy including withdrawal from the cell cycle and resistance to chemotherapeutics. This report systematically analyzes the effects of RNAi depletion of 21 genes that are known to contribute to negative regulation of the cell cycle in 10 ovarian cancer cell lines. Interestingly, spheroid cell viability was compromised by loss of some cyclin-dependent kinase inhibitors such as p57Kip2, as well as Dyrk1A, Lin52, and E2F5 in most cell lines tested. Many genes essential for EOC spheroid viability are pertinent to the mammalian DREAM repressor complex. Mechanistically, the data demonstrate that DREAM is assembled upon the induction of spheroid formation, which is dependent upon Dyrk1A. Loss of Dyrk1A results in retention of the b-Myb-MuvB complex, elevated expression of DREAM target genes, and increased DNA synthesis that is coincident with cell death. Inhibition of Dyrk1A activity using pharmacologic agents Harmine and INDY compromises viability of spheroids and blocks DREAM assembly. In addition, INDY treatment improves the response to carboplatin, suggesting this is a therapeutic target for EOC treatment.Implications: Loss of negative growth control mechanisms in cancer dormancy lead to cell death and not proliferation, suggesting they are an attractive therapeutic approach. Mol Cancer Res; 15(4); 371-81. ©2016 AACR.
Collapse
Affiliation(s)
- James MacDonald
- London Regional Cancer Program, London, Ontario, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
| | | | - Pirunthan Perampalam
- London Regional Cancer Program, London, Ontario, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Larissa Litovchick
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Gabriel E DiMattia
- London Regional Cancer Program, London, Ontario, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Frederick A Dick
- London Regional Cancer Program, London, Ontario, Canada.
- Department of Biochemistry, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
10
|
Singh R, Dhanyamraju PK, Lauth M. DYRK1B blocks canonical and promotes non-canonical Hedgehog signaling through activation of the mTOR/AKT pathway. Oncotarget 2017; 8:833-845. [PMID: 27903983 PMCID: PMC5352201 DOI: 10.18632/oncotarget.13662] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Abstract
Hedgehog (Hh) signaling plays important roles in embryonic development and in tumor formation. Apart from the well-established stimulation of the GLI family of transcription factors, Hh ligands promote the phosphorylation and activation of mTOR and AKT kinases, yet the molecular mechanism underlying these processes are unknown. Here, we identify the DYRK1B kinase as a mediator between Hh signaling and mTOR/AKT activation. In fibroblasts, Hh signaling induces DYRK1B protein expression, resulting in activation of the mTOR/AKT kinase signaling arm. Furthermore, DYRK1B exerts positive and negative feedback regulation on the Hh pathway itself: It negatively interferes with SMO-elicited canonical Hh signaling, while at the same time it provides positive feed-forward functions by promoting AKT-mediated GLI stability. Due to the fact that the mTOR/AKT pathway is itself subject to strong negative feedback regulation, pharmacological inhibition of DYRK1B results in initial upregulation followed by downregulation of AKT phosphorylation and GLI stabilization. Addressing this issue therapeutically, we show that a pharmacological approach combining a DYRK1B antagonist with an mTOR/AKT inhibitor results in strong GLI1 targeting and in pronounced cytotoxicity in human pancreatic and ovarian cancer cells.
Collapse
Affiliation(s)
- Rajeev Singh
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immunobiology, 35043 Marburg, Germany
| | - Pavan Kumar Dhanyamraju
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immunobiology, 35043 Marburg, Germany
| | - Matthias Lauth
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor- and Immunobiology, 35043 Marburg, Germany
| |
Collapse
|
11
|
Chaikuad A, Diharce J, Schröder M, Foucourt A, Leblond B, Casagrande AS, Désiré L, Bonnet P, Knapp S, Besson T. An Unusual Binding Model of the Methyl 9-Anilinothiazolo[5,4-f] quinazoline-2-carbimidates (EHT 1610 and EHT 5372) Confers High Selectivity for Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases. J Med Chem 2016; 59:10315-10321. [DOI: 10.1021/acs.jmedchem.6b01083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Apirat Chaikuad
- Target
Discovery Institute (TDI), and Structural Genomics Consortium (SGC), University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K
| | - Julien Diharce
- Institut
de Chimie Organique et Analytique, UMR CNRS-Université d’Orléans
7311, Université d’Orléans, BP 6759, Orléans 45067 Cedex 2, France
| | - Martin Schröder
- Institute
of Pharmaceutical Chemistry and Buchman Institute for Life Sciences, Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Alicia Foucourt
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France
| | | | | | | | - Pascal Bonnet
- Institut
de Chimie Organique et Analytique, UMR CNRS-Université d’Orléans
7311, Université d’Orléans, BP 6759, Orléans 45067 Cedex 2, France
| | - Stefan Knapp
- Target
Discovery Institute (TDI), and Structural Genomics Consortium (SGC), University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K
- Institute
of Pharmaceutical Chemistry and Buchman Institute for Life Sciences, Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Thierry Besson
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France
| |
Collapse
|
12
|
Peart T, Ramos Valdes Y, Correa RJM, Fazio E, Bertrand M, McGee J, Préfontaine M, Sugimoto A, DiMattia GE, Shepherd TG. Intact LKB1 activity is required for survival of dormant ovarian cancer spheroids. Oncotarget 2016; 6:22424-38. [PMID: 26068970 PMCID: PMC4673173 DOI: 10.18632/oncotarget.4211] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/23/2015] [Indexed: 12/12/2022] Open
Abstract
Metastatic epithelial ovarian cancer (EOC) cells can form multicellular spheroids while in suspension and disperse directly throughout the peritoneum to seed secondary lesions. There is growing evidence that EOC spheroids are key mediators of metastasis, and they use specific intracellular signalling pathways to control cancer cell growth and metabolism for increased survival. Our laboratory discovered that AKT signalling is reduced during spheroid formation leading to cellular quiescence and autophagy, and these may be defining features of tumour cell dormancy. To further define the phenotype of EOC spheroids, we have initiated studies of the Liver kinase B1 (LKB1)-5′-AMP-activated protein kinase (AMPK) pathway as a master controller of the metabolic stress response. We demonstrate that activity of AMPK and its upstream kinase LKB1 are increased in quiescent EOC spheroids as compared with proliferating adherent EOC cells. We also show elevated AMPK activity in spheroids isolated directly from patient ascites. Functional studies reveal that treatment with the AMP mimetic AICAR or allosteric AMPK activator A-769662 led to a cytostatic response in proliferative adherent ovarian cancer cells, but they fail to elicit an effect in spheroids. Targeted knockdown of STK11 by RNAi to reduce LKB1 expression led to reduced viability and increased sensitivity to carboplatin treatment in spheroids only, a phenomenon which was AMPK-independent. Thus, our results demonstrate a direct impact of altered LKB1-AMPK signalling function in EOC. In addition, this is the first evidence in cancer cells demonstrating a pro-survival function for LKB1, a kinase traditionally thought to act as a tumour suppressor.
Collapse
Affiliation(s)
- Teresa Peart
- Translational Ovarian Cancer Research Program, London Regional Cancer Program, London, Ontario, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Yudith Ramos Valdes
- Translational Ovarian Cancer Research Program, London Regional Cancer Program, London, Ontario, Canada
| | - Rohann J M Correa
- Translational Ovarian Cancer Research Program, London Regional Cancer Program, London, Ontario, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Elena Fazio
- Translational Ovarian Cancer Research Program, London Regional Cancer Program, London, Ontario, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Monique Bertrand
- Translational Ovarian Cancer Research Program, London Regional Cancer Program, London, Ontario, Canada.,Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Oncology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Jacob McGee
- Translational Ovarian Cancer Research Program, London Regional Cancer Program, London, Ontario, Canada.,Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Michel Préfontaine
- Translational Ovarian Cancer Research Program, London Regional Cancer Program, London, Ontario, Canada.,Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Akira Sugimoto
- Translational Ovarian Cancer Research Program, London Regional Cancer Program, London, Ontario, Canada.,Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Oncology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Gabriel E DiMattia
- Translational Ovarian Cancer Research Program, London Regional Cancer Program, London, Ontario, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Oncology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Trevor G Shepherd
- Translational Ovarian Cancer Research Program, London Regional Cancer Program, London, Ontario, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Oncology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Harari M, Couly F, Fruit C, Besson T. Pd-Catalyzed and Copper Assisted Regioselective Sequential C2 and C7 Arylation of Thiazolo[5,4-f]quinazolin-9(8H)-one with Aryl Halides. Org Lett 2016; 18:3282-5. [PMID: 27314437 DOI: 10.1021/acs.orglett.6b01552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A selective functionalization of thiazolo[5,4-f]quinazolin-9(8H)-one has been developed through sequential activation of C-H bonds to furnish diarylated compounds. This strategy allows the regioselective C2 and C7 arylation by a judicious choice of coupling partners and bases, requiring no additional ligands or directing groups. Differently substituted N(8)-benzylated-2,7-diaryl-thiazoloquinazolin-9(8H)-ones were thereby obtained in a facile manner. A one-pot procedure was also performed. These protocols provide a synthetically useful route for late-stage functionalization of this highly valuable scaffold, required in drug discovery.
Collapse
Affiliation(s)
- Marine Harari
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Florence Couly
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Corinne Fruit
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Thierry Besson
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| |
Collapse
|
14
|
Masaki S, Kii I, Sumida Y, Kato-Sumida T, Ogawa Y, Ito N, Nakamura M, Sonamoto R, Kataoka N, Hosoya T, Hagiwara M. Design and synthesis of a potent inhibitor of class 1 DYRK kinases as a suppressor of adipogenesis. Bioorg Med Chem 2015; 23:4434-4441. [PMID: 26145823 DOI: 10.1016/j.bmc.2015.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 12/28/2022]
Abstract
Dysregulation of dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) has been demonstrated in several pathological conditions, including Alzheimer's disease and cancer progression. It has been recently reported that a gain of function-mutation in the human DYRK1B gene exacerbates metabolic syndrome by enhancing obesity. In the previous study, we developed an inhibitor of DYRK family kinases (INDY) and demonstrated that INDY suppresses the pathological phenotypes induced by overexpression of DYRK1A or DYRK1B in cellular and animal models. In this study, we designed and synthesized a novel inhibitor of DYRK family kinases based on the crystal structure of the DYRK1A/INDY complex by replacing the phenol group of INDY with dibenzofuran to produce a derivative, named BINDY. This compound exhibited potent and selective inhibitory activity toward DYRK family kinases in an in vitro assay. Furthermore, treatment of 3T3-L1 pre-adipocytes with BINDY hampered adipogenesis by suppressing gene expression of the critical transcription factors PPARγ and C/EBPα. This study indicates the possibility of BINDY as a potential drug for metabolic syndrome.
Collapse
Affiliation(s)
- So Masaki
- Laboratory for Malignancy Control Research, Medical Innovation Center, Graduate School of Medicine, Kyoto University, 53, Shigoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Isao Kii
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuto Sumida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tomoe Kato-Sumida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yasushi Ogawa
- Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Nobutoshi Ito
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mitsuhiro Nakamura
- Division of Natural Sciences, Graduate School of Integrated Arts and Sciences, University of Tokushima, Tokushima 770-8502, Japan
| | - Rie Sonamoto
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research, Medical Innovation Center, Graduate School of Medicine, Kyoto University, 53, Shigoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
15
|
Synthesis of polyfunctionalized benzo[ d ]thiazoles as novel anthranilic acid derivatives. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Mirk kinase inhibition blocks the in vivo growth of pancreatic cancer cells. Genes Cancer 2014; 5:337-47. [PMID: 25352950 PMCID: PMC4209603 DOI: 10.18632/genesandcancer.29] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/24/2014] [Indexed: 12/13/2022] Open
Abstract
The Mirk/dyrk1B gene is upregulated and sometimes amplified in pancreatic ductal carcinomas. In poor microenvironmental conditions Mirk mediates cell survival by maintaining cancer cells in a largely quiescent, noncycling state and by decreasing toxic ROS levels through maintaining expression of a series of antioxidant genes. Premature entry into cycle, increased ROS levels, DNA damage, and apoptosis follow Mirk kinase depletion or inhibition. Mirk kinase inhibitor EHT5372 treated Panc1 spheroids lost quiescence markers coincident with an increase in cyclin A showing entry into cycle, and exhibited DNA damage, apoptosis and smaller size. EHT5372 treatment in vivo led to an increased fraction of Ki67 positive, cycling cells in Panc1 xenografts whose size was reduced. Pdx-1-cre LSL/KrasG12D/Ink4a/Arf null B6 mice always develop pancreatic cancer, allowing only 30% survival by 8 weeks, while each of the Mirk kinase inhibitor treated mice survived 8 weeks. Mirk inhibition led to a roughly four-fold increase in tumor αSMA-positive fibroblasts and large stromal collagen-rich infiltrates in the pancreas that can restrain tumor growth. The mTOR inhibitor RAD001 alone, or together with EHT5372, reduced pancreatic cancer size 30-fold, while the drug combination reduced the number of microscopic tumor foci 2-fold compared to RAD001 alone.
Collapse
|
17
|
Foucourt A, Hédou D, Dubouilh-Benard C, Girard A, Taverne T, Casagrande AS, Désiré L, Leblond B, Besson T. Design and synthesis of thiazolo[5,4-f]quinazolines as DYRK1A inhibitors, part II. Molecules 2014; 19:15411-39. [PMID: 25264830 PMCID: PMC6271009 DOI: 10.3390/molecules191015411] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/12/2022] Open
Abstract
The convenient synthesis of a focused library (forty molecules) of novel 6,6,5-tricyclic thiazolo[5,4-f]quinazolines was realized mainly under microwave irradiation. A novel 6-aminobenzo[d]thiazole-2,7-dicarbonitrile (1) was used as a versatile molecular platform for the synthesis of various derivatives. Kinase inhibition, of the obtained final compounds, was evaluated on a panel of two kinases (DYRK1A/1B) together with some known reference DYRK1A and DYRK1B inhibitors (harmine, TG003, NCGC-00189310 and leucettine L41). Compound IC50 values were obtained and compared. Five of the novel thiazolo[5,4-f]quinazoline derivatives prepared, EHT 5372 (8c), EHT 6840 (8h), EHT 1610 (8i), EHT 9851 (8k) and EHT 3356 (9b) displayed single-digit nanomolar or subnanomolar IC50 values and are among the most potent DYRK1A/1B inhibitors disclosed to date. DYRK1A/1B kinases are known to be involved in the regulation of various molecular pathways associated with oncology, neurodegenerative diseases (such as Alzheimer disease, AD, or other tauopathies), genetic diseases (such as Down Syndrome, DS), as well as diseases involved in abnormal pre-mRNA splicing. The compounds described in this communication constitute a highly potent set of novel molecular probes to evaluate the biology/pharmacology of DYR1A/1B in such diseases.
Collapse
Affiliation(s)
- Alicia Foucourt
- Normandie Univ, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Univ Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | - Damien Hédou
- Normandie Univ, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Univ Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | - Carole Dubouilh-Benard
- Normandie Univ, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Univ Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | | | | | | | | | | | - Thierry Besson
- Normandie Univ, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Univ Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| |
Collapse
|