1
|
miR-155: An Important Role in Inflammation Response. J Immunol Res 2022; 2022:7437281. [PMID: 35434143 PMCID: PMC9007653 DOI: 10.1155/2022/7437281] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, mature, noncoding RNA that lead to posttranscriptional gene silencing to regulate gene expression. miRNAs are instrumental in biological processes such as cell development, cell differentiation, cell proliferation, and cell apoptosis. The miRNA-mediated gene silencing is an important part of the regulation of gene expression in many kinds of diseases. miR-155, one of the best-characterized miRNAs, has been found to be closely related to physiological and pathological processes. What is more, miR-155 can be used as a potential therapeutic target for inflammatory diseases. We analyze the articles about miR-155 for nearly five years, review the advanced study on the function of miR-155 in different inflammatory cells like T cells, B cells, DCs, and macrophages, and then summarize the biological functions of miR-155 in different inflammatory cells. The widespread involvement of miR-155 in human diseases has led to a novel therapeutic approach between Chinese and Western medicine.
Collapse
|
2
|
Kim S, Lee ES, Lee EJ, Jung JY, Lee SB, Lee HJ, Kim J, Kim HJ, Lee JW, Son BH, Gong G, Ahn SH, Chang S. Targeted eicosanoids profiling reveals a prostaglandin reprogramming in breast Cancer by microRNA-155. J Exp Clin Cancer Res 2021; 40:43. [PMID: 33494773 PMCID: PMC7831268 DOI: 10.1186/s13046-021-01839-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract Background Prostaglandin is one of the key metabolites for inflammation-related carcinogenesis. Despite the microRNA-155 is implicated in various types of cancers, it’s function in prostaglandin metabolism is largely unknown. Methods A targeted profiling of eicosanoids including prostaglandin, leukotriene and thromboxanes was performed in miR-155 deficient breast tumors and cancer cells. The molecular mechanism of miR-155-mediated prostaglandin reprogramming was investigated in primary and cancer cell lines, by analyzing key enzymes responsible for the prostaglandin production. Results We found miR-155-deficient breast tumors, plasma of tumor-bearing mouse and cancer cells show altered prostaglandin level, especially for the prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2). Subsequent analysis in primary cancer cells, 20 triple-negative breast cancer (TNBC) specimens and breast cancer cell lines with miR-155 knockdown consistently showed a positive correlation between miR-155 level and PGE2/PGD2 ratio. Mechanistically, we reveal the miR-155 reprograms the prostaglandin metabolism by up-regulating PGE2-producing enzymes PTGES/PTGES2 while down-regulating PGD2-producing enzyme PTGDS. Further, we show the up-regulation of PTGES2 is driven by miR-155-cMYC axis, whereas PTGES is transactivated by miR-155-KLF4. Thus, miR-155 hires dual-regulatory mode for the metabolic enzyme expression to reprogram the PGE2/PGD2 balance. Lastly, we show the miR-155-driven cellular proliferation is restored by the siRNA of PTGES1/2, of which expression also significantly correlates with breast cancer patients’ survival. Conclusions Considering clinical trials targeting PGE2 production largely have focused on the inhibition of Cox1 or Cox2 that showed cardiac toxicity, our data suggest an alternative way for suppressing PGE2 production via the inhibition of miR-155. As the antagomiR of miR-155 (MRG-106) underwent a phase-1 clinical trial, its effect should be considered and analyzed in prostaglandin metabolism in tumor. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01839-4.
Collapse
Affiliation(s)
- Sinae Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun Sung Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun Ji Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jae Yun Jung
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sae Byul Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jisun Kim
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hee Jeong Kim
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jong Won Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Byung Ho Son
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sei-Hyun Ahn
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
3
|
Morales-Martinez M, Lichtenstein A, Vega MI. Function of Deptor and its roles in hematological malignancies. Aging (Albany NY) 2021; 13:1528-1564. [PMID: 33412518 PMCID: PMC7834987 DOI: 10.18632/aging.202462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Deptor is a protein that interacts with mTOR and that belongs to the mTORC1 and mTORC2 complexes. Deptor is capable of inhibiting the kinase activity of mTOR. It is well known that the mTOR pathway is involved in various signaling pathways that are involved with various biological processes such as cell growth, apoptosis, autophagy, and the ER stress response. Therefore, Deptor, being a natural inhibitor of mTOR, has become very important in its study. Because of this, it is important to research its role regarding the development and progression of human malignancies, especially in hematologic malignancies. Due to its variation in expression in cancer, it has been suggested that Deptor can act as an oncogene or tumor suppressor depending on the cellular or tissue context. This review discusses recent advances in its transcriptional and post-transcriptional regulation of Deptor. As well as the advances regarding the activities of Deptor in hematological malignancies, its possible role as a biomarker, and its possible clinical relevance in these malignancies.
Collapse
Affiliation(s)
- Mario Morales-Martinez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
| | - Alan Lichtenstein
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| | - Mario I Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México.,Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90024, USA
| |
Collapse
|
4
|
MicroRNA-155 contributes to plexiform neurofibroma growth downstream of MEK. Oncogene 2020; 40:951-963. [PMID: 33293695 PMCID: PMC7867646 DOI: 10.1038/s41388-020-01581-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/11/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRs) are small non-coding RNAs that can have large impacts on oncogenic pathways. Possible functions of dysregulated miRs have not been studied in neurofibromatosis type 1 (NF1) plexiform neurofibromas (PNFs). In PNFs, Schwann cells (SCs) have biallelic NF1 mutations necessary for tumorigenesis. We analyzed a miR-microarray comparing to normal and PNF SCs and identified differences in miR expression, and we validated in mouse PNFs versus normal mouse SCs by qRT-PCR. Among these, miR-155 was a top overexpressed miR, and its expression was regulated by RAS/MAPK signaling. Overexpression of miR-155 increased mature Nf1−/− mouse SC proliferation. In SC precursors, which model tumor initiating cells, pharmacological and genetic inhibition of miR-155 decreased PNF-derived sphere numbers in vitro and we identified Maf as a miR-155 target. In vivo, global deletion of miR-155 significantly decreased tumor number and volume, increasing mouse survival. Fluorescent nanoparticles entered PNFs, suggesting that an anti-miR might have therapeutic potential. However, treatment of established PNFs using anti-miR-155 peptide nucleic acid-loaded nanoparticles marginally decreased tumor numbers and did not reduce tumor growth. These results suggest that miR-155 plays a functional role in PNF growth and/or SC proliferation, and that targeting neurofibroma miRs is feasible, and might provide novel therapeutic opportunities.
Collapse
|
5
|
The role of miRNA-155 in monocrotaline-induced pulmonary arterial hypertension through c-Fos/NLRP3/caspase-1. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer. Semin Cancer Biol 2019; 69:109-128. [PMID: 31891780 DOI: 10.1016/j.semcancer.2019.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the most prevalent and reoccurring cancers and the second most common reason of death in women. Despite advancements in therapeutic strategies for breast cancer, early tumor recurrence and metastasis in patients indicate resistance to chemotherapeutic medicines, such as paclitaxel due to the abnormal expression of ER and EGF2 in breast cancer cells. Therefore, the development of alternatives to paclitaxel is urgently needed to overcome challenges involving drug resistance. An increasing number of studies has revealed miRNAs as novel natural alternative substances that play a crucial role in regulating several physiological processes and have a close, adverse association with several diseases, including breast cancer. Due to the therapeutic potential of miRNA and paclitaxel in cancer research, the current review focuses on the differential roles of various miRNAs in breast cancer development and treatment. miRNA delivery to a specific target site, the development of paclitaxel and miRNA formulations, and nanotechnological strategies for the delivery of nanopaclitaxel in the management of breast cancer are discussed. These strategies involve improving the cellular uptake and bioavailability and reducing the toxicity of free paclitaxel to achieve accumulation tumor site. Furthermore, a molecular docking study was performed to ascertain the enhanced anticancer activity of the nanoformulation of ANG1005 and Abraxane. An in silico analysis revealed that ANG1005 and Abraxane nanoformulations have superior and significantly enhanced interactions with the proteins α-tubulin and Bcl-2. Therefore, ANG1005 and Abraxane may be more suitable in the therapeutic management of breast cancer than the existing free paclitaxel. miRNAs can revert abnormal gene expression to normalcy; since miRNAs serve as tumor suppressors. Therefore, restoration of particular miRNAs levels as a replacement therapy may be an effective endocrine potential strategy for treating ER positive/ negative breast cancers.
Collapse
|
7
|
Yang C, Shi Z, Hu J, Wei R, Yue G, Zhou D. miRNA-155 expression and role in pathogenesis in spinal tuberculosis-induced intervertebral disc destruction. Exp Ther Med 2019; 17:3239-3246. [PMID: 30936999 PMCID: PMC6434382 DOI: 10.3892/etm.2019.7313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/29/2018] [Indexed: 12/28/2022] Open
Abstract
The current study aimed to investigate microRNA-155 (miR-155) expression in spinal tuberculosis-induced intervertebral disc destruction and its regulatory role in disease pathogenesis. A total of 26 patients with intervertebral disc destruction induced by spinal tuberculosis and 31 healthy individuals were included. Reverse transcription-quantitative polymerase chain reactions, western blot analysis and ELISA were performed to detect mRNA and protein expression levels. A bioinformatics analysis was applied to predict the upstream regulator of matrix metalloproteinase (MMP)13, which was confirmed by dual-luciferase reporter assay. Compared with the control group, mRNA and protein expression levels of MMP13 were significantly increased in the intervertebral disc of patients with spinal tuberculosis. However, miR-155 expression in the intervertebral disc of patients with spinal tuberculosis was significantly decreased compared with the control group. Dual-luciferase reporter assays suggested that miR-155 bound to the 3′-untranslated region of MMP13 to regulate gene expression. In primary annulus fibrosus cells, upregulated miR-155 expression significantly decreased MMP13 expression in the cells and culture supernatant, whereas it increased type II collagen expression. Upregulated MMP13 expression in the intervertebral disc in patients with spinal tuberculosis may be correlated with downregulated miR-155 expression. miR-155 may regulate expression levels of associated proteins in the intervertebral disc via modulating MMP13 expression, which contributes to the disease pathogenesis. The results of the current study may provide the theoretical basis for the diagnosis and treatment of disc damages caused by spinal tuberculosis.
Collapse
Affiliation(s)
- Chengzhi Yang
- Trauma Center, Guangxi Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545000, P.R. China
| | - Zhanying Shi
- Trauma Center, Guangxi Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545000, P.R. China
| | - Juzheng Hu
- Trauma Center, Guangxi Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545000, P.R. China
| | - Renjie Wei
- Department of Trauma Orthopedics, Hechi People's Hospital, Hechi, Guangxi 547000, P.R. China
| | - Guoping Yue
- Department of Joint Osteopathy, Guangxi Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545000, P.R. China
| | - Dan Zhou
- Trauma Center, Guangxi Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545000, P.R. China
| |
Collapse
|
8
|
Ruffalo M, Thomas R, Chen J, Lee AV, Oesterreich S, Bar-Joseph Z. Network-guided prediction of aromatase inhibitor response in breast cancer. PLoS Comput Biol 2019; 15:e1006730. [PMID: 30742607 PMCID: PMC6386390 DOI: 10.1371/journal.pcbi.1006730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 02/22/2019] [Accepted: 12/19/2018] [Indexed: 01/07/2023] Open
Abstract
Prediction of response to specific cancer treatments is complicated by significant heterogeneity between tumors in terms of mutational profiles, gene expression, and clinical measures. Here we focus on the response of Estrogen Receptor (ER)+ post-menopausal breast cancer tumors to aromatase inhibitors (AI). We use a network smoothing algorithm to learn novel features that integrate several types of high throughput data and new cell line experiments. These features greatly improve the ability to predict response to AI when compared to prior methods. For a subset of the patients, for which we obtained more detailed clinical information, we can further predict response to a specific AI drug. Breast cancer is the second most common type of cancer in women, with an incidence rate of over 250,000 cases per year, and breast cancer cases show significant heterogeneity in clinical and omic measures. Estrogen receptor positive (ER+) tumors typically grow in response to estrogen, and in post menopausal women, estrogen is only produced in peripheral tissues via the aromatase enzyme. Inhibition of aromatase is often an effective treatment for ER+ tumors, but aromatase inhibitor therapy is not effective for all tumors, and causes of this heterogeneity in response are largely not known. In this work, we present a feature construction and classification method to predict response to aromatase inhibitor therapy. We use network smoothing techniques to combine tumor omic data into predictive features, which we use as input to standard machine learning algorithms. We train predictive models using clinical data, including high-quality clinical data from UPMC patients, and show that our method outperforms previous approaches in predicting response to aromatase inhibitor therapy.
Collapse
Affiliation(s)
- Matthew Ruffalo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Roby Thomas
- Women’s Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Jian Chen
- Women’s Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Adrian V. Lee
- Women’s Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Steffi Oesterreich
- Women’s Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ma F, Liu F, Ding L, You M, Yue H, Zhou Y, Hou Y. Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. PHARMACEUTICAL BIOLOGY 2017; 55:1263-1273. [PMID: 28264607 PMCID: PMC6130682 DOI: 10.1080/13880209.2017.1297838] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT The natural polyphenolic compound curcumin has been proved to modulate innate immune responses and possess anti-inflammatory properties. Nevertheless, the mechanism remains poorly understood, particularly regarding curcumin-regulated miRNAs under inflammatory response. OBJECTIVE This study investigates the role of miRNA-155 in the effects of curcumin on inflammatory response in cell and a mouse model. MATERIALS AND METHODS The anti-inflammatory activity of curcumin (5, 10 and 15 μM, 2 h) in lipopolysaccharide (LPS, 200 ng/mL)-induced cells were measured by quantitative PCR. The animals were treated orally by 20 mg/kg curcumin for 3 days before an LPS intraperitoneal injection (10 mg/kg, 16 h). MicroRNA (miRNA) expression and the underlying molecular mechanisms were assessed using transfection technique and western blotting. RESULTS AND DISCUSSION Curcumin efficiently inhibited LPS-induced cytokines (TNF-α, IL-6) and microRNA-155 (miR-155) expression (p < 0.05) without affecting the normally growth of Raw264.7 and THP-1 cells (IC50 21.8 and 22.3 μM at 48 h, respectively). Moreover, the levels of cytokines were suppressed by curcumin in miR-155 mimics transfected cells (p < 0.05). A blockade of PI3K/AKT signalling pathways resulted in a decreased level of miR-155 (p < 0.05). Curcumin effectively protected mice from sepsis as evidenced by decreasing histological damage, reducing AST (352.0 vs 279.3 U/L), BUN (14.8 vs 10.8 mmol/L) levels and the proportion of macrophages in spleen (31.1% vs 13.5%). MicroRNA-155 level and cytokines were also reduced in curcumin-treated mice (p < 0.05). CONCLUSIONS Curcumin's ability to suppress LPS-induced inflammatory response may be due to the inhibition of miR-155.
Collapse
Affiliation(s)
- Feiya Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Fei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Ming You
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Huimin Yue
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
| | - Yujie Zhou
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
- Yujie ZhouThe Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing210008, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, PR China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, PR China
- CONTACT Yayi HouMedical School, Nanjing University, Nanjing210093, China
| |
Collapse
|
10
|
Quaking and miR-155 interactions in inflammation and leukemogenesis. Oncotarget 2016; 6:24599-610. [PMID: 26337206 PMCID: PMC4694781 DOI: 10.18632/oncotarget.5248] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/18/2015] [Indexed: 01/11/2023] Open
Abstract
Quaking (QKI) is a tumor-suppressor gene encoding a conserved RNA-binding protein, whose expression is downregulated in several solid tumors. Here we report that QKI plays an important role in the immune response and suppression of leukemogenesis. We show that the expression of Qki is reduced in lipopolysaccharide (LPS)-challenged macrophages, suggesting that Qki is a key regulator of LPS signaling pathway. Furthermore, LPS-induced downregulation of Qki expression is miR-155-dependent. Qki overexpression impairs LPS-induced phosphorylation of JNK and particularly p38 MAPKs, in addition to increasing the production of anti-inflammatory cytokine IL-10. In contrast, Qki ablation decreases Fas expression and the rate of Caspase3/7 activity, while increasing the levels of IL-1α, IL-1β and IL-6, and p38 phosphorylation. Similarly, the p38 pathway is also a target of QKI activity in chronic lymphocytic leukemia (CLL)-derived MEC2 cells. Finally, B-CLL patients show lower levels of QKI expression compared with B cells from healthy donor, and Qki is similarily downregulated with the progression of leukemia in Eµ-miR-155 transgenic mice. Altogether, these data implicate QKI in the pathophysiology of inflammation and oncogenesis where miR-155 is involved.
Collapse
|
11
|
Su Z, Yang Z, Xu Y, Chen Y, Yu Q. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 2016; 6:8474-90. [PMID: 25893379 PMCID: PMC4496162 DOI: 10.18632/oncotarget.3523] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/10/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous 22 nt non-coding RNAs that target mRNAs for cleavage or translational repression. Numerous miRNAs regulate programmed cell death including apoptosis, autophagy and necroptosis. We summarize how miRNAs regulate apoptotic, autophagic and necroptotic pathways and cancer progression. We also discuss how miRNAs link different types of cell death.
Collapse
Affiliation(s)
- Zhenyi Su
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China.,Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650118, China
| | - Yongqing Xu
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650118, China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
12
|
MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res 2015; 97:104-21. [DOI: 10.1016/j.phrs.2015.04.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/15/2015] [Accepted: 04/26/2015] [Indexed: 12/19/2022]
|
13
|
Su W, Xu M, Chen X, Nie L, Chen N, Gong J, Zhang M, Su Z, Huang L, Zhou Q. MiR200c targets IRS1 and suppresses prostate cancer cell growth. Prostate 2015; 75:855-62. [PMID: 25683382 DOI: 10.1002/pros.22968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/30/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND The downregulation of the tumor suppressor miR200c plays important roles in many malignant tumors. This study aims to show that miR200c is a posttranscriptional regulator of insulin receptor substrate 1 (IRS1) and over-expression of miR200c suppresses prostate cancer cell growth. METHODS Bioinformatics analysis was used to show potential post-translational regulation of IRS1 by miR200c. Dual reporter gene assays were chosen to test the binding of miR200c to the potential seed sequences in IRS1 3'UTR. RT-PCR, Q-PCR and western blot were applied to determine the regulation effect of miR200c on IRS1. CCK8 assay, soft agar assay, trypan blue exclusion assay and flow cytometric analysis were used to measure the biological effects of miR200c on prostate cancer cell proliferation and apoptosis. RESULTS The 449-455 nt, 3061-3067 nt, and 3096-3102 nt of the IRS1 3'-UTR were identified as three potential seed sequences for miR200c. MiR200c directly binds to IRS1 through the seed sequences in IRS1 3'-UTR. Artificial overexpression of miR200c significantly downregulated the mRNA and protein levels of IRS1, together with decreased cell proliferation and increased cell death of PC3 and DU145 cells. CONCLUSIONS Our results suggest that miR200c plays crucial roles in prostate cancer by post-transcriptional regulation of IRS1. The mir200c/IRS1 pathway may be a potential therapeutic target to prevent prostate cancer cell growth.
Collapse
Affiliation(s)
- Wenjing Su
- Department of Pathology and Laboratory of Pathology, State Key Laboratory of Biotherapy; West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China; Department of Pathology, Shandong Provincial Hospital, Shandong University, Jinan, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Role of miR-155 in drug resistance of breast cancer. Tumour Biol 2015; 36:1395-401. [PMID: 25744731 DOI: 10.1007/s13277-015-3263-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expressions at posttranscriptional level. Growing evidence points to their significant role in the acquisition of drug resistance in cancers. Studies show that miRNAs are often aberrantly expressed in human cancer cells which are associated with tumorigenesis, metastasis, invasiveness, and drug resistance. Breast cancer is the leading cause of cancer-induced death in women. Over the last decades, increasing attention has been paid to the effects of miRNAs on the development of breast cancer drug resistance. Among them, miR-155 takes part in a sequence of bioprocesses that contribute to the development of such drug resistance, including repression of FOXO3a, enhancement of epithelial-to-mesenchymal transition (EMT) and mitogen-activated protein kinase (MAPK) signaling, reduction of RhoA, and affecting the length of telomeres. In this review, we discuss the role of miR-155 in the acquisition of breast cancer drug resistance. This will provide a new way in antiresistance treatment of drug-resistant breast cancer.
Collapse
|