1
|
Yan ZJ, Chen L, Wang HY. To be or not to be: The double-edged sword roles of liver progenitor cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188870. [PMID: 36842766 DOI: 10.1016/j.bbcan.2023.188870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/28/2023]
Abstract
Given the liver's remarkable and unique regenerative capacity, researchers have long focused on liver progenitor cells (LPCs) and liver cancer stem cells (LCSCs). LPCs can differentiate into both hepatocytes and cholangiocytes. However, the mechanism underlying cell conversion and its distinct contribution to liver homeostasis and tumorigenesis remain unclear. In this review, we discuss the complicated conversions involving LPCs and LCSCs. As the critical intermediate state in malignant transformation, LPCs play double-edged sword roles. LPCs are not only involved in hepatic wound-healing responses by supplementing liver cells and bile duct cells in the damaged liver but may transform into LCSCs under dysregulation of key signaling pathways, resulting in refractory malignant liver tumors. Because LPC lineages are temporally and spatially dynamic, we discuss crucial LPC subgroups and summarize regulatory factors correlating with the trajectories of LPCs and LCSCs in the liver tumor microenvironment. This review elaborates on the double-edged sword roles of LPCs to help understand the liver's regenerative potential and tumor heterogeneity. Understanding the sources and transformations of LPCs is essential in determining how to exploit their regenerative capacity in the future.
Collapse
Affiliation(s)
- Zi-Jun Yan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China.
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China.
| |
Collapse
|
2
|
Manukonda R, Narayana RV, Kaliki S, Mishra DK, Vemuganti GK. Emerging therapeutic targets for retinoblastoma. Expert Opin Ther Targets 2022; 26:937-947. [PMID: 36524402 DOI: 10.1080/14728222.2022.2158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Retinoblastoma (Rb) is an early childhood intraocular tumor of the retina and is managed by multimodal therapeutic approaches. Recent advanced targeted delivery of chemotherapeutic drugs to the eye has improved the possibility of globe salvage. However, enucleation is inevitable for advanced and recurrent Rb. The cumulative knowledge of identification of newer molecular biology tools, exosomal cargo, role of cancer stem cells (CSCs), and its microenvironment in the progression of the diseases warrants a relook at the traditional treatment protocol and explore the feasibility of targeted therapies. AREAS COVERED This review covers Rb pathobiology, novel molecular-targeted therapeutics, and strategies targeting Rb CSCs and provides an update on potential therapeutic targets such as second messengers and exosomal cargo. EXPERT OPINION The emergence of early diagnosis and multimodality treatment protocols have significantly improved the clinical outcome of children with advanced Rb; however, the problem of tumor recurrence has not yet been overcome. Improved understanding of the molecular pathways, identification, and characterization of CSCs opens up new targeted therapy approaches. The contemporary evidence from other fields shows promising evidence that combining conservative treatment modalities with targeting therapies specific for CSCs in clinical practice is essential for achieving high globe salvage rate in Rb patients.
Collapse
Affiliation(s)
- Radhika Manukonda
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, India
| | - Revu Vl Narayana
- School of Medical Sciences, University of Hyderabad, Science Complex, Hyderabad, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India.,Brien Holden Eye Research Center, L. V. Prasad Eye Institute, Hyderabad, India
| | - Dilip K Mishra
- Ophthalmic Pathology Laboratory, LV Prasad Eye Institute, Hyderabad, India
| | - Geeta K Vemuganti
- School of Medical Sciences, University of Hyderabad, Science Complex, Hyderabad, India
| |
Collapse
|
3
|
Polyploidy and Myc Proto-Oncogenes Promote Stress Adaptation via Epigenetic Plasticity and Gene Regulatory Network Rewiring. Int J Mol Sci 2022; 23:ijms23179691. [PMID: 36077092 PMCID: PMC9456078 DOI: 10.3390/ijms23179691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploid cells demonstrate biological plasticity and stress adaptation in evolution; development; and pathologies, including cardiovascular diseases, neurodegeneration, and cancer. The nature of ploidy-related advantages is still not completely understood. Here, we summarize the literature on molecular mechanisms underlying ploidy-related adaptive features. Polyploidy can regulate gene expression via chromatin opening, reawakening ancient evolutionary programs of embryonality. Chromatin opening switches on genes with bivalent chromatin domains that promote adaptation via rapid induction in response to signals of stress or morphogenesis. Therefore, stress-associated polyploidy can activate Myc proto-oncogenes, which further promote chromatin opening. Moreover, Myc proto-oncogenes can trigger polyploidization de novo and accelerate genome accumulation in already polyploid cells. As a result of these cooperative effects, polyploidy can increase the ability of cells to search for adaptive states of cellular programs through gene regulatory network rewiring. This ability is manifested in epigenetic plasticity associated with traits of stemness, unicellularity, flexible energy metabolism, and a complex system of DNA damage protection, combining primitive error-prone unicellular repair pathways, advanced error-free multicellular repair pathways, and DNA damage-buffering ability. These three features can be considered important components of the increased adaptability of polyploid cells. The evidence presented here contribute to the understanding of the nature of stress resistance associated with ploidy and may be useful in the development of new methods for the prevention and treatment of cardiovascular and oncological diseases.
Collapse
|
4
|
Metabostemness in cancer: Linking metaboloepigenetics and mitophagy in remodeling cancer stem cells. Stem Cell Rev Rep 2021; 18:198-213. [PMID: 34355273 DOI: 10.1007/s12015-021-10216-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 01/01/2023]
Abstract
Cancer stem cells (CSCs) are rare populations of malignant cells with stem cell-like features of self-renewal, uninterrupted differentiation, tumorigenicity, and resistance to conventional therapeutic agents, and these cells have a decisive role in treatment failure and tumor relapse. The self-renewal potential of CSCs with atypical activation of developmental signaling pathways involves the maintenance of stemness to support cancer progression. The acquisition of stemness in CSCs has been accomplished through genetic and epigenetic rewiring following the metabolic switch. In this context, "metabostemness" denotes the metabolic parameters that essentially govern the epitranscriptional gene reprogramming mechanism to dedifferentiate tumor cells into CSCs. Several metabolites often referred to as oncometabolites can directly remodel chromatin structure and thereby influence the operation of epitranscriptional circuits. This integrated metaboloepigenetic dimension of CSCs favors the differentiated cells to move in dedifferentiated macrostates. Some metabolic events might perform as early drivers of epitranscriptional reprogramming; however, subsequent metabolic hits may govern the retention of stemness properties in the tumor mass. Interestingly, selective removal of mitochondria through autophagy can promote metabolic plasticity and alter metabolic states during differentiation and dedifferentiation. In this connection, novel metabostemness-specific drugs can be generated as potential cancer therapeutics to target the metaboloepigenetic circuitry to eliminate CSCs.
Collapse
|
5
|
Nimmakayala RK, Leon F, Rachagani S, Rauth S, Nallasamy P, Marimuthu S, Shailendra GK, Chhonker YS, Chugh S, Chirravuri R, Gupta R, Mallya K, Prajapati DR, Lele SM, C Caffrey T, L Grem J, Grandgenett PM, Hollingsworth MA, Murry DJ, Batra SK, Ponnusamy MP. Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma. Oncogene 2021; 40:215-231. [PMID: 33110235 PMCID: PMC10041665 DOI: 10.1038/s41388-020-01518-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) metastasizes to distant organs, which is the primary cause of mortality; however, specific features mediating organ-specific metastasis remain unexplored. Emerging evidence demonstrates that cancer stem cells (CSCs) and cellular metabolism play a pivotal role in metastasis. Here we investigated the role of distinct subtypes of pancreatic CSCs and their metabolomic signatures in organ-specific metastatic colonization. We found that PDAC consists of ALDH+/CD133+ and drug-resistant (MDR1+) subtypes of CSCs with specific metabolic and stemness signatures. Human PDAC tissues with gemcitabine treatment, autochthonous mouse tumors from KrasG12D; Pdx1-Cre (KC) and KrasG12D; Trp53R172H; Pdx-1 Cre (KPC) mice, and KPC- Liver/Lung metastatic cells were used to evaluate the CSC, EMT (epithelial-to-mesenchymal transition), and metabolic profiles. A strong association was observed between distinct CSC subtypes and organ-specific colonization. The liver metastasis showed drug-resistant CSC- and EMT-like phenotype with aerobic glycolysis and fatty acid β-oxidation-mediated oxidative (glyco-oxidative) metabolism. On the contrary, lung metastasis displayed ALDH+/CD133+ and MET-like phenotype with oxidative metabolism. These results were obtained by evaluating FACS-based side population (SP), autofluorescence (AF+) and Alde-red assays for CSCs, and Seahorse-based oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and fatty acid β-oxidation (FAO)-mediated OCR assays for metabolic features along with specific gene signatures. Further, we developed in vitro human liver and lung PDAC metastasis models by using a combination of liver or lung decellularized scaffolds, a co-culture, and a sphere culture methods. PDAC cells grown in the liver-mimicking model showed the enrichment of MDR1+ and CPT1A+ populations, whereas the PDAC cells grown in the lung-mimicking environment showed the enrichment of ALDH+/CD133+ populations. In addition, we observed significantly elevated expression of ALDH1 in lung metastasis and MDR1/LDH-A expression in liver metastasis compared to human primary PDAC tumors. Our studies elucidate that distinct CSCs adapt unique metabolic signatures for organotropic metastasis, which will pave the way for the development of targeted therapy for PDAC metastasis.
Collapse
Affiliation(s)
- Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gautam K Shailendra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ramakanth Chirravuri
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Rohitesh Gupta
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Dipakkumar R Prajapati
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Subodh M Lele
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jean L Grem
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Metformin: Sentinel of the Epigenetic Landscapes That Underlie Cell Fate and Identity. Biomolecules 2020; 10:biom10050780. [PMID: 32443566 PMCID: PMC7277648 DOI: 10.3390/biom10050780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
The biguanide metformin is the first drug to be tested as a gerotherapeutic in the clinical trial TAME (Targeting Aging with Metformin). The current consensus is that metformin exerts indirect pleiotropy on core metabolic hallmarks of aging, such as the insulin/insulin-like growth factor 1 and AMP-activated protein kinase/mammalian Target Of Rapamycin signaling pathways, downstream of its primary inhibitory effect on mitochondrial respiratory complex I. Alternatively, but not mutually exclusive, metformin can exert regulatory effects on components of the biologic machinery of aging itself such as chromatin-modifying enzymes. An integrative metabolo-epigenetic outlook supports a new model whereby metformin operates as a guardian of cell identity, capable of retarding cellular aging by preventing the loss of the information-theoretic nature of the epigenome. The ultimate anti-aging mechanism of metformin might involve the global preservation of the epigenome architecture, thereby ensuring cell fate commitment and phenotypic outcomes despite the challenging effects of aging noise. Metformin might therefore inspire the development of new gerotherapeutics capable of preserving the epigenome architecture for cell identity. Such gerotherapeutics should replicate the ability of metformin to halt the erosion of the epigenetic landscape, mitigate the loss of cell fate commitment, delay stochastic/environmental DNA methylation drifts, and alleviate cellular senescence. Yet, it remains a challenge to confirm if regulatory changes in higher-order genomic organizers can connect the capacity of metformin to dynamically regulate the three-dimensional nature of epigenetic landscapes with the 4th dimension, the aging time.
Collapse
|
7
|
Cuyàs E, Verdura S, Folguera-Blasco N, Bastidas-Velez C, Martin ÁG, Alarcón T, Menendez JA. Mitostemness. Cell Cycle 2018; 17:918-926. [PMID: 29886796 DOI: 10.1080/15384101.2018.1467679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Unraveling the key mechanisms governing the retention versus loss of the cancer stem cell (CSC) state would open new therapeutic avenues to eradicate cancer. Mitochondria are increasingly recognized key drivers in the origin and development of CSC functional traits. We here propose the new term "mitostemness" to designate the mitochondria-dependent signaling functions that, evolutionary rooted in the bacterial origin of mitochondria, regulate the maintenance of CSC self-renewal and resistance to differentiation. Mitostemness traits, namely mitonuclear communication, mitoproteome components, and mitochondrial fission/fusion dynamics, can be therapeutically exploited to target the CSC state. We briefly review the pre-clinical evidence of action of investigational compounds on mitostemness traits and discuss ongoing strategies to accelerate the clinical translation of new mitostemness drugs. The recognition that the bacterial origin of present-day mitochondria can drive decision-making signaling phenomena may open up a new therapeutic dimension against life-threatening CSCs. New therapeutics aimed to target mitochondria not only as biochemical but also as biophysical and morpho-physiological hallmarks of CSC might certainly guide improvements to cancer treatment.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| | - Sara Verdura
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| | | | | | | | - Tomás Alarcón
- c Centre de Recerca Matemàtica , Barcelona , Spain.,e Barcelona Graduate School of Mathematics (BGSMath) , Barcelona , Spain.,f ICREA , Barcelona , Spain.,g Departament de Matemàtiques , Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Javier A Menendez
- a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Spain
| |
Collapse
|
8
|
Candido S, Abrams SL, Steelman L, Lertpiriyapong K, Martelli AM, Cocco L, Ratti S, Follo MY, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Suh PG, Libra M, McCubrey JA. Metformin influences drug sensitivity in pancreatic cancer cells. Adv Biol Regul 2018; 68:13-30. [PMID: 29482945 DOI: 10.1016/j.jbior.2018.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10% after diagnosis and treatment. Pancreatic cancer has been associated with type II diabetes as the frequency of recently diagnosed diabetics that develop pancreatic cancer within a 10-year period of initial diagnosis of diabetes in increased in comparison to non-diabetic patients. Metformin is a very frequently prescribed drug used to treat type II diabetes. Metformin acts in part by stimulating AMP-kinase (AMPK) and results in the suppression of mTORC1 activity and the induction of autophagy. In the following studies, we have examined the effects of metformin in the presence of various chemotherapeutic drugs, signal transduction inhibitors and natural products on the growth of three different PDAC lines. Metformin, by itself, was not effective at suppressing growth of the pancreatic cancer cell lines at concentration less than 1000 nM, however, in certain PDAC lines, a suboptimal dose of metformin (250 nM) potentiated the effects of various chemotherapeutic drugs used to treat pancreatic cancer (e.g., gemcitabine, cisplatin, 5-fluorouracil) and other cancer types (e.g., doxorubicin, docetaxel). Furthermore, metformin could increase anti-proliferative effects of mTORC1 and PI3K/mTOR inhibitors as well as natural products such as berberine and the anti-malarial drug chloroquine in certain PDAC lines. Thus, metformin can enhance the effects of certain drugs and signal transduction inhibitors which are used to treat pancreatic and various other cancers.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Linda Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Pann-Gill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
9
|
Menendez JA, Folguera-Blasco N, Cuyàs E, Fernández-Arroyo S, Joven J, Alarcón T. Accelerated geroncogenesis in hereditary breast-ovarian cancer syndrome. Oncotarget 2017; 7:11959-71. [PMID: 26943589 PMCID: PMC4914261 DOI: 10.18632/oncotarget.7867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/21/2016] [Indexed: 12/21/2022] Open
Abstract
The geroncogenesis hypothesis postulates that the decline in metabolic cellular health that occurs naturally with aging drives a "field effect" predisposing normal tissues for cancer development. We propose that mutations in the cancer susceptibility genes BRCA1/2 might trigger "accelerated geroncogenesis" in breast and ovarian epithelia. By speeding up the rate at which the metabolic threshold becomes "permissive" with survival and expansion of genomically unstable pre-tumoral epithelial cells, BRCA haploinsufficiency-driven metabolic reprogramming would operate as a bona fide oncogenic event enabling malignant transformation and tumor formation in BRCA carriers. The metabolic facet of BRCA1 one-hit might involve tissue-specific alterations in acetyl-CoA, α-ketoglutarate, NAD+, FAD, or S-adenosylmethionine, critical factors for de/methylation or de/acetylation dynamics in the nuclear epigenome. This in turn might induce faulty epigenetic reprogramming at the "install phase" that directs cell-specific differentiation of breast/ovarian epithelial cells, which can ultimately determine the penetrance of BRCA defects during developmental windows of susceptibility. This model offers a framework to study whether metabolic drugs that prevent or revert metabolic reprogramming induced by BRCA haploinsufficiency might displace the "geroncogenic risk" of BRCA carriers to the age typical for those without the mutation. The identification of the key nodes that directly communicate changes in cellular metabolism to the chromatin in BRCA haploinsufficient cells may allow the epigenetic targeting of genomic instability using exclusively metabolic means. The validation of accelerated geroncogenesis as an inherited "one-hit" metabolic "field effect" might offer new strategies to therapeutically revisit the apparently irreversible genetic-hereditary fate of women with hereditary breast-ovarian cancer syndrome.
Collapse
Affiliation(s)
- Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Salt, Catalonia, Spain
| | - Núria Folguera-Blasco
- Computational and Mathematical Biology Research Group, Centre de Recerca Matemàtica (CRM), Barcelona, Spain
| | - Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Salt, Catalonia, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, Reus, Spain
| | - Tomás Alarcón
- Computational and Mathematical Biology Research Group, Centre de Recerca Matemàtica (CRM), Barcelona, Spain.,Institució Catalana d'Estudis i Recerca Avançats (ICREA), Barcelona, Spain.,Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| |
Collapse
|
10
|
Cuyàs E, Verdura S, Fernández-Arroyo S, Bosch-Barrera J, Martin-Castillo B, Joven J, Menendez JA. Metabolomic mapping of cancer stem cells for reducing and exploiting tumor heterogeneity. Oncotarget 2017; 8:99223-99236. [PMID: 29245896 PMCID: PMC5725087 DOI: 10.18632/oncotarget.21834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
Personalized cancer medicine based on the analysis of tumors en masse is limited by tumor heterogeneity, which has become a major obstacle to effective cancer treatment. Cancer stem cells (CSC) are emerging as key drivers of inter- and intratumoral heterogeneity. CSC have unique metabolic dependencies that are required not only for specific bioenergetic/biosynthetic demands but also for sustaining their operational epigenetic traits, i.e. self-renewal, tumor-initiation, and plasticity. Given that the metabolome is the final downstream product of all the –omic layers and, therefore, most representative of the biological phenotype, we here propose that a novel approach to better understand the complexity of tumor heterogeneity is by mapping and cataloging small numbers of CSC metabolomic phenotypes. The narrower metabolomic diversity of CSC states could be employed to reduce multidimensional tumor heterogeneity into dynamic models of fewer actionable sub-phenotypes. The identification of the driver nodes that are used differentially by CSC states to metabolically regulate self-renewal and tumor initation and escape chemotherapy might open new preventive and therapeutic avenues. The mapping of CSC metabolomic states could become a pioneering strategy to reduce the dimensionality of tumor heterogeneity and improve our ability to examine changes in tumor cell populations for cancer detection, prognosis, prediction/monitoring of therapy response, and detection of therapy resistance and recurrent disease. The identification of driver metabolites and metabolic nodes accounting for a large amount of variance within the CSC metabolomic sub-phenotypes might offer new unforeseen opportunities for reducing and exploiting tumor heterogeneity via metabolic targeting of CSC.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance, Catalan Institute of Oncology, Girona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Sara Verdura
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance, Catalan Institute of Oncology, Girona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Catalonia, Spain
| | | | | | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Catalonia, Spain
| | - Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance, Catalan Institute of Oncology, Girona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
11
|
Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets 2017; 21:1001-1016. [PMID: 28922023 DOI: 10.1080/14728222.2017.1381087] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ten years ago, we put forward the metabolo-oncogenic nature of fatty acid synthase (FASN) in breast cancer. Since the conception of this hypothesis, which provided a model to explain how FASN is intertwined with various signaling networks to cell-autonomously regulate breast cancer initiation and progression, FASN has received considerable attention as a therapeutic target. However, despite the ever-growing evidence demonstrating the involvement of FASN as part of the cancer-associated metabolic reprogramming, translation of the basic science-discovery aspects of FASN blockade to the clinical arena remains a challenge. Areas covered: Ten years later, we herein review the preclinical lessons learned from the pharmaceutical liabilities of the first generation of FASN inhibitors. We provide an updated view of the current development and clinical testing of next generation FASN-targeted drugs. We also discuss new clinico-molecular approaches that should help us to convert roadblocks into roadways that will propel forward our therapeutic understanding of FASN. Expert opinion: With the recent demonstration of target engagement and early signs of clinical activity with the first orally available, selective, potent and reversible FASN inhibitor, we can expect Big pharma to revitalize their interest in lipogenic enzymes as well-credentialed targets for oncology drug development in breast cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- a ProCURE (Program Against Cancer Therapeutic Resistance) , Metabolism & Cancer Group, Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Parc Hospitalari Martí i Julià , Girona , Spain
| | - Ruth Lupu
- c Department of Medicine and Experimental Pathology , Mayo Clinic , Rochester , MN , USA.,d Mayo Clinic Cancer Center , Rochester , MN , USA
| |
Collapse
|
12
|
Menendez JA, Alarcón T. Senescence-Inflammatory Regulation of Reparative Cellular Reprogramming in Aging and Cancer. Front Cell Dev Biol 2017; 5:49. [PMID: 28529938 PMCID: PMC5418360 DOI: 10.3389/fcell.2017.00049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/18/2017] [Indexed: 12/16/2022] Open
Abstract
The inability of adult tissues to transitorily generate cells with functional stem cell-like properties is a major obstacle to tissue self-repair. Nuclear reprogramming-like phenomena that induce a transient acquisition of epigenetic plasticity and phenotype malleability may constitute a reparative route through which human tissues respond to injury, stress, and disease. However, tissue rejuvenation should involve not only the transient epigenetic reprogramming of differentiated cells, but also the committed re-acquisition of the original or alternative committed cell fate. Chronic or unrestrained epigenetic plasticity would drive aging phenotypes by impairing the repair or the replacement of damaged cells; such uncontrolled phenomena of in vivo reprogramming might also generate cancer-like cellular states. We herein propose that the ability of senescence-associated inflammatory signaling to regulate in vivo reprogramming cycles of tissue repair outlines a threshold model of aging and cancer. The degree of senescence/inflammation-associated deviation from the homeostatic state may delineate a type of thresholding algorithm distinguishing beneficial from deleterious effects of in vivo reprogramming. First, transient activation of NF-κB-related innate immunity and senescence-associated inflammatory components (e.g., IL-6) might facilitate reparative cellular reprogramming in response to acute inflammatory events. Second, para-inflammation switches might promote long-lasting but reversible refractoriness to reparative cellular reprogramming. Third, chronic senescence-associated inflammatory signaling might lock cells in highly plastic epigenetic states disabled for reparative differentiation. The consideration of a cellular reprogramming-centered view of epigenetic plasticity as a fundamental element of a tissue's capacity to undergo successful repair, aging degeneration or malignant transformation should provide challenging stochastic insights into the current deterministic genetic paradigm for most chronic diseases, thereby increasing the spectrum of therapeutic approaches for physiological aging and cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance, Catalan Institute of OncologyGirona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI)Girona, Spain.,METABOSTEMBarcelona, Spain
| | - Tomás Alarcón
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain.,Computational and Mathematical Biology Research Group, Centre de Recerca MatemàticaBarcelona, Spain.,Departament de Matemàtiques, Universitat Autònoma de BarcelonaBarcelona, Spain.,Barcelona Graduate School of MathematicsBarcelona, Spain
| |
Collapse
|
13
|
Menendez JA, Alarcón T. Nuclear reprogramming of cancer stem cells: Corrupting the epigenetic code of cell identity with oncometabolites. Mol Cell Oncol 2017; 3:e1160854. [PMID: 28090573 DOI: 10.1080/23723556.2016.1160854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 02/27/2016] [Accepted: 02/28/2016] [Indexed: 01/24/2023]
Abstract
Generation of cancer stem cell (CSC)-like cells might occur through metabolic corruption of the epigenetic codes that govern cell identity. We recently identified how archetypal oncometabolites, without altering the baseline expression of endogenous stem cell maintenance genes but endowing cells with epigenetic states refractory to differentiation, considerably enhance the global kinetic efficiency of nuclear reprogramming processes that generate CSC-like states de novo. This study highlights that metabolo-epigenetic axes of communication can direct the development and maintenance of CSCs during the natural history of cancer diseases.
Collapse
Affiliation(s)
- Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain; Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Salt, Catalonia, Spain
| | - Tomás Alarcón
- Computational & Mathematical Biology Research Group, Center de Recerca Matemàtica, Barcelona, Catalonia, Spain; ICREA (Institució Catalana d'Estudis i Recerca Avançats), Barcelona, Spain; Departament de Matemàtiques, Universitat Autónoma de Barcelona, Barcelona, Spain; Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| |
Collapse
|
14
|
Cuyàs E, Fernández-Arroyo S, Joven J, Menendez JA. Metformin targets histone acetylation in cancer-prone epithelial cells. Cell Cycle 2016; 15:3355-3361. [PMID: 27792453 DOI: 10.1080/15384101.2016.1249547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The usage of metabolic intermediates as substrates for chromatin-modifying enzymes provides a direct link between the metabolic state of the cell and epigenetics. Because this metabolism-epigenetics axis can regulate not only normal but also diseased states, it is reasonable to suggest that manipulating the epigenome via metabolic interventions may improve the clinical manifestation of age-related diseases including cancer. Using a model of BRCA1 haploinsufficiency-driven accelerated geroncogenesis, we recently tested the hypothesis that: 1.) metabolic rewiring of the mitochondrial biosynthetic nodes that overproduce epigenetic metabolites such as acetyl-CoA should promote cancer-related acetylation of histone H3 marks; 2.) metformin-induced restriction of mitochondrial biosynthetic capacity should manifest in the epigenetic regulation of histone acetylation. We now provide one of the first examples of how metformin-driven metabolic shifts such as reduction of the 2-carbon epigenetic substrate acetyl-CoA is sufficient to correct specific histone H3 acetylation marks in cancer-prone human epithelial cells. The ability of metformin to regulate mitonuclear communication and modulate the epigenetic landscape in genomically unstable pre-cancerous cells might guide the development of new metabolo-epigenetic strategies for cancer prevention and therapy.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- a ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology , Girona , Catalonia , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Catalonia , Spain
| | - Salvador Fernández-Arroyo
- c Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain, The Campus of International Excellence Southern Catalonia , Tarragona , Spain
| | - Jorge Joven
- c Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain, The Campus of International Excellence Southern Catalonia , Tarragona , Spain
| | - Javier A Menendez
- a ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology , Girona , Catalonia , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Girona , Catalonia , Spain
| |
Collapse
|
15
|
Naik PP, Das DN, Panda PK, Mukhopadhyay S, Sinha N, Praharaj PP, Agarwal R, Bhutia SK. Implications of cancer stem cells in developing therapeutic resistance in oral cancer. Oral Oncol 2016; 62:122-135. [PMID: 27865365 DOI: 10.1016/j.oraloncology.2016.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/05/2016] [Accepted: 10/15/2016] [Indexed: 12/13/2022]
Abstract
Conventional therapeutics are often frequented with recurrences, refraction and regimen resistance in oral cavity cancers which are predominantly manifested by cancer stem cells (CSCs). During oncoevolution, cancer cells may undergo structural and functional reprogramming wherein they evolve as highly tolerant CSC phenotypes with greater survival advantages. The CSCs possess inherent and exclusive properties including self-renewal, hierarchical differentiation, and tumorigenicity that serve as the basis of chemo-radio-resistance in oral cancer. However, the key mechanisms underlying the CSC-mediated therapy resistance need to be further elucidated. A spectrum of dysfunctional cellular pathways including the developmental signaling, apoptosis, autophagy, cell cycle regulation, DNA damage responses and epigenetic regulations protect the CSCs from conventional therapies. Moreover, tumor niche shelters CSCs and creates an immunosuppressive environment favoring the survival of CSCs. Maintenance of lower redox status, epithelial-to-mesenchymal transition (EMT), metabolic reprogramming and altered drug responses are the accessory features that aid in the process of chemo-radio-resistance in oral CSCs. This review deals with the functional and molecular basis of cancer cell pluripotency-associated resistance highlighting the abrupt fundamental cellular processes; targeting these events may hold a great promise in the successful treatment of oral cancer.
Collapse
Affiliation(s)
- Prajna Paramita Naik
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Durgesh Nandini Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | | | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO, United States.
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
16
|
Corominas-Faja B, Vellon L, Cuyàs E, Buxó M, Martin-Castillo B, Serra D, García J, Lupu R, Menendez JA. Clinical and therapeutic relevance of the metabolic oncogene fatty acid synthase in HER2+ breast cancer. Histol Histopathol 2016; 32:687-698. [PMID: 27714708 DOI: 10.14670/hh-11-830] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fatty acid synthase (FASN) is a key lipogenic enzyme for de novo fatty acid biosynthesis and a druggable metabolic oncoprotein that is activated in most human cancers. We evaluated whether the HER2-driven lipogenic phenotype might represent a biomarker for sensitivity to pharmacological FASN blockade. A majority of clinically HER2-positive tumors were scored as FASN overexpressors in a series of almost 200 patients with invasive breast carcinoma. Re-classification of HER2-positive breast tumors based on FASN gene expression predicted a significantly inferior relapse-free and distant metastasis-free survival in HER2+/FASN+ patients. Notably, non-tumorigenic MCF10A breast epithelial cells engineered to overexpress HER2 upregulated FASN gene expression, and the FASN inhibitor C75 abolished HER2-induced anchorage-independent growth and survival. Furthermore, in the presence of high concentrations of C75, HER2-negative MCF-7 breast cancer cells overexpressing HER2 (MCF-7/HER2) had significantly higher levels of apoptosis than HER2-negative cells. Finally, C75 at non-cytotoxic concentrations significantly reduced the capacity of MCF-7/HER2 cells to form mammospheres, an in vitro indicator of cancer stem-like cells. Collectively, our findings strongly suggest that the HER2-FASN lipogenic axis delineates a group of breast cancer patients that might benefit from treatment with therapeutic regimens containing FASN inhibitors.
Collapse
Affiliation(s)
- Bruna Corominas-Faja
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Luciano Vellon
- IBYME, CONICET-Laboratorio de Immunohematología, Buenos Aires, Argentina
| | - Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Maria Buxó
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Begoña Martin-Castillo
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Unit of Clinical Research, Catalan Institute of Oncology, Girona, Spain
| | - Dolors Serra
- Department of Biochemistry and Molecular Biology, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi García
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Departament de Química Orgànica, Facultat de Química, Institut de Biomedicina de la UB (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Ruth Lupu
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Rochester, MN, USA.,Mayo Clinic Cancer Center, Rochester, MN, USA.
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
17
|
Abstract
The Nobel prized discovery of nuclear reprogramming is swiftly providing mechanistic evidence of a role for metabolism in the generation of cancer stem cells (CSC). Traditionally, the metabolic demands of tumors have been viewed as drivers of the genetic programming detected in cancer tissues. Beyond the energetic requirements of specific cancer cell states, it is increasingly recognized that metabolism per se controls epi-transcriptional networks to dictate cancer cell fate, i.e., metabolism can define CSC. Here I review the CSC-related metabolic features found in induced pluripotent stem (iPS) cells to provide an easily understandable framework in which the infrastructure and functioning of cellular metabolism might control the efficiency and kinetics of reprogramming in the re-routing of non-CSC to CSC-like cellular states. I suggest exploring how metabolism-dependent regulation of epigenetics can play a role in directing CSC states beyond conventional energetic demands of stage-specific cancer cell states, opening a new dimension of cancer in which the "physiological state" of CSC might be governed not only by cell-autonomous cues but also by local micro-environmental and systemic metabolo-epigenetic interactions. Forthcoming studies should decipher how specific metabolites integrate and mediate the overlap between the CSC-intrinsic "micro-epigenetics" and the "upstream" local and systemic "macro-epigenetics," thus paving the way for targeted epigenetic regulation of CSCs through metabolic modulation including "smart foods" or systemic "metabolic nichotherapies."
Collapse
Affiliation(s)
- Javier A Menendez
- a Metabolism & Cancer Group; Translational Research Laboratory ; Catalan Institute of Oncology ; Girona , Spain.,b Molecular Oncology Group ; Girona Biomedical Research Institute ; Girona , Spain
| |
Collapse
|
18
|
Iglesias JM, Gumuzio J, Martin AG. Linking Pluripotency Reprogramming and Cancer. Stem Cells Transl Med 2016; 6:335-339. [PMID: 28191771 PMCID: PMC5442824 DOI: 10.5966/sctm.2015-0225] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/04/2015] [Indexed: 12/26/2022] Open
Abstract
Tumor development and the generation of induced pluripotent stem cells are highly comparable processes with striking similarities. Cellular plasticity is inherent to tumor evolution, rendering cells that acquire a stem cell-like phenotype, for which Sox2 activation has proved instrumental for the plastic acquisition of stemness properties in tumor cells. Understanding the molecular mechanisms underlying both events might uncover novel approaches for the development of anticancer therapeutics and constitute model systems for understanding tumor generation and ensuring the biosafety of cell-based therapies. Stem Cells Translational Medicine 2017;6:335-339.
Collapse
|
19
|
Martin-Castillo B, Lopez-Bonet E, Cuyàs E, Viñas G, Pernas S, Dorca J, Menendez JA. Cancer stem cell-driven efficacy of trastuzumab (Herceptin): towards a reclassification of clinically HER2-positive breast carcinomas. Oncotarget 2016; 6:32317-38. [PMID: 26474458 PMCID: PMC4741696 DOI: 10.18632/oncotarget.6094] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/24/2015] [Indexed: 12/21/2022] Open
Abstract
Clinically HER2+ (cHER2+) breast cancer (BC) can no longer be considered a single BC disease entity in terms of trastuzumab responsiveness. Here we propose a framework for predicting the response of cHER2+ to trastuzumab that integrates the molecular distinctions of intrinsic BC subtypes with recent knowledge on cancer stem cell (CSC) biology. First, we consider that two interchangeable populations of epithelial-like, aldehyde dehydrogenase (ALDH)-expressing and mesenchymal-like, CD44+CD24-/low CSCs can be found in significantly different proportions across all intrinsic BC subtypes. Second, we overlap all the intrinsic subtypes across cHER2+ BC to obtain a continuum of mixed phenotypes in which one extreme exhibits a high identity with ALDH+ CSCs and the other extreme exhibits a high preponderance of CD44+CD24-/low CSCs. The differential enrichment of trastuzumab-responsive ALDH+ CSCs versus trastuzumab-refractory CD44+CD24-/low CSCs can explain both the clinical behavior and the primary efficacy of trastuzumab in each molecular subtype of cHER2+ (i.e., HER2-enriched/cHER2+, luminal A/cHER2+, luminal B/cHER2+, basal/cHER2+, and claudin-low/cHER2+). The intrinsic plasticity determining the epigenetic ability of cHER2+ tumors to switch between epithelial and mesenchymal CSC states will vary across the continuum of mixed phenotypes, thus dictating their intratumoral heterogeneity and, hence, their evolutionary response to trastuzumab. Because CD44+CD24-/low mesenchymal-like CSCs distinctively possess a highly endocytic activity, the otherwise irrelevant HER2 can open the door to a type of "Trojan horse" approach by employing antibody-drug conjugates such as T-DM1, which will allow a rapid and CSC-targeted delivery of cytotoxic drugs to therapeutically manage trastuzumab-unresponsive basal/cHER2+ BC. Contrary to the current dichotomous model used clinically, our model proposes that a reclassification of cHER2+ tumors based on the spectrum of molecular BC subtypes might inform on their CSC-determined sensitivity to trastuzumab, thus providing a better delineation of the predictive value of cHER2+ in BC by incorporating CSCs-driven intra-tumor heterogeneity into clinical decisions.
Collapse
Affiliation(s)
- Begoña Martin-Castillo
- Unit of Clinical Research, Catalan Institute of Oncology, Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Eugeni Lopez-Bonet
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona, Catalonia, Spain
| | - Elisabet Cuyàs
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Gemma Viñas
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Department of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Sonia Pernas
- Department of Medical Oncology, Breast Unit, Catalan Institute of Oncology-Hospital Universitari de Bellvitge-Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Joan Dorca
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Department of Medical Oncology, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Javier A Menendez
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain
| |
Collapse
|
20
|
Zucha MA, Wu ATH, Lee WH, Wang LS, Lin WW, Yuan CC, Yeh CT. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer. Oncotarget 2016; 6:13255-68. [PMID: 26036311 PMCID: PMC4537012 DOI: 10.18632/oncotarget.3658] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/28/2015] [Indexed: 01/06/2023] Open
Abstract
According to a Prognoscan database, upregulation of Bruton's tyrosine kinase (Btk) is associated with low overall survival in ovarian cancer patients. We found that spheroids-forming ovarian cancer cell, which highly expressed cancer stem-like cell (CSC) markers and Btk, were cisplatin resistant. We next treated CSCs and non-CSCs by a combination of ibrutinib and cisplatin. We found that chemoresistance was dependent on Btk and JAK2/STAT3, which maintained CSC by inducing Sox-2 and prosurvival genes. We suggest that addition of ibrutinib to cisplatin may improve treatment outcome in ovarian cancer.
Collapse
Affiliation(s)
- Muhammad Ary Zucha
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Gadjah Mada University-Sardjito Central Hospital, Yogyakarta, Indonesia
| | - Alexander T H Wu
- Graduate Institute of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Translational Research Laboratory, Cancer Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | - Liang-Shun Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wan-Wan Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Chung Yuan
- Obstetrics and Gynecology Department, Shuang-Ho Hospital, Taipei, Taiwan
| | - Chi-Tai Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Cuyàs E, Fernández-Arroyo S, Corominas-Faja B, Rodríguez-Gallego E, Bosch-Barrera J, Martin-Castillo B, De Llorens R, Joven J, Menendez JA. Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype. Oncotarget 2016; 6:12279-96. [PMID: 25980580 PMCID: PMC4494938 DOI: 10.18632/oncotarget.3733] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/11/2015] [Indexed: 02/07/2023] Open
Abstract
Metabolic flexibility might be particularly constrained in tumors bearing mutations in isocitrate dehydrogenase 1 (IDH1) leading to the production of the oncometabolite 2-hydroxygluratate (2HG). To test the hypothesis that IDH1 mutations could generate metabolic vulnerabilities for therapeutic intervention, we utilized an MCF10A cell line engineered with an arginine-to-histidine conversion at position 132 (R132H) in the catalytic site of IDH1, which equips the enzyme with a neomorphic α-ketoglutarate to 2HG reducing activity in an otherwise isogenic background. IDH1 R132H/+ and isogenic IDH1 +/+ parental cells were screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput Phenotype MicroArrayplatform comprising >300 nutrients. A radical remodeling of the metabotype occurred in cells carrying the R132H mutation since they presented a markedly altered ability to utilize numerous carbon catabolic fuels. A mitochondria toxicity-screening modality confirmed a severe inability of IDH1-mutated cells to use various carbon substrates that are fed into the electron transport chain at different points. The mitochondrial biguanide poisons, metformin and phenformin, further impaired the intrinsic weakness of IDH1-mutant cells to use certain carbon-energy sources. Additionally, metabolic reprogramming of IDH1-mutant cells increased their sensitivity to metformin in assays of cell proliferation, clonogenic potential, and mammosphere formation. Targeted metabolomics studies revealed that the ability of metformin to interfere with the anaplerotic entry of glutamine into the tricarboxylic acid cycle could explain the hypersensitivity of IDH1-mutant cells to biguanides. Moreover, synergistic interactions occurred when metformin treatment was combined with the selective R132H-IDH1 inhibitor AGI-5198. Together, these results suggest that therapy involving the simultaneous targeting of metabolic vulnerabilities with metformin, and 2HG overproduction with mutant-selective inhibitors (AGI-5198-related AG-120 [Agios]), might represent a worthwhile avenue of exploration in the treatment of IDH1-mutated tumors.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Catalonia. Spain
| | - Bruna Corominas-Faja
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Esther Rodríguez-Gallego
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Catalonia. Spain
| | - Joaquim Bosch-Barrera
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain
| | - Begoña Martin-Castillo
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain.,Clinical Research Unit, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain
| | - Rafael De Llorens
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Catalonia, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Catalonia. Spain
| | - Javier A Menendez
- Metabolism and Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| |
Collapse
|
22
|
Menendez JA, Corominas-Faja B, Cuyàs E, García MG, Fernández-Arroyo S, Fernández AF, Joven J, Fraga MF, Alarcón T. Oncometabolic Nuclear Reprogramming of Cancer Stemness. Stem Cell Reports 2016; 6:273-83. [PMID: 26876667 PMCID: PMC4788754 DOI: 10.1016/j.stemcr.2015.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022] Open
Abstract
By impairing histone demethylation and locking cells into a reprogramming-prone state, oncometabolites can partially mimic the process of induced pluripotent stem cell generation. Using a systems biology approach, combining mathematical modeling, computation, and proof-of-concept studies with live cells, we found that an oncometabolite-driven pathological version of nuclear reprogramming increases the speed and efficiency of dedifferentiating committed epithelial cells into stem-like states with only a minimal core of stemness transcription factors. Our biomathematical model, which introduces nucleosome modification and epigenetic regulation of cell differentiation genes to account for the direct effects of oncometabolites on nuclear reprogramming, demonstrates that oncometabolites markedly lower the “energy barriers” separating non-stem and stem cell attractors, diminishes the average time of nuclear reprogramming, and increases the size of the basin of attraction of the macrostate occupied by stem cells. These findings establish the concept of oncometabolic nuclear reprogramming of stemness as a bona fide metabolo-epigenetic mechanism for generation of cancer stem-like cells. Oncometabolites facilitate the reprogramming process evoked by stemness factors Oncometabolites lower the epigenetic barriers to nuclear reprogramming Cancer stem-like states arise through oncometabolic nuclear reprogramming phenomena Oncometabolic regulation of epigenetics can drive stemness in cancer tissues
Collapse
Affiliation(s)
- Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Catalonia, Spain; Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Catalonia, Spain; Girona Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí i Julià, Edifici M2, E-17190 Salt, Girona, Spain.
| | - Bruna Corominas-Faja
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Catalonia, Spain
| | - Elisabet Cuyàs
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Catalonia, Spain
| | - María G García
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, 43201 Reus, Spain
| | - Agustín F Fernández
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Campus of International Excellence Southern Catalonia, 43201 Reus, Spain
| | - Mario F Fraga
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, 33006 Oviedo, Spain; Nanomaterials and Nanotechnology Research Center (CINN-CSIC), 33940 San Martín del Rey Aurelio, Spain
| | - Tomás Alarcón
- Institució Catalana d'Estudis i Recerca Avançats (ICREA), 08010 Barcelona, Spain; Computational & Mathematical Biology Research Group, Centre de Recerca Matemàtica (CRM), 08193 Barcelona, Spain; Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Barcelona Graduate School of Mathematics (BGSMath), 08193 Barcelona, Spain; Centre de Recerca Matemàtica (CRM), Office 29 (C3b/140), Edifici C, Campus de Bellaterra, E-08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
23
|
Fernández-Arroyo S, Cuyàs E, Bosch-Barrera J, Alarcón T, Joven J, Menendez JA. Activation of the methylation cycle in cells reprogrammed into a stem cell-like state. Oncoscience 2016; 2:958-967. [PMID: 26909364 PMCID: PMC4735514 DOI: 10.18632/oncoscience.280] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/24/2015] [Indexed: 02/06/2023] Open
Abstract
Generation of induced pluripotent stem (iPS) cells and cancer biogenesis share similar metabolic switches. Most studies have focused on how the establishment of a cancer-like glycolytic phenotype is necessary for the optimal routing of somatic cells for achieving stemness. However, relatively little effort has been dedicated towards elucidating how one-carbon (1C) metabolism is retuned during acquisition of stem cell identity. Here we used ultra-high pressure liquid chromatography coupled to an electrospray ionization source and a triple-quadrupole mass spectrometer [UHPLC-ESI-QqQ-MS/MS] to quantitatively examine the methionine/folate bi-cyclic 1C metabolome during nuclear reprogramming of somatic cells into iPS cells. iPS cells optimize the synthesis of the universal methyl donor S-adenosylmethionine (SAM), apparently augment the ability of the redox balance regulator NADPH in SAM biosynthesis, and greatly increase their methylation potential by triggering a high SAM:S-adenosylhomocysteine (SAH) ratio. Activation of the methylation cycle in iPS cells efficiently prevents the elevation of homocysteine (Hcy), which could alter global DNA methylation and induce mitochondrial toxicity, oxidative stress and inflammation. In this regard, the methyl donor choline is also strikingly accumulated in iPS cells, suggesting perhaps an overactive intersection of the de novo synthesis of choline with the methionine-Hcy cycle. Activation of methylogenesis and maintenance of an optimal SAM:Hcy ratio might represent an essential function of 1C metabolism to provide a labile pool of methyl groups and NADPH-dependent redox products required for successfully establishing and maintaining an embryonic-like DNA methylation imprint in stem cell states.
Collapse
Affiliation(s)
- Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Spain
| | - Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology (ICO), Girona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joaquim Bosch-Barrera
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Department of Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Tomás Alarcón
- Computational and Mathematical Biology Research Group, Centre de Recerca Matemàtica (CRM), Barcelona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB), Institut d'Investigació Sanitaria Pere i Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Spain
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology (ICO), Girona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
24
|
Paul B, Barnes S, Demark-Wahnefried W, Morrow C, Salvador C, Skibola C, Tollefsbol TO. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics 2015; 7:112. [PMID: 26478753 PMCID: PMC4609101 DOI: 10.1186/s13148-015-0144-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modulation of gene activity occurs in response to non-genetic factors such as body weight status, physical activity, dietary factors, and environmental toxins. In addition, each of these factors is thought to affect and be affected by the gut microbiome. A primary mechanism that links these various factors together in mediating control of gene expression is the production of metabolites that serve as critical cofactors and allosteric regulators of epigenetic processes. Here, we review the involvement of the gut microbiota and its interactions with dietary factors, many of which have known cellular bioactivity, focusing on particular epigenetic processes affected and the influence they have on human health and disease, particularly cancer and response to treatment. Advances in DNA sequencing have expanded the capacity for studying the microbiome. Combining this with rapidly improving techniques to measure the metabolome provides opportunities to understand complex relationships that may underlie the development and progression of cancer as well as treatment-related sequelae. Given broad reaching and fundamental biology, both at the cellular and organismal levels, we propose that interactive research programs, which utilize a wide range of mutually informative experimental model systems—each one optimally suited for answering particular questions—provide the best path forward for breaking ground on new knowledge and ultimately understanding the epigenetic significance of the gut microbiome and its response to dietary factors in cancer prevention and therapy.
Collapse
Affiliation(s)
- Bidisha Paul
- Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294-1170 USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Wendy Demark-Wahnefried
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Casey Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Carolina Salvador
- Division of Medical Oncology/Hematology, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL USA
| | - Christine Skibola
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294-1170 USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
25
|
Cheng Z, Li X, Ding J. Characteristics of liver cancer stem cells and clinical correlations. Cancer Lett 2015; 379:230-8. [PMID: 26272183 DOI: 10.1016/j.canlet.2015.07.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 02/07/2023]
Abstract
Liver cancer is an aggressive malignant disease with a poor prognosis. Patients with liver cancer are usually diagnosed at an advanced stage and thus miss the opportunity for surgical resection. Chemotherapy and radiofrequency ablation, which target tumor bulk, have exhibited limited therapeutic efficacy to date. Liver cancer stem cells (CSCs) are a small subset of undifferentiated cells existed in liver cancer, which are considered to be responsible for liver cancer initiation, metastasis, relapse and chemoresistance. Elucidating liver CSC characteristics and disclosing their regulatory mechanism might not only deepen our understanding of the pathogenesis of liver cancer but also facilitate the development of diagnostic, prognostic and therapeutic approaches to improve the clinical management of liver cancer. In this review, we will summarize the recent advances in liver CSC research in terms of the origin, identification, regulation and clinical correlation.
Collapse
Affiliation(s)
- Zhuo Cheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center of Liver Cancer, Shanghai 200433, China
| | - Xiaofeng Li
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center of Liver Cancer, Shanghai 200433, China
| | - Jin Ding
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center of Liver Cancer, Shanghai 200433, China.
| |
Collapse
|