1
|
Cacina C, Ulu E, Arikan S, Surmen ST, Yaylim I. The Investigation of MAPK7 Gene Variations in Colorectal Cancer Risk. In Vivo 2023; 37:644-648. [PMID: 36881097 PMCID: PMC10026633 DOI: 10.21873/invivo.13123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND/AIM Mitogen-activated protein kinases (MAPKs) are important regulatory molecules, which have essential roles in physiology and pathology. In the present study, we examined the possible correlation between the MAPK7 gene and colorectal cancer risk in the Turkish population. MATERIALS AND METHODS A total of 100 human DNA samples (50 colorectal cancer patients and 50 healthy individuals) were sequenced using next-generation sequencing to define the potential genetic variations in the MAPK7 gene. RESULTS Five genetic variations (MAPK7; rs2233072, rs2233076, rs181138364, rs34984998, rs148989290) were detected in our study group. The G (variant) allele of the MAPK7; rs2233072 (T>G) gene polymorphism was found in 76% of colorectal cancer cases, and 66% of controls. The prevalence of rs2233076, rs181138364, rs34984998, and rs148989290 gene variations was quite rare in the subjects and no significant association in terms of genotype and allele frequencies was observed between the cases and controls. CONCLUSION No statistically significant correlation between the MAP7 kinase gene variations and colorectal cancer risk was observed. This is the first investigation in the Turkish population that may initiate additional studies in larger populations to analyze the effect of MAPK7 gene on the colorectal cancer risk.
Collapse
Affiliation(s)
- Canan Cacina
- Institute of Aziz Sancar Experimental Medicine, Department of Molecular Medicine, Istanbul University, Istanbul, Turkey;
| | - Elif Ulu
- Institute of Aziz Sancar Experimental Medicine, Department of Molecular Medicine, Istanbul University, Istanbul, Turkey
| | - Soykan Arikan
- Istanbul Education and Research Hospital Surgery Clinic, Istanbul, Turkey
| | - Saime Turan Surmen
- Institute of Aziz Sancar Experimental Medicine, Department of Molecular Medicine, Istanbul University, Istanbul, Turkey
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Ilhan Yaylim
- Institute of Aziz Sancar Experimental Medicine, Department of Molecular Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Effect of Extracellular Signal-Regulated Protein Kinase 5 Inhibition in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23158448. [PMID: 35955582 PMCID: PMC9369143 DOI: 10.3390/ijms23158448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Extracellular signal-regulating kinase 5 (ERK5) has been implicated in many cellular functions, including survival, proliferation, and vascularization. Our objectives were to examine the expression and effect of ERK5 in clear cell renal cell carcinoma (ccRCC). (2) Methods: The expressions of ERK5 and its regulating micro-RNA miR-143 were investigated using immunohistochemistry and quantitative reverse transcriptase PCR in surgical specimens of ccRCC patients. With invitro and in vivo studies, we used pharmacologic ERK5 inhibitor XMD8-92, RNA interference, pre-miR-143 transduction, Western blotting, MTS assay, apoptosis assay, and subcutaneous xenograft model. (3) Results: A strong ERK5 expression in surgical specimen was associated with high-grade (p = 0.01), high-recurrence free rate (p = 0.02), and high cancer-specific survival (p = 0.03). Expression levels of ERK5 and miR-143 expression level were correlated (p = 0.049). Pre-miR-143 transduction into ccRCC cell A498 suppressed ERK5 expression. ERK5 inhibition enhanced cyclin-dependent kinase inhibitor p21 expression and decreased anti-apoptotic molecules BCL2, resulting in decreased cell proliferation and survival both in ccRCC and endothelial cells. In the xenograft model, ERK5 inhibitor XMD8-92 suppressed tumor growth. (4) Conclusions: ERK5 is regulated by miR-143, and ERK5 inhibition is a promising target for ccRCC treatment.
Collapse
|
3
|
Cook SJ, Lochhead PA. ERK5 Signalling and Resistance to ERK1/2 Pathway Therapeutics: The Path Less Travelled? Front Cell Dev Biol 2022; 10:839997. [PMID: 35903549 PMCID: PMC9315226 DOI: 10.3389/fcell.2022.839997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/13/2022] [Indexed: 12/01/2022] Open
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is frequently de-regulated in human cancer. Melanoma in particular exhibits a high incidence of activating BRAFV600E/K and NRASQ61L/K mutations and such cells are addicted to the activity of these mutant oncoproteins. As a result three different BRAF inhibitors (BRAFi) have now been approved for BRAFV600E/K- mutant melanoma and have transformed the treatment of this disease. Despite this, clinical responses are typically transient as tumour cells develop resistance. These resistance mechanisms frequently involve reinstatement of ERK1/2 signalling and BRAFi are now deployed in combination with one of three approved MEK1/2 inhibitors (MEKi) to provide more durable, but still transient, clinical responses. Furthermore, inhibitors to ERK1/2 (ERK1/2i) have also been developed to counteract ERK1/2 signalling. However, recent studies have suggested that BRAFi/MEKi and ERK1/2i resistance can arise through activation of a parallel signalling pathway leading to activation of ERK5, an unusual protein kinase that contains both a kinase domain and a transcriptional transactivation domain. Here we review the evidence supporting ERK5 as a mediator of BRAFi/MEKi and ERK1/2i resistance. We also review the challenges in targeting ERK5 signalling with small molecules, including paradoxical activation of the transcriptional transactivation domain, and discuss new therapeutic modalities that could be employed to target ERK5.
Collapse
Affiliation(s)
- Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Pamela A. Lochhead
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
4
|
Li F, Peng X, Zhou J, Chen Q, Chen Y. Aberrant MEK5 signalling promotes clear cell renal cell carcinoma development via mTOR activation. J Cancer Res Clin Oncol 2022; 148:3257-3266. [PMID: 35713705 DOI: 10.1007/s00432-022-04058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE This study was designed to evaluate the role and expression of MEK5 signalling in clear cell renal cell carcinoma (ccRCC) and to determine the relevance of MEK5 and mTOR signalling in ccRCC. METHODS The expression of MEK5 was compared between ccRCC and normal tissues using the ONCOMINE and TCGA databases. MEK5 expression was evaluated in 14 human ccRCC samples. CCK8, wound-healing, and clone formation assays were performed to examine the cell proliferation, migration, and clone formation abilities of ccRCC cells treated with MEK5 and the inhibitor BIX02189. Furthermore, Western blotting was performed to verify the regulation and influence of MEK5 on the mTOR signalling pathway. Finally, a murine subcutaneous tumour model was constructed, and the effect and safety of BIX02189 were evaluated in vivo. RESULTS The ONCOMINE and TCGA databases indicated that MEK5 expression in ccRCC was significantly higher than that in normal tissues, which was further confirmed in clinical specimens. MEK5 knockdown markedly inhibited ccRCC cell proliferation, colony formation, and migration, whereas MEK5 overexpression resulted in the opposite results. Western blotting revealed that overexpression of MEK5 could further activate the mTOR signalling pathway. Moreover, the MEK5 inhibitor BIX02189 significantly inhibited cell proliferation, arrested the cell cycle in the G0/G1 phase, induced apoptosis, and effectively inhibited cell migration and clone formation. BIX02189 also showed an excellent antitumor effect and a favourable safety profile in murine models. CONCLUSIONS MEK5 expression was aberrantly increased in ccRCC, which activated the mTOR signalling pathway and regulated cell proliferation, cell cycle progression, migration, and clone formation in ccRCC. Targeted inhibition of MEK5 represents a promising new strategy in patients with ccRCC.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China
| | - Xufeng Peng
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China
| | - Jiale Zhou
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China
| | - Qi Chen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China.
| | - Yonghui Chen
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1630 Dong Fang Road, Shanghai, 200127, China.
| |
Collapse
|
5
|
Wang L, Ji X, Mao C, Yu R. BAY-885, a mitogen-activated protein kinase kinase 5 inhibitor, induces apoptosis by regulating the endoplasmic reticulum stress/Mcl-1/Bim pathway in breast cancer cells. Bioengineered 2022; 13:12888-12898. [PMID: 35609325 PMCID: PMC9275924 DOI: 10.1080/21655979.2022.2078557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
The mitogen-activated protein kinase kinase 5 (MEK5)/extracellular signal-regulated kinase 5 (ERK5) axis has been reported to promote tumorigenesis in breast cancer (BC). Therefore, targeting the MEK5/ERK5 axis is a potential strategy against BC. BAY-885 is a novel inhibitor of ERK5; however, to date, its anti-tumor effects in BC have not been investigated. This study aimed to assess the anti-tumor effects of BAY-885 in BC and identify its underlying mechanisms of action. Unlike other ERK5 inhibitors, which frequently failed to mimic ERK5 genetic ablation phenotypes, the BAY-885 treatment effectively recapitulated ERK5 depletion effects in BC cells. Results revealed that BAY-885 affected the viability and induced apoptosis in BC cells. Moreover, the BAY-885-mediated downregulation of myeloid cell leukemia-1 (Mcl-1) and upregulation of Bim were dependent on ERK5 inhibition. Furthermore, BAY-885 triggered activation of endoplasmic reticulum (ER) stress, which further led to the upregulation of Bim and downregulation of Mcl-1. ER stress was induced in an ERK5 inhibition-dependent manner. These findings suggested that BAY-885 induced apoptosis in BC cells via ER stress/Mcl-1/Bim axis, suggesting that BAY-885 may serve as a therapeutic agent for BC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Thyroid and Breast Surgery, Ningbo Medical Centre, the Affiliated Lihuili Hospital of Ningbo University, Ningbo
| | - Xiaochun Ji
- Department of Thyroid and Breast Surgery, Ningbo Medical Centre, the Affiliated Lihuili Hospital of Ningbo University, Ningbo
| | - Chenxiao Mao
- Department of Electronic Commerce, Zhejiang Fashion Institute of Technology, Ningbo
| | - Rui Yu
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo
| |
Collapse
|
6
|
Zhang J, Pearson AJ, Sabherwal N, Telfer BA, Ali N, Kan K, Xu Q, Zhang W, Chen F, Li S, Wang J, Gray NS, Risa-Ebrí B, Finegan KG, Cross MJ, Giurisato E, Whitmarsh AJ, Tournier C. Inhibiting ERK5 overcomes breast cancer resistance to anti-HER2 therapy by targeting the G1/S cell cycle transition. CANCER RESEARCH COMMUNICATIONS 2022; 2:131-145. [PMID: 36466034 PMCID: PMC7613885 DOI: 10.1158/2767-9764.crc-21-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Targeting the human epidermal growth factor receptor 2 (HER2) became a landmark in the treatment of HER2-driven breast cancer. Nonetheless, the clinical efficacy of anti-HER2 therapies can be short-lived and a significant proportion of patients ultimately develop metastatic disease and die. One striking consequence of oncogenic activation of HER2 in breast cancer cells is the constitutive activation of the extracellular-regulated protein kinase 5 (ERK5) through its hyperphosphorylation. In this study, we sought to decipher the significance of this unique molecular signature in promoting therapeutic resistance to anti-HER2 agents. We found that a small-molecule inhibitor of ERK5 suppressed the phosphorylation of the retinoblastoma protein (RB) in HER2 positive breast cancer cells. As a result, ERK5 inhibition enhanced the anti-proliferative activity of single-agent anti-HER2 therapy in resistant breast cancer cell lines by causing a G1 cell cycle arrest. Moreover, ERK5 knockdown restored the anti-tumor activity of the anti-HER2 agent lapatinib in human breast cancer xenografts. Taken together, these findings support the therapeutic potential of ERK5 inhibitors to improve the clinical benefit that patients receive from targeted HER2 therapies.
Collapse
Affiliation(s)
- Jingwei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Adam J Pearson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Nitin Sabherwal
- Division of Developmental Biology and Medicine, School of Medical Sciences, FBMH, University of Manchester, UK
| | - Brian A Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, FBMH, University of Manchester, UK
| | - Nisha Ali
- Manchester University NHS FT, Wythenshawe hospital, UK
| | - Karmern Kan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Qiuping Xu
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Wei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Fuhui Chen
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Shiyang Li
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, FBMH, University of Manchester, UK
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Blanca Risa-Ebrí
- Division of Pharmacy and Optometry, School of Health Sciences, FBMH, University of Manchester, UK
| | - Katherine G Finegan
- Division of Pharmacy and Optometry, School of Health Sciences, FBMH, University of Manchester, UK
| | - Michael J Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, UK
| | - Emanuele Giurisato
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK,Department of Biotechnology Chemistry and Pharmacy, University of Siena, Italy
| | - Alan J Whitmarsh
- Division of Molecular and Cellular Function, School of Biological Sciences, FBMH, University of Manchester, UK
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK,Corresponding author: Cathy Tournier, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK, Tel: +44 161 275 5417,
| |
Collapse
|
7
|
Clinical Significance and Regulation of ERK5 Expression and Function in Cancer. Cancers (Basel) 2022; 14:cancers14020348. [PMID: 35053510 PMCID: PMC8773716 DOI: 10.3390/cancers14020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.
Collapse
|
8
|
Bhatt AB, Wright TD, Barnes V, Chakrabarty S, Matossian MD, Lexner E, Ucar DA, Miele L, Flaherty PT, Burow ME, Cavanaugh JE. Diverse and converging roles of ERK1/2 and ERK5 pathways on mesenchymal to epithelial transition in breast cancer. Transl Oncol 2021; 14:101046. [PMID: 33761370 PMCID: PMC8020482 DOI: 10.1016/j.tranon.2021.101046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 11/27/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) is characterized by a loss of cell polarity, a decrease in the epithelial cell marker E-cadherin, and an increase in mesenchymal markers including the zinc-finger E-box binding homeobox (ZEB1). The EMT is also associated with an increase in cell migration and anchorage-independent growth. Induction of a reversal of the EMT, a mesenchymal to epithelial transition (MET), is an emerging strategy being explored to attenuate the metastatic potential of aggressive cancer types, such as triple-negative breast cancers (TNBCs) and tamoxifen-resistant (TAMR) ER-positive breast cancers, which have a mesenchymal phenotype. Patients with these aggressive cancers have poor prognoses, quick relapse, and resistance to most chemotherapeutic drugs. Overexpression of extracellular signal-regulated kinase (ERK) 1/2 and ERK5 is associated with poor patient survival in breast cancer. Moreover, TNBC and tamoxifen resistant cancers are unresponsive to most targeted clinical therapies and there is a dire need for alternative therapies. In the current study, we found that MAPK3, MAPK1, and MAPK7 gene expression correlated with EMT markers and poor overall survival in breast cancer patients using publicly available datasets. The effect of ERK1/2 and ERK5 pathway inhibition on MET was evaluated in MDA-MB-231, BT-549 TNBC cells, and tamoxifen-resistant MCF-7 breast cancer cells. Moreover, TU-BcX-4IC patient-derived primary TNBC cells were included to enhance the translational relevance of our study. We evaluated the effect of pharmacological inhibitors and lentivirus-induced activation or inhibition of the MEK1/2-ERK1/2 and MEK5-ERK5 pathways on cell morphology, E-cadherin, vimentin and ZEB1 expression. Additionally, the effects of pharmacological inhibition of trametinib and XMD8-92 on nuclear localization of ERK1/2 and ERK5, cell migration, proliferation, and spheroid formation were evaluated. Novel compounds that target the MEK1/2 and MEK5 pathways were used in combination with the AKT inhibitor ipatasertib to understand cell-specific responses to kinase inhibition. The results from this study will aid in the design of innovative therapeutic strategies that target cancer metastases.
Collapse
Affiliation(s)
- Akshita B Bhatt
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15219, USA
| | - Thomas D Wright
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15219, USA
| | - Van Barnes
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Suravi Chakrabarty
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Margarite D Matossian
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Erin Lexner
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15219, USA
| | - Deniz A Ucar
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Patrick T Flaherty
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jane E Cavanaugh
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15219, USA.
| |
Collapse
|
9
|
Matossian MD, Hoang VT, Burks HE, La J, Elliott S, Brock C, Rusch DB, Buechlein A, Nephew KP, Bhatt A, Cavanaugh JE, Flaherty PT, Collins-Burow BM, Burow ME. Constitutive activation of MEK5 promotes a mesenchymal and migratory cell phenotype in triple negative breast cancer. Oncoscience 2021; 8:64-71. [PMID: 34026925 PMCID: PMC8131078 DOI: 10.18632/oncoscience.535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited targeted therapeutic options. A defining feature of TNBC is the propensity to metastasize and acquire resistance to cytotoxic agents. Mitogen activated protein kinase (MAPK) and extracellular regulated kinase (ERK) signaling pathways have integral roles in cancer development and progression. While MEK5/ERK5 signaling drives mesenchymal and migratory cell phenotypes in breast cancer, the specific mechanisms underlying these actions remain under-characterized. To elucidate the mechanisms through which MEK5 regulates the mesenchymal and migratory phenotype, we generated stably transfected constitutively active MEK5 (MEK5-ca) TNBC cells. Downstream signaling pathways and candidate targets of MEK5-ca cells were based on RNA sequencing and confirmed using qPCR and Western blot analyses. MEK5 activation drove a mesenchymal cell phenotype independent of cell proliferation effects. Transwell migration assays demonstrated MEK5 activation significantly increased breast cancer cell migration. In this study, we provide supporting evidence that MEK5 functions through FRA-1 to regulate the mesenchymal and migratory phenotype in TNBC.
Collapse
Affiliation(s)
- Margarite D. Matossian
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
- These authors contributed equally to this work and are shared first authors
| | - Van T. Hoang
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
- These authors contributed equally to this work and are shared first authors
| | - Hope E. Burks
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
- These authors contributed equally to this work and are shared first authors
| | - Jacqueline La
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
- These authors contributed equally to this work and are shared first authors
| | - Steven Elliott
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
| | - Courtney Brock
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN
47405, USA
| | - Aaron Buechlein
- Medical Sciences Program, Indiana University School of Medicine-Bloomington,
Bloomington, IN 47405, USA
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University School of Medicine-Bloomington,
Bloomington, IN 47405, USA
| | - Akshita Bhatt
- Department of Pharmacology, Duquesne University School of Pharmacy, Pittsburgh,
PA 15282, USA
| | - Jane E. Cavanaugh
- Department of Pharmacology, Duquesne University School of Pharmacy, Pittsburgh,
PA 15282, USA
| | - Patrick T. Flaherty
- Department of Medicinal Chemistry, Duquesne University School of Pharmacy,
Pittsburgh, PA 15282, USA
| | - Bridgette M. Collins-Burow
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
- Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Matthew E. Burow
- Department of Medicine, Division of Hematology and Oncology, Tulane University,
New Orleans, LA 70118, USA
| |
Collapse
|
10
|
Xu Q, Zhang J, Telfer BA, Zhang H, Ali N, Chen F, Risa B, Pearson AJ, Zhang W, Finegan KG, Ucar A, Giurisato E, Tournier C. The extracellular-regulated protein kinase 5 (ERK5) enhances metastatic burden in triple-negative breast cancer through focal adhesion protein kinase (FAK)-mediated regulation of cell adhesion. Oncogene 2021; 40:3929-3941. [PMID: 33981002 PMCID: PMC8195737 DOI: 10.1038/s41388-021-01798-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022]
Abstract
There is overwhelming clinical evidence that the extracellular-regulated protein kinase 5 (ERK5) is significantly dysregulated in human breast cancer. However, there is no definite understanding of the requirement of ERK5 in tumor growth and metastasis due to very limited characterization of the pathway in disease models. In this study, we report that a high level of ERK5 is a predictive marker of metastatic breast cancer. Mechanistically, our in vitro data revealed that ERK5 was critical for maintaining the invasive capability of triple-negative breast cancer (TNBC) cells through focal adhesion protein kinase (FAK) activation. Specifically, we found that phosphorylation of FAK at Tyr397 was controlled by a kinase-independent function of ERK5. Accordingly, silencing ERK5 in mammary tumor grafts impaired FAK phosphorylation at Tyr397 and suppressed TNBC cell metastasis to the lung without preventing tumor growth. Collectively, these results establish a functional relationship between ERK5 and FAK signaling in promoting malignancy. Thus, targeting the oncogenic ERK5-FAK axis represents a promising therapeutic strategy for breast cancer exhibiting aggressive clinical behavior.
Collapse
Affiliation(s)
- Qiuping Xu
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jingwei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Brian A Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nisha Ali
- Manchester University NHS FT, Wythenshawe hospital, Manchester, UK
| | - Fuhui Chen
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Blanca Risa
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Adam J Pearson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Wei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine G Finegan
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ahmet Ucar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emanuele Giurisato
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Bhatt AB, Patel S, Matossian MD, Ucar DA, Miele L, Burow ME, Flaherty PT, Cavanaugh JE. Molecular Mechanisms of Epithelial to Mesenchymal Transition Regulated by ERK5 Signaling. Biomolecules 2021; 11:biom11020183. [PMID: 33572742 PMCID: PMC7911413 DOI: 10.3390/biom11020183] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK5) is an essential regulator of cancer progression, tumor relapse, and poor patient survival. Epithelial to mesenchymal transition (EMT) is a complex oncogenic process, which drives cell invasion, stemness, and metastases. Activators of ERK5, including mitogen-activated protein kinase 5 (MEK5), tumor necrosis factor α (TNF-α), and transforming growth factor-β (TGF-β), are known to induce EMT and metastases in breast, lung, colorectal, and other cancers. Several downstream targets of the ERK5 pathway, such as myocyte-specific enhancer factor 2c (MEF2C), activator protein-1 (AP-1), focal adhesion kinase (FAK), and c-Myc, play a critical role in the regulation of EMT transcription factors SNAIL, SLUG, and β-catenin. Moreover, ERK5 activation increases the release of extracellular matrix metalloproteinases (MMPs), facilitating breakdown of the extracellular matrix (ECM) and local tumor invasion. Targeting the ERK5 signaling pathway using small molecule inhibitors, microRNAs, and knockdown approaches decreases EMT, cell invasion, and metastases via several mechanisms. The focus of the current review is to highlight the mechanisms which are known to mediate cancer EMT via ERK5 signaling. Several therapeutic approaches that can be undertaken to target the ERK5 pathway and inhibit or reverse EMT and metastases are discussed.
Collapse
Affiliation(s)
- Akshita B. Bhatt
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| | - Saloni Patel
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Margarite D. Matossian
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Deniz A. Ucar
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (D.A.U.); (L.M.)
| | - Matthew E. Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.D.M.); (M.E.B.)
| | - Patrick T. Flaherty
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA; (S.P.); (P.T.F.)
| | - Jane E. Cavanaugh
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
- Correspondence: ; Tel.: +1-412-760-3503
| |
Collapse
|
12
|
Targeted Avenues for Cancer Treatment: The MEK5-ERK5 Signaling Pathway. Trends Mol Med 2020; 26:394-407. [PMID: 32277933 DOI: 10.1016/j.molmed.2020.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Twenty years have passed since extracellular signal-regulated kinase 5 (ERK5) and its upstream activator, mitogen-activated protein kinase 5 (MEK5), first emerged onto the cancer research scene. Although we have come a long way in defining the liaison between dysregulated MEK5-ERK5 signaling and the pathogenesis of epithelial and nonepithelial malignancies, selective targeting of this unique pathway remains elusive. Here, we provide an updated review of the existing evidence for a correlation between aberrant MEK5-ERK5 (phospho)proteomic/transcriptomic profiles, aggressive cancer states, and poor patient outcomes. We then focus on emerging insights from preclinical models regarding the relevance of upregulated ERK5 activity in promoting tumor growth, metastasis, therapy resistance, undifferentiated traits, and immunosuppression, highlighting the opportunities, prospects, and challenges of selectively blocking this cascade for antineoplastic treatment and chemosensitization.
Collapse
|
13
|
Søgaard CK, Nepal A, Petrovic V, Sharma A, Liabakk NB, Steigedal TS, Otterlei M. Targeting the non-canonical roles of PCNA modifies and increases the response to targeted anti-cancer therapy. Oncotarget 2019; 10:7185-7197. [PMID: 31921382 PMCID: PMC6944453 DOI: 10.18632/oncotarget.27267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Receptor tyrosine kinases (RTKs), such as HER2 and/or EGFR are important therapeutic targets in multiple cancer cells. Low and/or short response to targeted therapies are often due to activation of compensatory signaling pathways, and therefore a combination of kinase inhibitors with other anti-cancer therapies have been proposed as promising strategies. PCNA is recently shown to have non-canonical cytosolic roles, and targeting PCNA with a cell-penetrating peptide containing the PCNA-interacting motif APIM is shown to mediate changes in central signaling pathways such as PI3K/Akt and MAPK, acting downstream of multiple RTKs. In this study, we show how targeting PCNA increased the anti-cancer activity of EGFR/HER2/VEGFR inhibition in vitro as well as in vivo. The combination treatment resulted in reduced tumor load and increased the survival compared to either single agent treatments. The combination treatment affected multiple cellular signaling responses not seen by EGFR/HER2/VEGFR inhibition alone, and changes were seen in pathways determining protein degradation, ER-stress, apoptosis and autophagy. Our results suggest that targeting the non-canonical roles of PCNA in cellular signaling have the potential to improve targeted therapies.
Collapse
Affiliation(s)
- Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anala Nepal
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Voin Petrovic
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Animesh Sharma
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU, Trondheim, Norway
| | - Nina-Beate Liabakk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tonje S Steigedal
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,APIM Therapeutics A/S, Trondheim, Norway
| |
Collapse
|
14
|
Myers SM, Miller DC, Molyneux L, Arasta M, Bawn RH, Blackburn TJ, Cook SJ, Edwards N, Endicott JA, Golding BT, Griffin RJ, Hammonds T, Hardcastle IR, Harnor SJ, Heptinstall AB, Lochhead PA, Martin MP, Martin NC, Newell DR, Owen PJ, Pang LC, Reuillon T, Rigoreau LJM, Thomas HD, Tucker JA, Wang LZ, Wong AC, Noble MEM, Wedge SR, Cano C. Identification of a novel orally bioavailable ERK5 inhibitor with selectivity over p38α and BRD4. Eur J Med Chem 2019; 178:530-543. [PMID: 31212132 DOI: 10.1016/j.ejmech.2019.05.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 11/18/2022]
Abstract
Extracellular regulated kinase 5 (ERK5) signalling has been implicated in driving a number of cellular phenotypes including endothelial cell angiogenesis and tumour cell motility. Novel ERK5 inhibitors were identified using high throughput screening, with a series of pyrrole-2-carboxamides substituted at the 4-position with an aroyl group being found to exhibit IC50 values in the micromolar range, but having no selectivity against p38α MAP kinase. Truncation of the N-substituent marginally enhanced potency (∼3-fold) against ERK5, but importantly attenuated inhibition of p38α. Systematic variation of the substituents on the aroyl group led to the selective inhibitor 4-(2-bromo-6-fluorobenzoyl)-N-(pyridin-3-yl)-1H-pyrrole-2-carboxamide (IC50 0.82 μM for ERK5; IC50 > 120 μM for p38α). The crystal structure (PDB 5O7I) of this compound in complex with ERK5 has been solved. This compound was orally bioavailable and inhibited bFGF-driven Matrigel plug angiogenesis and tumour xenograft growth. The selective ERK5 inhibitor described herein provides a lead for further development into a tool compound for more extensive studies seeking to examine the role of ERK5 signalling in cancer and other diseases.
Collapse
Affiliation(s)
- Stephanie M Myers
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Duncan C Miller
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Lauren Molyneux
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Mercedes Arasta
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Ruth H Bawn
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Timothy J Blackburn
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Noel Edwards
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jane A Endicott
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Bernard T Golding
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Roger J Griffin
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Tim Hammonds
- Cancer Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - Ian R Hardcastle
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Suzannah J Harnor
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Amy B Heptinstall
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Pamela A Lochhead
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Mathew P Martin
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Nick C Martin
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - David R Newell
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Paul J Owen
- Cancer Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - Leon C Pang
- Cancer Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - Tristan Reuillon
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Laurent J M Rigoreau
- Cancer Research UK Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Campus, Babraham, Cambridgeshire, CB22 3AT, UK
| | - Huw D Thomas
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Julie A Tucker
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Lan-Zhen Wang
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Ai-Ching Wong
- Cancer Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - Martin E M Noble
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| | - Stephen R Wedge
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| | - Celine Cano
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
15
|
Vojtek M, Marques MPM, Ferreira IMPLVO, Mota-Filipe H, Diniz C. Anticancer activity of palladium-based complexes against triple-negative breast cancer. Drug Discov Today 2019; 24:1044-1058. [PMID: 30849441 DOI: 10.1016/j.drudis.2019.02.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 12/24/2022]
Abstract
Treatment of triple-negative breast carcinoma (TNBC) remains an unmet medical need with no targeted therapy available to date. Accounting for 10-30% of all human breast cancer tumors, this mammary carcinoma subtype has a particularly poor prognosis owing to its high metastatic potential, aggressive biology and limited pharmacological treatment options. Platinum chemotherapeutics are the mainstay therapy in patients with TNBC but their clinical use is limited by severe toxicity and acquired resistance. Palladium-based complexes are appealing alternative metal-based drugs because of significant similarities regarding structure and coordination chemistry with the platinum agents. This review summarizes the knowledge gathered so far on 121 Pd(II) complexes, emphasizing their anticancer activity and putative pharmacological targets toward TNBC.
Collapse
Affiliation(s)
- Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Maria P M Marques
- Unidade de I&D "Química-Física Molecular", Department of Chemistry, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Hélder Mota-Filipe
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
16
|
Chen QY, Costa M. Oncogenic and tumor suppressive roles of special AT-rich sequence-binding protein. J Carcinog 2018; 17:2. [PMID: 30123095 PMCID: PMC6071479 DOI: 10.4103/jcar.jcar_8_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/28/2017] [Indexed: 12/28/2022] Open
Abstract
In recent years, research efforts have been centered on the functional roles of special AT-rich sequence-binding protein (SATB2) in cancer development. Existing studies differ in the types of tumor tissues and cell lines used, resulting in mixed results, which hinder the clear understanding of whether SATB2 acts as a tumor suppressor or promoter. Literature search for this review consisted of a basic search on PubMed using keywords "SATB2" and "special AT-rich sequence-binding protein 2." Each article was then selected for further examination based on relevance of the title. In consideration to possible missing data from a primary PubMed search, after coding for relevant information, articles listed in the references section were filtered for further review. The current literature suggests that SATB2 can act both as a tumor suppressor and as a promoter since it can be regulated by multiple factors and is able to target different downstream genes in various types of cancer cell lines as well as tissues. Future studies should focus on its contradictory roles in different types of tumors. This paper provides a comprehensive review of currently available research on the role of SATB2 in different cancer cells and tissues and may provide some insight into the contradictory roles of SATB2 in cancer development.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, NY, USA
| |
Collapse
|
17
|
Pereira DM, Simões AES, Gomes SE, Castro RE, Carvalho T, Rodrigues CMP, Borralho PM. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget 2018; 7:34322-40. [PMID: 27144434 PMCID: PMC5085159 DOI: 10.18632/oncotarget.9107] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/31/2016] [Indexed: 12/22/2022] Open
Abstract
The MEK5/ERK5 signaling pathway is emerging as an important contributor to colon cancer onset, progression and metastasis; however, its relevance to chemotherapy resistance remains unknown. Here, we evaluated the impact of the MEK5/ERK5 cascade in colon cancer cell sensitivity to 5-fluorouracil (5-FU). Increased ERK5 expression was correlated with poor overall survival in colon cancer patients. In colon cancer cells, 5-FU exposure impaired endogenous KRAS/MEK5/ERK5 expression and/or activation. In turn, MEK5 constitutive activation reduced 5-FU-induced cytotoxicity. Using genetic and pharmacological approaches, we showed that ERK5 inhibition increased caspase-3/7 activity and apoptosis following 5-FU exposure. Mechanistically, this was further associated with increased p53 transcriptional activation of p21 and PUMA. In addition, ERK5 inhibition increased the response of HCT116 p53+/+ cells to 5-FU, but failed to sensitize HCT116 p53−/− cells to the cytotoxic effects of this chemotherapeutic agent, suggesting a p53-dependent axis mediating 5-FU sensitization. Finally, ERK5 inhibition using XMD8-92 was shown to increase the antitumor effects of 5-FU in a murine subcutaneous xenograft model, enhancing apoptosis while markedly reducing tumor growth. Collectively, our results suggest that ERK5-targeted in hibition provides a promising therapeutic approach to overcome resistance to 5-FU-based chemotherapy and improve colon cancer treatment.
Collapse
Affiliation(s)
- Diane M Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - André E S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia Carvalho
- Histology and Comparative Pathology Laboratory, Instituto de Medicina Molecular, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Hoang VT, Yan TJ, Cavanaugh JE, Flaherty PT, Beckman BS, Burow ME. Oncogenic signaling of MEK5-ERK5. Cancer Lett 2017; 392:51-59. [PMID: 28153789 PMCID: PMC5901897 DOI: 10.1016/j.canlet.2017.01.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/17/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) regulate diverse cellular processes including proliferation, cell survival, differentiation, and apoptosis. While conventional MAPK constituents have well-defined roles in oncogenesis, the MEK5 pathway has only recently emerged in cancer research. In this review, we consider the MEK5 signaling cascade, focusing specifically on its involvement in drug resistance and regulation of aggressive cancer phenotypes. Moreover, we explore the role of MEK5/ERK5 in tumorigenesis and metastatic progression, discussing the discrepancies in preclinical studies and assessing its viability as a therapeutic target for anti-cancer agents.
Collapse
Affiliation(s)
- Van T Hoang
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Thomas J Yan
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Jane E Cavanaugh
- Department of Pharmacological Sciences, Division of Medicinal Chemistry, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Patrick T Flaherty
- Department of Pharmacological Sciences, Division of Medicinal Chemistry, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | | | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA; Department of Pharmacology, Tulane University, New Orleans, LA, USA; Tulane Cancer Center, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
19
|
Liu F, Zhang H, Song H. Upregulation of MEK5 by Stat3 promotes breast cancer cell invasion and metastasis. Oncol Rep 2017; 37:83-90. [PMID: 27878304 DOI: 10.3892/or.2016.5256] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/03/2016] [Indexed: 02/05/2023] Open
Abstract
Mitogen extracellular-signal-regulated kinase kinase 5 (MEK5) plays an important role in promoting cell proliferation and tumorigenesis. The aberrant expression of MEK5 has been reported in various malignant diseases including cancers of breast, prostate, lung, colorectal and brain. However, the function and regulation of MEK5 signaling pathway are ambiguous and remain elusive with respect to its oncogenic roles in various cancers, especially in the regulation of the initiation and progression of cancer invasion and metastasis. Ectopic expression of MEK5 or knockdown of MEK5 by shRNA with in vitro cell based models demonstrated the role of MEK5 in regulation of epithelial mesenchymal transition (EMT) and breast cancer invasion and metastasis. Here, we show that MEK5 upregulated by Stat3 promotes breast cancer cell invasion through EMT. Further study demonstrated that Stat3 could bind to promoter region of MEK5 and enhanced MEK5 transcription and expression. In addition, the phosphorylation of MEK5 significantly increased in breast cancer cells corresponding to metastatic capability of breast cancer cells. The depletion of MEK5 by shRNA significantly decreased breast cancer invasion. Ectopic expression of MEK5 could confer non-invasive breast cancer cells to become invasion capable cells. Moreover, the phosphorylation of Erk5, a MEK5-regulated downstream kinase, was also upregulated consistent with the increased level of active MEK5. Our studies provide insights into a molecular mechanism by which MEK5 transcriptionally upregulated by Stat3 augments breast cancer cell EMT, which subsequently enhances cancer cell invasion and metastasis. This finding may suggest that Stat3 and MEK5/Erk5 pathways could be an effective therapeutic target for inhibition of breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Fang Liu
- Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, P.R. China
| | - Hao Zhang
- Shantou University Medical College Cancer Research Center, Shantou, Guangdong 515041, P.R. China
| | - Hui Song
- Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
20
|
Serrano-Oviedo L, Giménez-Bachs JM, Nam-Cha SY, Cimas FJ, García-Cano J, Sánchez-Prieto R, Salinas-Sánchez AS. Implication of VHL, ERK5, and HIF-1alpha in clear cell renal cell carcinoma: Molecular basis. Urol Oncol 2016; 35:114.e15-114.e22. [PMID: 27836247 DOI: 10.1016/j.urolonc.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To determine the expression status of several proteins related to VHL gene function and its relationship with common clinicopathological parameters. MATERIAL AND METHODS Observational, analytical, cross-sectional study with 50 patients diagnosed with clear cell renal cell carcinoma. The study analyzed VHL mutations and hypermethylation as well as protein expression of VHL, CA-IX, HIF-1alpha, VEGF, ERK1/2, and ERK5, relating them to clinical variables. A bivariate and multivariate descriptive logistical regression analysis was performed, using the presence of metastasis at diagnosis as dependent variable. RESULTS The study identified 13 (26%) VHL mutations related to nuclear grade (P = 0.036). VHL hypermethylation was found in 20% of cases. VHL expression was associated with the presence of mutations (P = 0.013), and the absence of expression was associated with nuclear grade and the presence of metastasis (P<0.05). HIF-1alpha was negative in only 5 cases. Vascular endothelial growth factor (VEGF) was positive in 31 of 47 cases and was associated with Fuhrman nuclear grade, presence of metastasis, and stage (P<0.05). ERK5 expression was increased in 58% of cases and associated with the presence of metastasis and more advanced stages (P<0.05). In the logistic regression analysis, the only variable remaining in the model was VEGF expression (P = 0.014). CONCLUSIONS VEGF has prognostic value in clear cell renal cell carcinoma, and ERK5 may be a new prognostic marker in this type of tumor owing to its relationship with metastasis and more advanced stages.
Collapse
Affiliation(s)
- Leticia Serrano-Oviedo
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina CSIC-Universidad de Castilla-La Mancha, Albacete, Spain
| | - José M Giménez-Bachs
- Servicio de Urología, Complejo Hospitalario Universitario de Albacete, Albacete, Spain.
| | - Syongh Y Nam-Cha
- Servicio de Anatomía Patológica, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Francisco J Cimas
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina CSIC-Universidad de Castilla-La Mancha, Albacete, Spain
| | - Jesús García-Cano
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina CSIC-Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Unidad de Medicina Molecular, Laboratorio de Oncología, Centro Regional de Investigaciones Biomédicas, Unidad de Biomedicina CSIC-Universidad de Castilla-La Mancha, Albacete, Spain
| | | |
Collapse
|
21
|
Simões AES, Rodrigues CMP, Borralho PM. The MEK5/ERK5 signalling pathway in cancer: a promising novel therapeutic target. Drug Discov Today 2016; 21:1654-1663. [PMID: 27320690 DOI: 10.1016/j.drudis.2016.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022]
Abstract
Conventional mitogen-activated protein kinase (MAPK) family members are among the most sought-after oncogenic effectors for the development of novel human cancer treatment strategies. MEK5/ERK5 has been the less-studied MAPK subfamily, despite its increasingly demonstrated relevance in the growth, survival, and differentiation of normal cells. MEK5/ERK5 signalling has already been proposed to have pivotal roles in several cancer hallmarks, and to mediate the effects of a range of oncogenes. Accumulating evidence indicates the contribution of MEK5/ERK5 signalling to therapy resistance and the benefits of using MEK5/ERK5 inhibitory strategies in the treatment of human cancer. Here, we explore the major known contributions of MEK5/ERK5 signalling to the onset and progression of several types of cancer, and highlight the potential clinical relevance of targeting MEK5/ERK5 pathways.
Collapse
Affiliation(s)
- André E S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
22
|
Zhai L, Ma C, Li W, Yang S, Liu Z. miR-143 suppresses epithelial-mesenchymal transition and inhibits tumor growth of breast cancer through down-regulation of ERK5. Mol Carcinog 2015; 55:1990-2000. [PMID: 26618772 DOI: 10.1002/mc.22445] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/05/2015] [Accepted: 11/17/2015] [Indexed: 12/30/2022]
Abstract
Epithelial-mesenchymal transition (EMT) plays a pivotal role in the development of cancer invasion and metastasis. Many studies have significantly enhanced the knowledge on EMT through the characterization of microRNAs (miRNAs) influencing the signaling pathways and downstream events that define EMT on a molecular level. In this study, we found that miR-143 suppressed EMT. Up-regulating miR-143 enhanced E-cadherin-mediated cell-cell adhesion ability, reduced mesenchymal markers, and decreased cell proliferation, migration, and invasion in vitro. In vivo, the xenograft mouse model also unveiled the suppressive effects of miR-143 on tumor growth. Additionally, we demonstrated that up-regulating extracellular signal regulated kinase 5 (ERK5) was associated with poor prognosis of breast cancer patients. Moreover, we observed an inverse correlation between miR-143 and ERK5 in breast cancer tissues. miR-143 directly targeted seed sequences in the 3'-untranslated regions of ERK5. Furthermore, we revealed that the downstream molecules of glycogen synthase kinase 3 beta (GSK-3β)/Snail signaling were involved in EMT and modulated by ERK5. In summary, our findings demonstrated that miR-143 down-regulated its target ERK5, leading to the suppression of EMT induced by GSK-3β/Snail signaling of breast cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Limin Zhai
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chuanxiang Ma
- Department of Pathology, Afflidated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Wentong Li
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Shuo Yang
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhijun Liu
- Department of Medical Biology, Weifang Medical University, Weifang, Shandong Province, P.R. China
| |
Collapse
|
23
|
Wu L, Chen J, Qin Y, Mo X, Huang M, Ru H, Yang Y, Liu J, Lin Y. SATB2 suppresses gastric cancer cell proliferation and migration. Tumour Biol 2015; 37:4597-602. [PMID: 26508023 DOI: 10.1007/s13277-015-4282-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/19/2015] [Indexed: 02/01/2023] Open
Abstract
Gastric cancer is one of the death-related malignant tumors worldwide. It remains a challenge for the diagnosis and treatment of gastric cancer. Special AT-rich sequence-binding protein 2 (SATB2) is a new tumor suppressive gene and plays important roles in many cancers. However, the role of SATB2 in gastric cancer is still unknown. In the present study, we demonstrated that downregulation of SATB2 was associated with shortened survival in patients with gastric cancer. Ectopic expression of SATB2 inhibited gastric cancer cell proliferation, colony formation, and migration. Overexpression of SATB2 repressed the expression of extracellular signal-regulated kinase 5 (ERK5), and activation of ERK5 restored the SATB2-induced inhibition of proliferation and migration in gastric cancer. This study provided evidence that SATB2 acted as a tumor suppressive gene gastric cancer, serving as a potential therapeutic target.
Collapse
Affiliation(s)
- Liucheng Wu
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China.
| | - Jiansi Chen
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuzhou Qin
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Xianwei Mo
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Minwei Huang
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Haiming Ru
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Yang Yang
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Jungang Liu
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuan Lin
- Gastrointestinal Surgery Department, Guangxi Medical University, Tumor Hospital, Nanning, Guangxi, 530021, People's Republic of China
| |
Collapse
|
24
|
Dai J, Wang T, Wang W, Zhang S, Liao Y, Chen J. Role of MAPK7 in cell proliferation and metastasis in ovarian cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10444-10451. [PMID: 26617753 PMCID: PMC4637568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/23/2015] [Indexed: 06/05/2023]
Abstract
AIM To investigate the effect of mitogen-activated protein kinase 7 (MAPK7) in ovarian cancer metastasis and to explore its potential mechanism. METHODS pcDNA-MAPK7 and siRNA-MAPK7 vectors were transfected into the human ovarian cell line OVCAR-3 based on gene silencing and overexpression methods. Effects of MAPK7 overexpression and silencing on OVCAR-3 cells proliferation, cell invasion, and migration were analyzed using the MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide) assay, Matrigel methods, and Markered methods respectively. In addition, effect of MAPK7 expression on extracellular matrix (ECM) associated protein was detected using Western blot. RESULTS Compared with the controls, MAPK7 was up-regulated when cells were transfected with pcDNA-MAPK7 plasma, as well as MAPK7 was sliced when cells were transfected with siRNA-MAPK7 plasma (P<0.05). Besides, biological function analysis performed that overexpression of MAPK7 significantly increased OVCAR-3 cell proliferation, invasion, and migration (P<0.05), while these effects were inhibited by MAPK7 silencing (P<0.05). Additionally, MAPK7 overexpression increased type II collagen expression (P<0.05). However, there was no significant difference between MAPK7 expression and type I collagen expression (P>0.05). CONCLUSION Our data implied the up-regulated MAPK7 might contribute to ovarian cancer metastasis through up-regulating type II collagen expression and then were involved in cell biological processes such as cell proliferation, invasion, and migration. MAPK7 may be a potential therapeutic target in the clinical treatment for ovarian cancer.
Collapse
Affiliation(s)
- Jinhua Dai
- Department of Clinical Laboratory, Ningbo No.2 HospitalNingbo 315010, Zhejiang, P.R. China
| | - Tao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, Fujian Medical UniversityXiamen 361003, Fujian, P.R. China
| | - Weihua Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P.R. China
| | - Songhua Zhang
- Department of Gynaecology, Ningbo No.2 HospitalNingbo 315010, Zhejiang, P.R. China
| | - Yufeng Liao
- Department of Clinical Laboratory, Ningbo No.2 HospitalNingbo 315010, Zhejiang, P.R. China
| | - Jie Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P.R. China
| |
Collapse
|