1
|
Shahani A, Slika H, Elbeltagy A, Lee A, Peters C, Dotson T, Raj D, Tyler B. The epigenetic mechanisms involved in the treatment resistance of glioblastoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:12. [PMID: 40201311 PMCID: PMC11977385 DOI: 10.20517/cdr.2024.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 04/10/2025]
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor with almost inevitable recurrence despite multimodal management with surgical resection and radio-chemotherapy. While several genetic, proteomic, cellular, and anatomic factors interplay to drive recurrence and promote treatment resistance, the epigenetic component remains among the most versatile and heterogeneous of these factors. Herein, the epigenetic landscape of GBM refers to a myriad of modifications and processes that can alter gene expression without altering the genetic code of cancer cells. These processes encompass DNA methylation, histone modification, chromatin remodeling, and non-coding RNA molecules, all of which have been found to be implicated in augmenting the tumor's aggressive behavior and driving its resistance to therapeutics. This review aims to delve into the underlying interactions that mediate this role for each of these epigenetic components. Further, it discusses the two-way relationship between epigenetic modifications and tumor heterogeneity and plasticity, which are crucial to effectively treat GBM. Finally, we build on the previous characterization of epigenetic modifications and interactions to explore specific targets that have been investigated for the development of promising therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
2
|
Bora Yildiz C, Du J, Mohan KN, Zimmer-Bensch G, Abdolahi S. The role of lncRNAs in the interplay of signaling pathways and epigenetic mechanisms in glioma. Epigenomics 2025; 17:125-140. [PMID: 39829063 PMCID: PMC11792803 DOI: 10.1080/17501911.2024.2442297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Gliomas, highly aggressive tumors of the central nervous system, present overwhelming challenges due to their heterogeneity and therapeutic resistance. Glioblastoma multiforme (GBM), the most malignant form, underscores this clinical urgency due to dismal prognosis despite aggressive treatment regimens. Recent advances in cancer research revealed signaling pathways and epigenetic mechanisms that intricately govern glioma progression, offering multifaceted targets for therapeutic intervention. This review explores the dynamic interplay between signaling events and epigenetic regulation in the context of glioma, with a particular focus on the crucial roles played by non-coding RNAs (ncRNAs). Through direct and indirect epigenetic targeting, ncRNAs emerge as key regulators shaping the molecular landscape of glioblastoma across its various stages. By dissecting these intricate regulatory networks, novel and patient-tailored therapeutic strategies could be devised to improve patient outcomes with this devastating disease.
Collapse
Affiliation(s)
- Can Bora Yildiz
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 Multi Senses – Multi Scales, RWTH Aachen University, Aachen, Germany
| | - Jian Du
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
| | - K. Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Hyderabad, India
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 Multi Senses – Multi Scales, RWTH Aachen University, Aachen, Germany
| | - Sara Abdolahi
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Yang L, Niu Z, Ma Z, Wu X, Vong CT, Li G, Feng Y. Exploring the clinical implications and applications of exosomal miRNAs in gliomas: a comprehensive study. Cancer Cell Int 2024; 24:323. [PMID: 39334350 PMCID: PMC11437892 DOI: 10.1186/s12935-024-03507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Gliomas are aggressive brain tumors associated with poor prognosis and limited treatment options due to their invasive nature and resistance to current therapeutic modalities. Research suggests that exosomal microRNAs have emerged as key players in intercellular communication within the tumor microenvironment, influencing tumor progression and therapeutic responses. Exosomal microRNAs (miRNAs), small non-coding RNAs, are crucial in glioma development, invasion, metastasis, angiogenesis, and immune evasion by binding to target genes. This comprehensive review examines the clinical relevance and implications of exosomal miRNAs in gliomas, highlighting their potential as diagnostic biomarkers, therapeutic targets and prognosis biomarker. Additionally, we also discuss the limitations of current exsomal miRNA treatments and address challenges and propose future directions for leveraging exosomal miRNAs in precision oncology for glioma management.
Collapse
Affiliation(s)
- Liang Yang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhen Niu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhixuan Ma
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaojie Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China.
| | - Ying Feng
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Isachesku E, Braicu C, Pirlog R, Kocijancic A, Busuioc C, Pruteanu LL, Pandey DP, Berindan-Neagoe I. The Role of Non-Coding RNAs in Epigenetic Dysregulation in Glioblastoma Development. Int J Mol Sci 2023; 24:16320. [PMID: 38003512 PMCID: PMC10671451 DOI: 10.3390/ijms242216320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma (GBM) is a primary brain tumor arising from glial cells. The tumor is highly aggressive, the reason for which it has become the deadliest brain tumor type with the poorest prognosis. Like other cancers, it compromises molecular alteration on genetic and epigenetic levels. Epigenetics refers to changes in gene expression or cellular phenotype without the occurrence of any genetic mutations or DNA sequence alterations in the driver tumor-related genes. These epigenetic changes are reversible, making them convenient targets in cancer therapy. Therefore, we aim to review critical epigenetic dysregulation processes in glioblastoma. We will highlight the significant affected tumor-related pathways and their outcomes, such as regulation of cell cycle progression, cell growth, apoptosis, angiogenesis, cell invasiveness, immune evasion, or acquirement of drug resistance. Examples of molecular changes induced by epigenetic modifications, such as DNA epigenetic alterations, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) regulation, are highlighted. As understanding the role of epigenetic regulators and underlying molecular mechanisms in the overall pro-tumorigenic landscape of glioblastoma is essential, this literature study will provide valuable insights for establishing the prognostic or diagnostic value of various non-coding transcripts, including miRNAs.
Collapse
Affiliation(s)
- Ekaterina Isachesku
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| | - Anja Kocijancic
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway; (A.K.)
| | - Constantin Busuioc
- Department of Pathology, National Institute of Infectious Disease, 021105 Bucharest, Romania;
- Department of Pathology, Onco Team Diagnostic, 010719 Bucharest, Romania
| | - Lavinia-Lorena Pruteanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
- Department of Chemistry and Biology, North University Center, Technical University of Cluj-Napoca, 430122 Baia Mare, Romania
| | - Deo Prakash Pandey
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway; (A.K.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania (C.B.); (R.P.); (L.-L.P.)
| |
Collapse
|
6
|
Tooth Formation as Experimental Model to Study Chemotherapy on Tissue Development: Effect of a Specific Dose of Temozolomide/Veliparib. Genes (Basel) 2022; 13:genes13071198. [PMID: 35885982 PMCID: PMC9322384 DOI: 10.3390/genes13071198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Chemotherapy treatment of cancer in children can influence formation of normal tissues, leading to irreversible changes in their structure and function. Tooth formation is susceptible to several types of chemotherapy that induce irreversible changes in the structure of enamel, dentin and dental root morphology. These changes can make the teeth more prone to fracture or to caries when they have erupted. Recent studies report successful treatment of brain tumors with the alkylating drug temozolomide (TMZ) in combination with veliparib (VLP) in a glioblastoma in vivo mouse model. Whether these drugs also affect tooth formation is unknown. Aim: In this study the effect of TMZ/VLP on incisor formation was investigated in tissue sections of jaws from mice and compared with mice not treated with these drugs. Materials and method: The following aspects were studied using immunohistochemistry of specific protein markers including: (1) proliferation (by protein expression of proliferation marker Ki67) (2) a protein involved in paracellular ion transport (expression of tight junction (TJ) protein claudin-1) and (3) in transcellular passage of ions across the dental epithelium (expression of Na+, K+ 2Cl- cotransporter/NKCC1). Results: Chemotherapy with TMZ/VLP strongly reduced immunostaining for claudin-1 in distal parts of maturation ameloblasts. No gross changes were found in the treated mice, either in cell proliferation in the dental epithelium at the cervical loop or in the immunostaining pattern for NKCC1 in (non-ameloblastic) dental epithelium. The salivary glands in the treated mice contained strongly reduced immunostaining for NKCC1 in the basolateral membranes of acinar cells. Discussion/Conclusions: Based on the reduction of claudin-1 immunostaining in ameloblasts, TMZ/VLP may potentially influence forming enamel by changes in the structure of TJs structures in maturation ameloblasts, structures that are crucial for the selective passage of ions through the intercellular space between neighboring ameloblasts. The strongly reduced basolateral NKCC1 staining seen in fully-grown salivary glands of TMZ/VLP-treated mice suggests that TMZ/VLF could also influence ion transport in adult saliva by the salivary gland epithelium. This may cause treated children to be more susceptible to caries.
Collapse
|
7
|
Eldesouki S, Samara KA, Qadri R, Obaideen AA, Otour AH, Habbal O, Bm Ahmed S. XIST in Brain Cancer. Clin Chim Acta 2022; 531:283-290. [PMID: 35483442 DOI: 10.1016/j.cca.2022.04.993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Abstract
Long non-coding RNAs (lncRNAs) make up the majority of the human genome. They are a group of small RNA molecules that do not code for any proteins but play a primary role in regulating a variety of physiological and pathological processes. X-inactive specific transcript (XIST), one of the first lncRNAs to be discovered, is chiefly responsible for X chromosome inactivation: an evolutionary process of dosage compensation between the sex chromosomes of males and females. Recent studies show that XIST plays a pathophysiological role in the development and prognosis of brain tumors, a heterogeneous group of neoplasms that cause significant morbidity and mortality. In this review, we explore recent advancements in the role of XIST in migration, proliferation, angiogenesis, chemoresistance, and evasion of apoptosis in different types of brain tumors, with particular emphasis on gliomas.
Collapse
Affiliation(s)
| | - Kamel A Samara
- College of Medicine, University of Sharjah, Sharjah, UAE
| | - Rama Qadri
- College of Medicine, University of Sharjah, Sharjah, UAE
| | | | - Ahmad H Otour
- College of Medicine, University of Sharjah, Sharjah, UAE
| | - Omar Habbal
- College of Medicine, University of Sharjah, Sharjah, UAE
| | - Samrein Bm Ahmed
- College of Medicine, University of Sharjah, Sharjah, UAE; College of Health and Wellbeing and Life sciences, Department of Biosciences and chemistry, Sheffield Hallam University, UK
| |
Collapse
|
8
|
Ghaemi S, Fekrirad Z, Zamani N, Rahmani R, Arefian E. Non-coding RNAs Enhance the Apoptosis Efficacy of Therapeutic Agents Used for the Treatment of Glioblastoma Multiform. J Drug Target 2022; 30:589-602. [DOI: 10.1080/1061186x.2022.2047191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Fekrirad
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nina Zamani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Rana Rahmani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Exosomal noncoding RNAs: key players in glioblastoma drug resistance. Mol Cell Biochem 2021; 476:4081-4092. [PMID: 34273059 DOI: 10.1007/s11010-021-04221-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Glioma, as one of the most severe human malignancies, is defined as the Central Nervous System's (CNS) tumors. Glioblastoma (GBM) in this regard, is the most malignant type of gliomas. There are multiple therapeutic strategies to cure GBM, for which chemotherapy is often the first-line treatment. Still, various cellular processes, such as uncontrolled proliferation, invasion and metastasis, may disturb the treatment efficacy. Drug resistance is another process in this way, which can also cause undesirable effects. Thereupon, identifying the mechanisms, involved in developing drug resistance and the relevant mechanisms can be very helpful in GBM management. The discovery of exosomal non-coding RNAs (ncRNAs), RNA molecules that can be transferred between the cells and different tissues using the exosomes, was a milestone in this regard. It has been revealed that the key exosomal ncRNAs, including circular RNAs, microRNAs, and long ncRNAs, are able to modulate GBM drug resistance through different signaling pathways or by affecting regulatory proteins and their corresponding genes. Nowadays, researchers are trying to overcome the limitations of chemotherapy by targeting these RNA molecules. Accordingly, this review aims to clarify the substantial roles of exosomal ncRNAs in GBM drug resistance and involved mechanisms.
Collapse
|
10
|
PharmaNet: Pharmaceutical discovery with deep recurrent neural networks. PLoS One 2021; 16:e0241728. [PMID: 33901196 PMCID: PMC8075191 DOI: 10.1371/journal.pone.0241728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/01/2021] [Indexed: 12/23/2022] Open
Abstract
The discovery and development of novel pharmaceuticals is an area of active research mainly due to the large investments required and long payback times. As of 2016, the development of a novel drug candidate required up to $ USD 2.6 billion in investment for only 10% rate of approval by the FDA. To help decreasing the costs associated with the process, a number of in silico approaches have been developed with relatively low success due to limited predicting performance. Here, we introduced a machine learning-based algorithm as an alternative for a more accurate search of new pharmacological candidates, which takes advantage of Recurrent Neural Networks (RNN) for active molecule prediction within large databases. Our approach, termed PharmaNet was implemented here to search for ligands against specific cell receptors within 102 targets of the DUD-E database, which contains 22886 active molecules. PharmaNet comprises three main phases. First, a SMILES representation of the molecule is converted into a raw molecular image. Second, a convolutional encoder processes the data to obtain a fingerprint molecular image that is finally analyzed by a Recurrent Neural Network (RNN). This approach enables precise predictions of the molecules' target on the basis of the feature extraction, the sequence analysis and the relevant information filtered out throughout the process. Molecule Target prediction is a highly unbalanced detection problem and therefore, we propose that an adequate evaluation metric of performance is the area under the Normalized Average Precision (NAP) curve. PharmaNet largely surpasses the previous state-of-the-art method with 97.7% in the Receiver Operating Characteristic curve (ROC-AUC) and 65.5% in the NAP curve. We obtained a perfect performance for human farnesyl pyrophosphate synthase (FPPS), which is a potential target for antimicrobial and anticancer treatments. We decided to test PharmaNet for activity prediction against FPPS by searching in the CHEMBL data set. We obtained three (3) potential inhibitors that were further validated through both molecular docking and in silico toxicity prediction. Most importantly, one of this candidates, CHEMBL2007613, was predicted as a potential antiviral due to its involvement on the PCDH17 pathway, which has been reported to be related to viral infections.
Collapse
|
11
|
A HIF1A/miR-485-5p/SRPK1 axis modulates the aggressiveness of glioma cells upon hypoxia. Exp Cell Res 2021; 402:112547. [PMID: 33722639 DOI: 10.1016/j.yexcr.2021.112547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/23/2023]
Abstract
The high aggressiveness of gliomas remains a huge challenge to clinical therapies, and the hypoxic microenvironment in the core region is a critical contributor to glioma aggressiveness. In this study, it was found that miR-485-5p was low expressed within glioma tissue samples and cells. GO enrichment annotation indicated that the predicted downstream targets miR-485-5p were enriched in hypoxia response and decreased oxygen level. In glioma cells, miR-485-5p overexpression suppressed cell viability, migratory ability, and invasive ability under both normoxic and hypoxic conditions. Through direct binding, miR-485-5p suppressed SRPK1 expression. Under hypoxia, SRPK1 overexpression enhanced hypoxia-induced glioma cell aggressiveness and significantly reversed the effects of miR-485-5p overexpression. Moreover, HIF1A could target the miR-485-5p promoter region to inhibit the transcription. HIF1A, miR-485-5p, and SRPK1 form a regulatory axis, which modulates glioma cell aggressiveness under hypoxia. In conclusion, we identify a HIF1A/miR-485-5p/SRPK1 axis that modulates the aggressiveness of glioma cells under hypoxia. The axis could potentially provide new research avenues in the treatment of gliomas considering the hypoxic environment in its core.
Collapse
|
12
|
Marengo B, Pulliero A, Corrias MV, Leardi R, Farinini E, Fronza G, Menichini P, Monti P, Monteleone L, Valenti GE, Speciale A, Perri P, Madia F, Izzotti A, Domenicotti C. Potential Role of miRNAs in the Acquisition of Chemoresistance in Neuroblastoma. J Pers Med 2021; 11:jpm11020107. [PMID: 33562297 PMCID: PMC7916079 DOI: 10.3390/jpm11020107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) accounts for about 8–10% of pediatric cancers, and the main causes of death are the presence of metastases and the acquisition of chemoresistance. Metastatic NB is characterized by MYCN amplification that correlates with changes in the expression of miRNAs, which are small non-coding RNA sequences, playing a crucial role in NB development and chemoresistance. In the present study, miRNA expression was analyzed in two human MYCN-amplified NB cell lines, one sensitive (HTLA-230) and one resistant to Etoposide (ER-HTLA), by microarray and RT-qPCR techniques. These analyses showed that miRNA-15a, -16-1, -19b, -218, and -338 were down-regulated in ER-HTLA cells. In order to validate the presence of this down-regulation in vivo, the expression of these miRNAs was analyzed in primary tumors, metastases, and bone marrow of therapy responder and non-responder pediatric patients. Principal component analysis data showed that the expression of miRNA-19b, -218, and -338 influenced metastases, and that the expression levels of all miRNAs analyzed were higher in therapy responders in respect to non-responders. Collectively, these findings suggest that these miRNAs might be involved in the regulation of the drug response, and could be employed for therapeutic purposes.
Collapse
Affiliation(s)
- Barbara Marengo
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
- Correspondence: ; Tel.: +39-010-3538831
| | | | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16100 Genova, Italy; (M.V.C.); (P.P.)
| | - Riccardo Leardi
- Department of Pharmacy, University of Genova, 16100 Genova, Italy; (R.L.); (E.F.)
| | - Emanuele Farinini
- Department of Pharmacy, University of Genova, 16100 Genova, Italy; (R.L.); (E.F.)
| | - Gilberto Fronza
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Paola Menichini
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Paola Monti
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Lorenzo Monteleone
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
| | - Giulia Elda Valenti
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
| | - Andrea Speciale
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16100 Genova, Italy; (M.V.C.); (P.P.)
| | - Francesca Madia
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, 16100 Genova, Italy;
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16100 Genova, Italy; (G.F.); (P.M.); (P.M.); (A.S.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genova, 16100 Genova, Italy; (L.M.); (G.E.V.); (A.I.); (C.D.)
| |
Collapse
|
13
|
Valtorta S, Salvatore D, Rainone P, Belloli S, Bertoli G, Moresco RM. Molecular and Cellular Complexity of Glioma. Focus on Tumour Microenvironment and the Use of Molecular and Imaging Biomarkers to Overcome Treatment Resistance. Int J Mol Sci 2020; 21:E5631. [PMID: 32781585 PMCID: PMC7460665 DOI: 10.3390/ijms21165631] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023] Open
Abstract
This review highlights the importance and the complexity of tumour biology and microenvironment in the progression and therapy resistance of glioma. Specific gene mutations, the possible functions of several non-coding microRNAs and the intra-tumour and inter-tumour heterogeneity of cell types contribute to limit the efficacy of the actual therapeutic options. In this scenario, identification of molecular biomarkers of response and the use of multimodal in vivo imaging and in particular the Positron Emission Tomography (PET) based molecular approach, can help identifying glioma features and the modifications occurring during therapy at a regional level. Indeed, a better understanding of tumor heterogeneity and the development of diagnostic procedures can favor the identification of a cluster of patients for personalized medicine in order to improve the survival and their quality of life.
Collapse
Affiliation(s)
- Silvia Valtorta
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Daniela Salvatore
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Paolo Rainone
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Sara Belloli
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| |
Collapse
|
14
|
Mazurek M, Litak J, Kamieniak P, Osuchowska I, Maciejewski R, Roliński J, Grajkowska W, Grochowski C. Micro RNA Molecules as Modulators of Treatment Resistance, Immune Checkpoints Controllers and Sensitive Biomarkers in Glioblastoma Multiforme. Int J Mol Sci 2020; 21:ijms21041507. [PMID: 32098401 PMCID: PMC7073212 DOI: 10.3390/ijms21041507] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
Based on genome sequencing, it is estimated that over 90% of genes stored in human genetic material are transcribed, but only 3% of them contain the information needed for the production of body proteins. This group also includes micro RNAs representing about 1%–3% of the human genome. Recent studies confirmed the hypothesis that targeting molecules called Immune Checkpoint (IC) open new opportunities to take control over glioblastoma multiforme (GBM). Detection of markers that indicate the presence of the cancer occupies a very important place in modern oncology. This function can be performed by both the cancer cells themselves as well as their components and other substances detected in the patients’ bodies. Efforts have been made for many years to find a suitable marker useful in the diagnosis and monitoring of gliomas, including glioblastoma.
Collapse
Affiliation(s)
- Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.)
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.)
- Department of Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.)
| | - Ida Osuchowska
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (I.O.); (R.M.)
| | - Ryszard Maciejewski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (I.O.); (R.M.)
| | - Jacek Roliński
- Department of Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Wiesława Grajkowska
- Department of Oncopathology and Biostructure, „Pomnik-Centrum Zdrowia Dziecka” Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (I.O.); (R.M.)
- Laboratory of Virtual Man, Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
- Correspondence:
| |
Collapse
|
15
|
HUI P, WANG Y, CHEN B, WANG Z, QIN S. Mir-29c Expression in Glioma and Its Effects on Tumor Cell Proliferation and Apoptosis. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:304-311. [PMID: 32461938 PMCID: PMC7231707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND To investigate the expression of microRNA-29c (miR-29c) in glioma and its effects on cell proliferation and apoptosis. METHODS A retrospective analysis was performed on 76 glioma patients in People's Hospital of Weifang, Weifang, Shandong, China from May 2013 to June 2017 (experimental group) and 63 healthy subjects in the same period (control group). qRT-PCR was used to detect the miR-29c expression. Changes of serum miR-29c expression level and the correlation of miR-29c of glioma patients with the degree of tumor differentiation and pathological type were observed. Cells were grouped before transfection into blank group (no transfection), negative control group (transfected with miRNA NC) and experimental group (transfected with miR-29c mimics). CCK-8 assay was used to detect cell proliferation, flow cytometry to detect apoptosis. RESULTS Expression of miR-29c in serum was significantly lower in experimental group than that in control group (P<0.05). The expression level of miR-29c of glioma patients increased with the degree of tumor differentiation (P<0.05). miR-29c in serum was not significantly correlated with the pathological type. CONCLUSION miR-29c could inhibit the proliferation of glioma cells and promote apoptosis. miR-29c is lowly expressed in glioma, and the overexpression of which in glioma cells can inhibit tumor cells proliferation and promote apoptosis. It may be a tumor suppressor miRNA of glioma, and the expression level of which can be used as reference for evaluating the grade of glioma. It is indicated that the abnormal expression of miR-29c may be a key factor in the occurrence and development of glioma.
Collapse
Affiliation(s)
- Peiquan HUI
- Department of Neurosurgery, People's Hospital of Weifang, Weifang, Shandong, China
| | - Yuling WANG
- Department of Ultrasonography, People's Hospital of Weifang, Weifang, Shandong, China
| | - Bing CHEN
- Department of Neurosurgery, People's Hospital of Weifang, Weifang, Shandong, China
| | - Zengwu WANG
- Department of Neurosurgery, People's Hospital of Weifang, Weifang, Shandong, China
| | - Shiqiang QIN
- Department of Neurosurgery, People's Hospital of Weifang, Weifang, Shandong, China,Corresponding Author:
| |
Collapse
|
16
|
Li W, Wang L, Ji XB, Wang LH, Ge X, Liu WT, Chen L, Zheng Z, Shi ZM, Liu LZ, Lin MC, Chen JY, Jiang BH. MiR-199a Inhibits Tumor Growth and Attenuates Chemoresistance by Targeting K-RAS via AKT and ERK Signalings. Front Oncol 2019; 9:1071. [PMID: 31681604 PMCID: PMC6803549 DOI: 10.3389/fonc.2019.01071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Glioma is the most malignant brain tumors in the world, the function and molecular mechanism of microRNA-199a (miR-199a) in glioma is not fully understood. Our research aims to investigate miR-199a/K-RAS axis in regulation of glioma tumor growth and chemoresistance. The function of miR-199a in glioma was investigated through in vitro and in vivo assays. We found that miR-199a in tumor tissues of glioma patients was significantly downregulated in this study. Kinase suppressor of ras 1 (K-RAS), was indicated as a direct target of miR-199a, as well as expression levels of K-RAS were inversely correlated with expression levels of miR-199a in human glioma specimens. Forced expression of miR-199a suppressed AKT and ERK activation, decreased HIF-1α and VEGF expression, inhibited cell proliferation and cell migration, forced expression of K-RAS restored the inhibitory effect of miR-199a on cell proliferation and cell migration. Moreover, miR-199a renders tumor cells more sensitive to temozolomide (TMZ) via targeting K-RAS. In vivo experiment validated that miR-199a functioned as a tumor suppressor, inhibited tumor growth by targeting K-RAS and suppressed activation of AKT, ERK and HIF-1α expression. Taken together, these findings indicated that miR-199a inhibits tumor growth and chemoresistance by regulating K-RAS, and the miR-199a/K-RAS axis is a potential therapeutic target for clinical intervention in glioma.
Collapse
Affiliation(s)
- Wei Li
- Department of Pathology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lin Wang
- Institute of Medical and Pharmaceutical Sciences, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiang-Bo Ji
- Institute of Medical and Pharmaceutical Sciences, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Li-Hong Wang
- Institute of Medical and Pharmaceutical Sciences, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Ge
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Wei-Tao Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Ling Chen
- Department of Pathology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhong Zheng
- Department of Pathology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhu-Mei Shi
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Ling-Zhi Liu
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa, IA, United States
| | - Marie C Lin
- Institute of Medical and Pharmaceutical Sciences, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jie-Yu Chen
- Department of Pathology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bing-Hua Jiang
- Institute of Medical and Pharmaceutical Sciences, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Pathology, Nanjing Medical University, Nanjing, China.,Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa, IA, United States
| |
Collapse
|
17
|
Chen X, Yan Y, Zhou J, Huo L, Qian L, Zeng S, Li Z, Wei J, Xu Z, Gong Z. Clinical prognostic value of isocitrate dehydrogenase mutation, O-6-methylguanine-DNA methyltransferase promoter methylation, and 1p19q co-deletion in glioma patients. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:541. [PMID: 31807523 DOI: 10.21037/atm.2019.09.126] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background Gliomas are the most frequently occurring malignant brain cancers. Recently, isocitrate dehydrogenase (IDH) mutations, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and 1p/19q co-deletion have been suggested to indicate a favorable prognosis in gliomas. However, the clinical prognostic value of these genetic tests in human gliomas is not fully understood. Methods We included glioma patients who accepted genetic testing including IDH, MGMT and 1p/19q at Xiangya Hospital, Central South University in China (Jan 2015 to Jun 2017) and further analyzed the effect of the above gene states in high-grade gliomas. Results In 103 high-grade glioma patients, IDH mutation, MGMT promoter methylation, and 1p/19q co-deletion had better progression-free survival (PFS) than IDH wild-type (P=0.005), MGMT unmethylated promoter (P=0.002), and without 1p19q co-deletion (P=0.008), respectively. Additionally, we classified the above gliomas into 5 molecular groups, triple-positive, IDH mutation and MGMT methylation, methylation in MGMT only, mutation in IDH only, and triple-negative, according to characteristics of recruited patients. We found that triple-positive gliomas had better PFS than triple-negative cases in high-grade patients (P=0.016). Moreover, the IDH mutation and MGMT methylation groups had prolonged PFS compared to triple-negative (P=0.029). Conclusions Our study reinforced the clinical value of biomarkers, including 1p/19q co-deletion, IDH mutation, and the most prominent MGMT methylation, as previously described in glioma prognosis. Further, triple-negative patients have poorer PFS, indicating that the states of these genes can be divided into subgroups as a potential prognostic marker for clinical treatment, which requires a larger, multicenter study to testify.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lei Huo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi Li
- Center for Molecular Medicine, Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
18
|
Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, Baradaran B. The potential role of miR‐29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol 2019; 234:19280-19297. [DOI: 10.1002/jcp.28607] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Mohsen Alizadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Safarzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Fatemeh Beyranvand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Lorestan University of Medical Sciences Khorramabad Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
19
|
Biersack B. Alkylating anticancer agents and their relations to microRNAs. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1-17. [PMID: 35582140 PMCID: PMC9019174 DOI: 10.20517/cdr.2019.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 11/12/2022]
Abstract
Alkylating agents represent an important class of anticancer drugs. The occurrence and emergence of tumor resistance to the treatment with alkylating agents denotes a severe problem in the clinics. A detailed understanding of the mechanisms of activity of alkylating drugs is essential in order to overcome drug resistance. In particular, the role of non-coding microRNAs concerning alkylating drug activity and resistance in various cancers is highlighted in this review. Both synthetic and natural alkylating agents, which are approved for cancer therapy, are discussed concerning their interplay with microRNAs.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
20
|
Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Miseikyte Kaubriene E, Meskinyte I, Cicenas J, Suziedelis K. Non-Coding RNAs in Glioma. Cancers (Basel) 2018; 11:cancers11010017. [PMID: 30583549 PMCID: PMC6356972 DOI: 10.3390/cancers11010017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most aggressive brain tumor of the central nervous system. The ability of glioma cells to migrate, rapidly diffuse and invade normal adjacent tissue, their sustained proliferation, and heterogeneity contribute to an overall survival of approximately 15 months for most patients with high grade glioma. Numerous studies indicate that non-coding RNA species have critical functions across biological processes that regulate glioma initiation and progression. Recently, new data emerged, which shows that the cross-regulation between long non-coding RNAs and small non-coding RNAs contribute to phenotypic diversity of glioblastoma subclasses. In this paper, we review data of long non-coding RNA expression, which was evaluated in human glioma tissue samples during a five-year period. Thus, this review summarizes the following: (I) the role of non-coding RNAs in glioblastoma pathogenesis, (II) the potential application of non-coding RNA species in glioma-grading, (III) crosstalk between lncRNAs and miRNAs (IV) future perspectives of non-coding RNAs as biomarkers for glioma.
Collapse
Affiliation(s)
- Ryte Rynkeviciene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Julija Simiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| | - Egle Strainiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, LT-10122 Vilnius, Lithuania.
| | - Vaidotas Stankevicius
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biotechnology, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Jurgita Usinskiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Edita Miseikyte Kaubriene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Faculty of Medicine, Vilnius University, M.K. Cˇiurlionio 21, LT-03101 Vilnius, Lithuania.
| | - Ingrida Meskinyte
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
| | - Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
- Energy and Biotechnology Engineering Institute, Aleksandro Stulginskio University, Studentų g. 11, LT-53361 Akademija, Lithuania.
| | - Kestutis Suziedelis
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
21
|
Guo Y, Long J, Lei S. Promoter methylation as biomarkers for diagnosis of melanoma: A systematic review and meta-analysis. J Cell Physiol 2018; 234:7356-7367. [PMID: 30370527 DOI: 10.1002/jcp.27495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 09/06/2018] [Indexed: 01/19/2023]
Abstract
Melanoma is one of the most common skin cancer that is characterized by rapid growth, early metastasis, high malignant, and mortality. Accumulating evidence demonstrated that promoter methylation of tumor-suppressor genes is implicated in the pathogenesis of melanoma. In the current study, we performed a meta-analysis to identify promising methylation biomarkers in the diagnosis of melanoma. We carried out a systematic literature search using Pubmed, Embase, and ISI web knowledge database and found that gene promoter methylation of 50 genes was reported to be associated with the risk of melanoma. Meta-analysis revealed that hypermethylation of claudin 11 (CLDN11; odds ratio [OR], 16.82; 95% confidence interval [CI], 1.97-143.29; p = 0.010), O-6-methylguanine-DNA methyltransferase (MGMT; OR, 5.59; 95% CI, 2.51-12.47; p < 0.0001), cyclin-dependent kinase inhibitor 2A (p16; OR, 6.57; 95% CI, 2.19-19.75; p = 0.0008), retinoic acid receptor β (RAR-β2; OR, 24.31; 95% CI, 4.58-129.01; p = 0.0002), and Ras association domain family member (RASSF1A; OR, 9.35; 95% CI, 4.73-18.45; p < 0.00001) was significantly higher in melanoma patients compared with controls. CLDN11 (OR, 14.52; 95% CI, 1.84-114.55; p = 0.01), MGMT (OR, 8.08; 95% CI, 1.84-35.46; p = 0.006), p16 (OR, 9.44; 95% CI, 2.68-33.29; p = 0.0005), and RASSF1A (OR, 7.72; 95% CI, 1.05-56.50; p = 0.04) hypermethylation was significantly increased in primary melanoma compared with controls. Methylation frequency of CLDN11 (OR, 25.56; 95% CI, 2.32-281.66; p = 0.008), MGMT (OR, 4.64; 95% CI, 1.98-10.90; p = 0.0004), p16 (OR, 4.31; 95% CI, 1.33-13.96; p = 0.01), and RASSF1A (OR, 10.10; 95% CI, 2.87-35.54; p = 0.0003) was significantly higher in metastasis melanoma compared with controls. These findings indicated that CLDN11, MGMT, p16, RAR-β2, and RASSF1A hypermethylation is a risk factor and a potential biomarker for melanoma. CLDN11, MGMT, p16, and RASSF1A promoter methylation may take part in the development of melanoma and become useful biomarkers in the early diagnosis of the disease.
Collapse
Affiliation(s)
- Yu Guo
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhong Long
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Zhang CG, Yang F, Li YH, Sun Y, Liu XJ, Wu X. miR‑501‑3p sensitizes glioma cells to cisplatin by targeting MYCN. Mol Med Rep 2018; 18:4747-4752. [PMID: 30221699 DOI: 10.3892/mmr.2018.9458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/28/2018] [Indexed: 11/06/2022] Open
Abstract
Cisplatin, a commonly used chemotherapeutic agent for glioma patients, treatment often leads to chemoresistance. Accumulating evidence has demosntrated that microRNA (miRNA/miR) is involved in drug resistance of glioma cells. Nevertheless, the role of miR‑501‑3p in glioma cell resistance to cisplatin is unclear. In the present study, it was revealed that miR‑501‑3p expression was decreased in glioma tissues and further underexpressed in cisplatin‑resistant glioma cells compared with wild‑type (WT) glioma cells. Furthermore, cisplatin treatment inhibited the level of miR‑501‑3p in a time‑dependent way. Ectopic expression of miR‑501‑3p suppressed glioma cell growth and invasion, but increased cisplatin‑resistant glioma cell apoptosis. Furthermore, miR‑501‑3p sensitized glioma cells to cisplatin‑induced proliferation arrest and death. Mechanistically, it was demonstrated that miR‑501‑3p targeted MYCN in glioma cells. In addition, it was revealed that miR‑501‑3p inhibited MYCN expression by a luciferase reporter assay and reverse transcription‑quantitative polymerase chain reaction. Notably, restoration of MYCN reversed the effects of miR‑501‑3p in cisplatin‑resistant glioma cells. In conclusion, these results suggested that miR‑501‑3p may serve a promising marker for cisplatin resistance.
Collapse
Affiliation(s)
- Chuan-Gang Zhang
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Fan Yang
- Department of Neurosurgery, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Yan-Hua Li
- Department of Teaching and Reach of Obstetrics and Gynecology, Shandong Medical College, Linyi, Shandong 276000, P.R. China
| | - Yan Sun
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Xue-Jian Liu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Xia Wu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| |
Collapse
|
23
|
Kaina B, Izzotti A, Xu J, Christmann M, Pulliero A, Zhao X, Dobreanu M, Au WW. Inherent and toxicant-provoked reduction in DNA repair capacity: A key mechanism for personalized risk assessment, cancer prevention and intervention, and response to therapy. Int J Hyg Environ Health 2018; 221:993-1006. [PMID: 30041861 DOI: 10.1016/j.ijheh.2018.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 02/05/2023]
Abstract
Genomic investigations reveal novel evidence which indicates that genetic predisposition and inherent drug response are key factors for development of cancer and for poor response to therapy. However, mechanisms for these outcomes and interactions with environmental factors have not been well-characterized. Therefore, cancer risk, prevention, intervention and prognosis determinations have still mainly been based on population, rather than on individualized, evaluations. The objective of this review was to demonstrate that a key mechanism which contributes to the determination is inherent and/or toxicant-provoked reduction in DNA repair capacity. In addition, functional and quantitative determination of DNA repair capacity on an individual basis would dramatically change the evaluation and management of health problems from a population to a personalized basis. In this review, justifications for the scenario were delineated. Topics to be presented include assays for detection of functional DNA repair deficiency, mechanisms for DNA repair defects, toxicant-perturbed DNA repair capacity, epigenetic mechanisms (methylation and miRNA expression) for alteration of DNA repair function, and bioinformatics approach to analyze large amount of genomic data. Information from these topics has recently been and will be used for better understanding of cancer causation and of response to therapeutic interventions. Consequently, innovative genomic- and mechanism-based evidence can be increasingly used to develop more precise cancer risk assessment, and target-specific and personalized medicine.
Collapse
Affiliation(s)
| | - Alberto Izzotti
- University of Genoa, Genoa, Italy; IRCCS Policlinico San Martino Genoa, Italy
| | - Jianzhen Xu
- Shantou University Medical College, Shantou, China
| | | | | | - Xing Zhao
- Shantou University Medical College, Shantou, China
| | | | - William W Au
- Shantou University Medical College, Shantou, China; University of Medicine and Pharmacy, Tirgu Mures, Romania; University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
24
|
Hombach-Klonisch S, Mehrpour M, Shojaei S, Harlos C, Pitz M, Hamai A, Siemianowicz K, Likus W, Wiechec E, Toyota BD, Hoshyar R, Seyfoori A, Sepehri Z, Ande SR, Khadem F, Akbari M, Gorman AM, Samali A, Klonisch T, Ghavami S. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther 2018; 184:13-41. [DOI: 10.1016/j.pharmthera.2017.10.017] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Chen Z, Zheng Y, Shi Y, Cui Z. Overcoming tumor cell chemoresistance using nanoparticles: lysosomes are beneficial for (stearoyl) gemcitabine-incorporated solid lipid nanoparticles. Int J Nanomedicine 2018; 13:319-336. [PMID: 29391792 PMCID: PMC5768424 DOI: 10.2147/ijn.s149196] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite recent advances in targeted therapies and immunotherapies, chemotherapy using cytotoxic agents remains an indispensable modality in cancer treatment. Recently, there has been a growing emphasis in using nanomedicine in cancer chemotherapy, and several nanomedicines have already been used clinically to treat cancers. There is evidence that formulating small molecular cancer chemotherapeutic agents into nanomedicines significantly modifies their pharmacokinetics and often improves their efficacy. Importantly, cancer cells often develop resistance to chemotherapy, and formulating anticancer drugs into nanomedicines also helps overcome chemoresistance. In this review, we briefly describe the different classes of cancer chemotherapeutic agents, their mechanisms of action and resistance, and evidence of overcoming the resistance using nanomedicines. We then emphasize on gemcitabine and our experience in discovering the unique (stearoyl) gemcitabine solid lipid nanoparticles that are effective against tumor cells resistant to gemcitabine and elucidate the underlying mechanisms. It seems that lysosomes, which are an obstacle in the delivery of many drugs, are actually beneficial for our (stearoyl) gemcitabine solid lipid nanoparticles to overcome tumor cell resistance to gemcitabine.
Collapse
Affiliation(s)
- Zhe Chen
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zhengrong Cui
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
26
|
Abstract
Glioblastoma is the most aggressive brain tumor and, even with the current multimodal therapy, is an invariably lethal cancer with a life expectancy that depends on the tumor subtype but, even in the most favorable cases, rarely exceeds 2 years. Epigenetic factors play an important role in gliomagenesis, are strong predictors of outcome, and are important determinants for the resistance to radio- and chemotherapy. The latest addition to the epigenetic machinery is the noncoding RNA (ncRNA), that is, RNA molecules that are not translated into a protein and that exert their function by base pairing with other nucleic acids in a reversible and nonmutational mode. MicroRNAs (miRNA) are a class of ncRNA of about 22 bp that regulate gene expression by binding to complementary sequences in the mRNA and silence its translation into proteins. MicroRNAs reversibly regulate transcription through nonmutational mechanisms; accordingly, they can be considered as epigenetic effectors. In this review, we will discuss the role of miRNA in glioma focusing on their role in drug resistance and on their potential applications in the therapy of this tumor.
Collapse
|
27
|
Chang KY, Huang CT, Hsu TI, Hsu CC, Liu JJ, Chuang CK, Hung JJ, Chang WC, Tsai KK, Chuang JY. Stress stimuli induce cancer-stemness gene expression via Sp1 activation leading to therapeutic resistance in glioblastoma. Biochem Biophys Res Commun 2017; 493:14-19. [PMID: 28939040 DOI: 10.1016/j.bbrc.2017.09.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/17/2017] [Indexed: 01/06/2023]
Abstract
It has been suggested that stress stimuli from the microenvironment maintain a subset of tumor cells with stem-like properties, including drug resistance. Here, we investigate whether Sp1, a stress-responsive factor, regulates stemness gene expression and if its inhibition sensitizes cancer cells to chemotherapy. Hydrogen peroxide- and serum deprivation-induced stresses were performed in glioblastoma (GBM) cells and patient-derived cells, and the effect of the Sp1 inhibitor mithramycin A (MA) on these stress-induced stem cells and temozolomide (TMZ)-resistant cells was evaluated. Sp1 and stemness genes were not commonly overexpressed in clinical GBM samples. However, their expression was highly induced by stress stimuli. Using MA, we demonstrated Sp1 as a critical stemness-related transcriptional factor protecting GBM cells against stress- and TMZ-induced death. Thus, Sp1 inhibition may prevent recurrence of malignant cells persisting after primary therapy.
Collapse
Affiliation(s)
- Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Taiwan
| | - Chih-Ta Huang
- Department of Surgery, Taipei Cathay General Hospital, Taiwan
| | - Tsung-I Hsu
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taiwan
| | - Che-Chia Hsu
- Graduate Institute of Medical Science, Taipei Medical University, Taiwan; Department of Cancer Biology, Wake Forest School of Medicine, USA
| | - Jr-Jiun Liu
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taiwan
| | - Cheng-Keng Chuang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taiwan
| | - Jan-Jong Hung
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Science, Taipei Medical University, Taiwan
| | - Kelvin K Tsai
- National Institute of Cancer Research, National Health Research Institutes, Taiwan; Graduate Institute of Clinical Medicine, Taipei Medical University, Taiwan
| | - Jian-Ying Chuang
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taiwan.
| |
Collapse
|
28
|
Qian Z, Zhou S, Zhou Z, Yang X, Que S, Lan J, Qiu Y, Lin Y. miR-146b-5p suppresses glioblastoma cell resistance to temozolomide through targeting TRAF6. Oncol Rep 2017; 38:2941-2950. [DOI: 10.3892/or.2017.5970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/08/2017] [Indexed: 11/05/2022] Open
|
29
|
LncRNA-XIST interacts with miR-29c to modulate the chemoresistance of glioma cell to TMZ through DNA mismatch repair pathway. Biosci Rep 2017; 37:BSR20170696. [PMID: 28831025 PMCID: PMC5587918 DOI: 10.1042/bsr20170696] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 01/19/2023] Open
Abstract
Temozolomide (TMZ) is the most commonly used alkylating agent in glioma chemotherapy. However, growing resistance to TMZ remains a major challenge for clinicians. Recent evidence emphasizes the key regulatory roles of non-coding RNAs (lncRNAs and miRNAs) in tumor biology, including the chemoresistance of cancers. However, little is known about the role and regulation mechanisms of lncRNA cancer X-inactive specific transcripts (XIST) in glioma tumorigenesis and chemotherapy resistance. In the present study, higher XIST expression was observed in glioma tissues and cell lines, which was related to poorer clinicopathologic features and shorter survival time. XIST knockdown alone was sufficient to inhibit glioma cell proliferation and to amplify TMZ-induced cell proliferation inhibition. Moreover, XIST knockdown can sensitize TMZ-resistant glioma cells to TMZ. XIST can inhibit miR-29c expression by directly targetting TMZ-resistant glioma cells. DNA repair protein O6-methylguanine-DNA methytransferase (MGMT) plays a key role in TMZ resistance; transcription factor specificity protein 1 (SP1), a regulator of DNA mismatch repair (MMR) key protein MSH6, has been reported to be up-regulated in TMZ-resistant glioma cell lines. In the present study, we show that XIST/miR-29c coregulates SP1 and MGMT expression in TMZ-resistant glioma cell lines. Our data suggest that XIST can amplify the chemoresistance of glioma cell lines to TMZ through directly targetting miR-29c via SP1 and MGMT. XIST/miR-29c may be a potential therapeutic target for glioma treatment.
Collapse
|
30
|
Geretto M, Pulliero A, Rosano C, Zhabayeva D, Bersimbaev R, Izzotti A. Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. Am J Cancer Res 2017; 7:1350-1371. [PMID: 28670496 PMCID: PMC5489783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023] Open
Abstract
Chemo-resistance, which is the main obstacle in cancer therapy, is caused by the onset of drug-resistant cells in the heterogeneous cell population in cancer tissues. MicroRNAs regulate gene expression at the post-transcriptional level, and they are involved in many different biological processes, including cell proliferation, differentiation, metabolism, stress response, and apoptosis. The aberrant expression of microRNAs plays a major pathogenic role from the early stages of the carcinogenesis process. Recently, microRNAs have been reported to play an important role in inducing resistance to anti-cancer drugs. Specific microRNA alterations occur selectively in cancer cells, rendering these cells resistant to various chemotherapeutic agents. For example, resistance to 5-fluorouracil is mediated by alterations in miR-21, miR-27a/b, and miR-155; the sensitivity to Docetaxel is influenced by miR-98, miR-192, miR-194, miR-200b, miR-212, and miR-424; and the resistance to Cisplatin is mediated by miR-let-7, miR-15, miR-16 miR-21 and miR-214. Chemo-resistant cancer cells are characterized by altered functions in enzymes that are involved in microRNA maturation, primarily including Dicer, as demonstrated in ovarian cancer, oral squamous cell carcinoma, breast cancer and cervical cancer. Based on the evidence reviewed in this paper, various strategies have been developed to artificially re-establish microRNA expression in resistant cells, thus restoring chemo-sensitivity. These strategies employ synthetic analogs, anti-microRNA oligonucleotides, locked nucleic acid, microRNA sponges, drugs that inhibit DNA methylation or histone deacetylation, and the introduction of microRNA mimics. The ability to modulate microRNA expression is a promising strategy for overcoming the problem of drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Marta Geretto
- Department of Health Sciences, University of GenoaItaly
| | | | | | - Dinara Zhabayeva
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumyliov Eurasian National UniversityAstana, Kazakhstan
| | - Rakhmet Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumyliov Eurasian National UniversityAstana, Kazakhstan
| | - Alberto Izzotti
- Department of Health Sciences, University of GenoaItaly
- IRCCS AOU San Martino ISTGenoa, Italy
| |
Collapse
|
31
|
Zhang HW, Wang EW, Li LX, Yi SH, Li LC, Xu FL, Wang DL, Wu YZ, Nian WQ. A regulatory loop involving miR-29c and Sp1 elevates the TGF-β1 mediated epithelial-to-mesenchymal transition in lung cancer. Oncotarget 2016; 7:85905-85916. [PMID: 27829234 PMCID: PMC5349884 DOI: 10.18632/oncotarget.13137] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022] Open
Abstract
Specificity protein1 (Sp1) is required for TGF-β-induced epithelial-to-mesenchymal transition (EMT) which has been demonstrated to aggravate the progression of cancer including lung cancer. microRNA-29c (miR-29c) is identified to inhibit EMT, but the correlation between miR-29c and Sp1 in human lung cancer remain incompletely clarified. Here, we confirmed decreased expression of miR-29c and enhanced expression of Sp1 in lung cancer tissues (n = 20) and found that Sp1 could be targeted and inhibited by miR-29c. Besides, the expression of miR-29c was down-regulated in high-metastatic lung cancer cell lines and TGF-β1-treated cells. The inhibition of miR-29c or overexpression of Sp1 in 95C and A549 cells dramatically enhanced the cell migration and invasion, and also induced the decrease in the expression of epithelial markers, e.g. thyroid transcription factor 1 (TTF-1) and E-cadherin, together with an increase in mesenchymal markers including vimentin, α-smooth muscle actin (α-SMA), which could be restored by overexpression of miR-29c mimics during the TGF-β-induced EMT. Moreover, dual-luciferase reporter assay was performed and the results indicated that miR-29c/Sp1 could form an auto-regulatory loop with TGF-β1, which impaired TGFB1 transcription. Furthermore, miR-29c overexpression could abrogate the tumor progression and inhibit the Sp1/TGF-β expressions in vivo, indicating that miR-29c could be a tumor suppressor and repress the Sp1/TGF-β axis-induced EMT in lung cancer.
Collapse
Affiliation(s)
- Hai-wei Zhang
- Key Laboratory of Oncology, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing Cancer Center, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Institute, Chongqing, China
| | - En-wen Wang
- Department of Oncology, Chongqing Cancer Institute, Chongqing, China
| | - Li-xian Li
- Key Laboratory of Oncology, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing Cancer Center, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Institute, Chongqing, China
| | - Shou-hui Yi
- Key Laboratory of Oncology, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing Cancer Center, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Institute, Chongqing, China
| | - Lu-chun Li
- Department of Oncology, Chongqing Cancer Institute, Chongqing, China
| | - Fa-liang Xu
- Center of Breast Cancer, Chongqing Cancer Institute, Chongqing, China
| | - Dong-lin Wang
- Department of Oncology, Chongqing Cancer Institute, Chongqing, China
| | - Yong-zhong Wu
- Department of Radiotherapy, Chongqing Cancer Institute, Chongqing, China
| | - Wei-qi Nian
- Key Laboratory of Oncology, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing Cancer Center, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Institute, Chongqing, China
| |
Collapse
|
32
|
Feng H, Wang J, Jiang H, Mei X, Zhao Y, Chen F, Qu Y, Sai K, Guo C, Yang Q, Zhang Z, Chen Z. β-Elemene Selectively Inhibits the Proliferation of Glioma Stem-Like Cells Through the Downregulation of Notch1. Stem Cells Transl Med 2016; 6:830-839. [PMID: 28297578 PMCID: PMC5442766 DOI: 10.5966/sctm.2016-0009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022] Open
Abstract
Glioma is the most frequent primary central nervous system tumor. Although the current first-line medicine, temozolomide (TMZ), promotes patient survival, drug resistance develops easily. Thus, it is important to investigate novel therapeutic reagents to solidify the treatment effect. β-Elemene (bELE) is a compound from a Chinese herb whose anticancer effect has been shown in various types of cancer. However, its role in the inhibition of glioma stem-like cells (GSLCs) has not yet been reported. We studied both the in vitro and the in vivo inhibitory effect of bELE and TMZ in GSLCs and parental cells and their combined effects. The molecular mechanisms were also investigated. We also optimized the delivery methods of bELE. We found that bELE selectively inhibits the proliferation and sphere formation of GSLCs, other than parental glioma cells, and TMZ exerts its effects on parental cells instead of GSLCs. The in vivo data confirmed that the combination of bELE and TMZ worked better in the xenografts of GSLCs, mimicking the situation of tumorigenesis of human cancer. Notch1 was downregulated with bELE treatment. Our data also demonstrated that the continuous administration of bELE produces an ideal effect to control tumor progression. Our findings have demonstrated, for the first time, that bELE could compensate for TMZ to kill both GSLCs and nonstem-like cancer cells, probably improving the prognosis of glioma patients tremendously. Notch1 might be a downstream target of bELE. Therefore, our data shed light on improving the outcomes of glioma patients by combining bELE and TMZ. Stem Cells Translational Medicine 2017;6:830-839.
Collapse
Affiliation(s)
- Hai‐bin Feng
- Department of Neurosurgery/Neuro‐Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
- Department of Neurosurgery, Nongken Central Hospital of Guangdong, Zhanjiang, Guangdong, People’s Republic of China
| | - Jing Wang
- Department of Neurosurgery/Neuro‐Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Hao‐ran Jiang
- Department of Neurosurgery/Neuro‐Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
- Department of Neurosurgery, Huizhou First People's Hospital, Huizhou, Guangdong, People’s Republic of China
| | - Xin Mei
- Department of Neurosurgery/Neuro‐Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yi‐ying Zhao
- Department of Neurosurgery/Neuro‐Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Fu‐rong Chen
- Department of Neurosurgery/Neuro‐Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yue Qu
- Department of Neurosurgery/Neuro‐Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ke Sai
- Department of Neurosurgery/Neuro‐Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Cheng‐cheng Guo
- Department of Neurosurgery/Neuro‐Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Qun‐ying Yang
- Department of Neurosurgery/Neuro‐Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Zong‐ping Zhang
- Department of Neurosurgery, Nongken Central Hospital of Guangdong, Zhanjiang, Guangdong, People’s Republic of China
| | - Zhong‐ping Chen
- Department of Neurosurgery/Neuro‐Oncology, Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|