1
|
Hsieh KL, Chen Q, Salzillo TC, Zhang J, Jiang X, Bhattacharya PK, Shams S. Hyperpolarized Magnetic Resonance Imaging, Nuclear Magnetic Resonance Metabolomics, and Artificial Intelligence to Interrogate the Metabolic Evolution of Glioblastoma. Metabolites 2024; 14:448. [PMID: 39195544 DOI: 10.3390/metabo14080448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma (GBM) is a malignant Grade VI cancer type with a median survival duration of only 8-16 months. Earlier detection of GBM could enable more effective treatment. Hyperpolarized magnetic resonance spectroscopy (HPMRS) could detect GBM earlier than conventional anatomical MRI in glioblastoma murine models. We further investigated whether artificial intelligence (A.I.) could detect GBM earlier than HPMRS. We developed a deep learning model that combines multiple modalities of cancer data to predict tumor progression, assess treatment effects, and to reconstruct in vivo metabolomic information from ex vivo data. Our model can detect GBM progression two weeks earlier than conventional MRIs and a week earlier than HPMRS alone. Our model accurately predicted in vivo biomarkers from HPMRS, and the results inferred biological relevance. Additionally, the model showed potential for examining treatment effects. Our model successfully detected tumor progression two weeks earlier than conventional MRIs and accurately predicted in vivo biomarkers using ex vivo information such as conventional MRIs, HPMRS, and tumor size data. The accuracy of these predictions is consistent with biological relevance.
Collapse
Affiliation(s)
- Kang Lin Hsieh
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qing Chen
- Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Travis C Salzillo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Zhang
- Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xiaoqian Jiang
- Department of Health Data Science and Artificial Intelligence, McWilliams School of Biomedical Informatics at UTHealth Houston, Houston, TX 77030, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shyan Shams
- Department of Health Data Science and Artificial Intelligence, McWilliams School of Biomedical Informatics at UTHealth Houston, Houston, TX 77030, USA
| |
Collapse
|
2
|
DICER1 mutations in primary central nervous system tumors: new insights into histologies, mutations, and prognosis. J Neurooncol 2022; 157:499-510. [PMID: 35384518 DOI: 10.1007/s11060-022-03994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE We sought to characterize clinical outcomes for adult and pediatric patients with primary CNS tumors harboring DICER1 mutations or loss of DICER1. METHODS We conducted a retrospective cohort study of 98 patients who were treated between 1995 and 2020 for primary CNS tumors containing DICER1 mutations or loss of DICER1 on chromosome 14q, identified by targeted next generation sequencing. Kaplan-Meier plots and log rank tests were used to analyze survival. Cox proportional-hazards model was used for univariate and multivariable analyses for all-cause mortality (ACM). RESULTS Within our cohort, the most common malignancies were grade 3/4 glioma (61%), grade 1/2 glioma (17%), and CNS sarcoma (6%). Sarcoma and non-glioma histologies, and tumors with biallelic DICER1 mutations or deletions were common in the pediatric population. Mutations occurred throughout DICER1, including missense mutations in the DexD/H-box helicase, DUF283, RNaseIIIa, and RNaseIIIb domains. For patients with grade 3/4 glioma, MGMT methylation (Hazard ratio [HR] 0.35, 95% Confidence Interval [CI] 0.16-0.73, p = 0.005), IDH1 R132 mutation (HR 0.11, 95% CI 0.03-0.41, p = 0.001), and missense mutation in the DexD/H-box helicase domain (HR 0.06, 95% CI 0.01-0.38, p = 0.003) were independently associated with longer time to ACM on multivariable analyses. CONCLUSION DICER1 mutations or loss of DICER1 occur in diverse primary CNS tumors, including previously unrecognized grade 3/4 gliomas as the most common histology. While prior studies have described RNaseIIIb hotspot mutations, we document novel mutations in additional DICER1 functional domains. Within the grade 3/4 glioma cohort, missense mutation in the DexD/H-box helicase domain was associated with prolonged survival.
Collapse
|
3
|
Gareev I, Beylerli O, Liang Y, Xiang H, Liu C, Xu X, Yuan C, Ahmad A, Yang G. The Role of MicroRNAs in Therapeutic Resistance of Malignant Primary Brain Tumors. Front Cell Dev Biol 2021; 9:740303. [PMID: 34692698 PMCID: PMC8529124 DOI: 10.3389/fcell.2021.740303] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023] Open
Abstract
Brain tumors in children and adults are challenging tumors to treat. Malignant primary brain tumors (MPBTs) such as glioblastoma have very poor outcomes, emphasizing the need to better understand their pathogenesis. Developing novel strategies to slow down or even stop the growth of brain tumors remains one of the major clinical challenges. Modern treatment strategies for MPBTs are based on open surgery, chemotherapy, and radiation therapy. However, none of these treatments, alone or in combination, are considered effective in controlling tumor progression. MicroRNAs (miRNAs) are 18-22 nucleotide long endogenous non-coding RNAs that regulate gene expression at the post-transcriptional level by interacting with 3'-untranslated regions (3'-UTR) of mRNA-targets. It has been proven that miRNAs play a significant role in various biological processes, including the cell cycle, apoptosis, proliferation, differentiation, etc. Over the last decade, there has been an emergence of a large number of studies devoted to the role of miRNAs in the oncogenesis of brain tumors and the development of resistance to radio- and chemotherapy. Wherein, among the variety of molecules secreted by tumor cells into the external environment, extracellular vesicles (EVs) (exosomes and microvesicles) play a special role. Various elements were found in the EVs, including miRNAs, which can be transported as part of these EVs both between neighboring cells and between remotely located cells of different tissues using biological fluids. Some of these miRNAs in EVs can contribute to the development of resistance to radio- and chemotherapy in MPBTs, including multidrug resistance (MDR). This comprehensive review examines the role of miRNAs in the resistance of MPBTs (e.g., high-grade meningiomas, medulloblastoma (MB), pituitary adenomas (PAs) with aggressive behavior, and glioblastoma) to chemoradiotherapy and pharmacological treatment. It is believed that miRNAs are future therapeutic targets in MPBTs and such the role of miRNAs needs to be critically evaluated to focus on solving the problems of resistance to therapy this kind of human tumors.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Huang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Chunyang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Xun Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Chao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| | - Aamir Ahmad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Salzillo TC, Mawoneke V, Weygand J, Shetty A, Gumin J, Zacharias NM, Gammon ST, Piwnica-Worms D, Fuller GN, Logothetis CJ, Lang FF, Bhattacharya PK. Measuring the Metabolic Evolution of Glioblastoma throughout Tumor Development, Regression, and Recurrence with Hyperpolarized Magnetic Resonance. Cells 2021; 10:cells10102621. [PMID: 34685601 PMCID: PMC8534002 DOI: 10.3390/cells10102621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
Rapid diagnosis and therapeutic monitoring of aggressive diseases such as glioblastoma can improve patient survival by providing physicians the time to optimally deliver treatment. This research tested whether metabolic imaging with hyperpolarized MRI could detect changes in tumor progression faster than conventional anatomic MRI in patient-derived glioblastoma murine models. To capture the dynamic nature of cancer metabolism, hyperpolarized MRI, NMR spectroscopy, and immunohistochemistry were performed at several time-points during tumor development, regression, and recurrence. Hyperpolarized MRI detected significant changes of metabolism throughout tumor progression whereas conventional MRI was less sensitive. This was accompanied by aberrations in amino acid and phospholipid lipid metabolism and MCT1 expression. Hyperpolarized MRI can help address clinical challenges such as identifying malignant disease prior to aggressive growth, differentiating pseudoprogression from true progression, and predicting relapse. The individual evolution of these metabolic assays as well as their correlations with one another provides context for further academic research.
Collapse
Affiliation(s)
- Travis C. Salzillo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - Vimbai Mawoneke
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - Joseph Weygand
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Akaanksh Shetty
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.G.); (F.F.L.)
| | - Niki M. Zacharias
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
| | - Gregory N. Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.G.); (F.F.L.)
| | - Pratip K. Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (T.C.S.); (V.M.); (A.S.); (S.T.G.); (D.P.-W.)
- Correspondence: ; Tel.: +1-713-454-9887
| |
Collapse
|
5
|
Mercatelli N, Galardi S, Ciafrè SA. MicroRNAs as Multifaceted Players in Glioblastoma Multiforme. MIRNAS IN DIFFERENTIATION AND DEVELOPMENT 2017; 333:269-323. [DOI: 10.1016/bs.ircmb.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|