1
|
Xiang K, Kunin M, Larafa S, Busch M, Dünker N, Jendrossek V, Matschke J. α-Ketoglutarate supplementation and NAD+ modulation enhance metabolic rewiring and radiosensitization in SLC25A1 inhibited cancer cells. Cell Death Discov 2024; 10:27. [PMID: 38225236 PMCID: PMC10789775 DOI: 10.1038/s41420-024-01805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Metabolic rewiring is the result of the increasing demands and proliferation of cancer cells, leading to changes in the biological activities and responses to treatment of cancer cells. The mitochondrial citrate transport protein SLC25A1 is involved in metabolic reprogramming offering a strategy to induce metabolic bottlenecks relevant to radiosensitization through the accumulation of the oncometabolite D-2-hydroxyglutarate (D-2HG) upon SLC25A1 inhibition (SLC25A1i). Previous studies have revealed the comparative effects of SLC25A1i or cell-permeable D-2HG (octyl-D-2HG) treatments on DNA damage induction and repair, as well as on energy metabolism and cellular function, which are crucial for the long-term survival of irradiated cells. Here, α-ketoglutarate (αKG), the precursor of D-2HG, potentiated the effects observed upon SLC25A1i on DNA damage repair, cell function and long-term survival in vitro and in vivo, rendering NCI-H460 cancer cells more vulnerable to ionizing radiation. However, αKG treatment alone had little effect on these phenotypes. In addition, supplementation with nicotinamide (NAM), a precursor of NAD (including NAD+ and NADH), counteracted the effects of SLC25A1i or the combination of SLC25A1i with αKG, highlighting a potential importance of the NAD+/NADH balance on cellular activities relevant to the survival of irradiated cancer cells upon SLC25A1i. Furthermore, inhibition of histone lysine demethylases (KDMs), as a major factor affected upon SLC25A1i, by JIB04 treatment alone or in combination with αKG supplementation phenocopied the broad effects on mitochondrial and cellular function induced by SLC25A1i. Taken together, αKG supplementation potentiated the effects on cellular processes observed upon SLC25A1i and increased the cellular demand for NAD to rebalance the cellular state and ensure survival after irradiation. Future studies will elucidate the underlying metabolic reprogramming induced by SLC25A1i and provide novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Kexu Xiang
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
- Department of Gastroenterology, Chongqing University Cancer Hospital, 400030, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Mikhail Kunin
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Safa Larafa
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Maike Busch
- Center for Translational Neuro- and Behavioral Sciences, Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147, Essen, Germany
| | - Nicole Dünker
- Center for Translational Neuro- and Behavioral Sciences, Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
- German Cancer Consortium (DKTK) partner site Essen a partnership between DKFZ and University Hospital, Essen, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
- German Cancer Consortium (DKTK) partner site Essen a partnership between DKFZ and University Hospital, Essen, Germany.
| |
Collapse
|
2
|
Akrida I, Papadaki H. Adipokines and epithelial-mesenchymal transition (EMT) in cancer. Mol Cell Biochem 2023; 478:2419-2433. [PMID: 36715963 DOI: 10.1007/s11010-023-04670-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Obesity is a significant risk factor for cancer development. Within the tumor microenvironment, adipocytes interact with cancer cells, immune cells, fibroblasts and endothelial cells, and orchestrate several signaling pathways by secreting bioactive molecules, including adipokines. Adipokines or adipocytokines are produced predominantly by adipocytes and function as autocrine, paracrine and endocrine mediators. Adipokines can exert pro- and anti-inflammatory functions, and they play a pivotal role in the state of chronic low-grade inflammation that characterizes obesity. Epithelial-mesenchymal transition (EMT), a complex biological process whereby epithelial cells acquire the invasive, migratory mesenchymal phenotype is well-known to be implicated in cancer progression and metastasis. Emerging evidence suggests that there is a link between adipokines and EMT. This may contribute to the correlation that has been documented between obesity and cancer progression. This review summarizes the existing body of evidence supporting an association between the process of EMT in cancer and the adipokines leptin, adiponectin, resistin, visfatin/NAMPT, lipocalin-2/NGAL, as well as other newly discovered adipokines including chemerin, nesfatin-1/nucleobindin-2, AZGP1, SFRP5 and FABP4.
Collapse
Affiliation(s)
- Ioanna Akrida
- Department of General Surgery, University General Hospital of Patras, Rion, Greece.
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece.
- Department of Surgery, Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504, Rion, Greece.
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece
| |
Collapse
|
3
|
Tang H, Wang L, Wang T, Yang J, Zheng S, Tong J, Jiang S, Zhang X, Zhang K. Recent advances of targeting nicotinamide phosphoribosyltransferase (NAMPT) for cancer drug discovery. Eur J Med Chem 2023; 258:115607. [PMID: 37413882 DOI: 10.1016/j.ejmech.2023.115607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for the biosynthesis of NAD+ in the salvage pathway. NAMPT is overexpressed in various cancers, associating with a poor prognosis and tumor progression. Beyond cancer metabolism, recent evidence unravels additional roles of NAMPT in cancer biology, including DNA repair machinery, crosstalk with oncogenic signaling pathways, cancer cell stemness, and immune responses. NAMPT is a promising therapeutic target for cancer. However, first-generation NAMPT inhibitors exhibited limited efficacy and dose-limiting toxicities in clinical trials. Multiple strategies are being exploited to improve their efficacy and minimize toxic-side effects. This review discusses the biomarkers predictive of response to NAMPT inhibitors, and summarizes the most significant advances in the evolution of structurally distinct NAMPT inhibitors, the manipulation of targeted delivery technologies via antibody-drug conjugates (ADCs), PhotoActivated ChemoTherapy (PACT) and the intratumoral delivery system, as well as the development and pharmacological outcomes of NAMPT degraders. Finally, a discussion of future perspectives and challenges in this area is also included.
Collapse
Affiliation(s)
- He Tang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lin Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamei Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Tong
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Pant K, Richard S, Peixoto E, Yin J, Seelig DM, Carotenuto P, Salati M, Franco B, Roberts LR, Gradilone SA. The NAMPT Inhibitor FK866 in Combination with Cisplatin Reduces Cholangiocarcinoma Cells Growth. Cells 2023; 12:cells12050775. [PMID: 36899911 PMCID: PMC10001024 DOI: 10.3390/cells12050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
It is well established that Cholangiocarcioma (CCA) drug resistance plays a crucial role in the spread and survival of cancer cells. The major enzyme in the nicotinamide-adenine dinucleotide (NAD+)-mediated pathways, nicotinamide phosphoribosyltransferase (NAMPT), is essential for cancer cell survival and metastasis. Previous research has shown that the targeted NAMPT inhibitor FK866 reduces cancer cell viability and triggers cancer cell death; however, whether FK866 affects CCA cell survival has not been addressed before. We show herein that NAMPT is expressed in CCA cells, and FK866 suppresses the capacity of CCA cells to grow in a dose-dependent manner. Furthermore, by preventing NAMPT activity, FK866 significantly reduced the amount of NAD+ and adenosine 5'-triphosphate (ATP) in HuCCT1, KMCH, and EGI cells. The present study's findings further show that FK866 causes changes in mitochondrial metabolism in CCA cells. Additionally, FK866 enhances the anticancer effects of cisplatin in vitro. Taken together, the results of the current study suggest that the NAMPT/NAD+ pathway may be a possible therapeutic target for CCA, and FK866 may be a useful medication targeting CCA in combination with cisplatin.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Estanislao Peixoto
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jun Yin
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN 55905, USA
| | - Davis M. Seelig
- Comparative Pathology Shared Resource, Masonic Cancer Center, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Pietro Carotenuto
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Massimiliano Salati
- Medical Oncology Unit, University Hospital of Modena, 41125 Modena, Italy
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 411250 Modena, Italy
| | - Brunella Franco
- Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale, School for Advanced Studies, 80131 Naples, Italy
| | - Lewis R. Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence:
| |
Collapse
|
5
|
Anticancer Activities of Novel Nicotinamide Phosphoribosyltransferase Inhibitors in Hematological Malignancies. Molecules 2023; 28:molecules28041897. [PMID: 36838885 PMCID: PMC9967653 DOI: 10.3390/molecules28041897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Targeting cancer cells that are highly dependent on the nicotinamide adenine dinucleotide (NAD+) metabolite is a promising therapeutic strategy. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme catalyzing NAD+ production. Despite the high efficacy of several developed NAMPT inhibitors (i.e., FK866 (APO866)) in preclinical studies, their clinical activity was proven to be limited. Here, we report the synthesis of new NAMPT Inhibitors, JJ08, FEI191 and FEI199, which exhibit a broad anticancer activity in vitro. Results show that these compounds are potent NAMPT inhibitors that deplete NAD+ and NADP(H) after 24 h of drug treatment, followed by an increase in reactive oxygen species (ROS) accumulation. The latter event leads to ATP loss and mitochondrial depolarization with induction of apoptosis and necrosis. Supplementation with exogenous NAD+ precursors or catalase (ROS scavenger) abrogates the cell death induced by the new compounds. Finally, in vivo administration of the new NAMPT inhibitors in a mouse xenograft model of human Burkitt lymphoma delays tumor growth and significantly prolongs mouse survival. The most promising results are collected with JJ08, which completely eradicates tumor growth. Collectively, our findings demonstrate the efficient anticancer activity of the new NAMPT inhibitor JJ08 and highlight a strong interest for further evaluation of this compound in hematological malignancies.
Collapse
|
6
|
Tong T, Zhang C, Li J, Deng M, Wang X. Preclinical models derived from endoscopic ultrasound-guided tissue acquisition for individualized treatment of pancreatic ductal adenocarcinoma. Front Med (Lausanne) 2023; 9:934974. [PMID: 36687406 PMCID: PMC9849774 DOI: 10.3389/fmed.2022.934974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor outcomes. Although the management strategies have evolved in recent years, the PDAC 5-year survival rate remains at only 9%; it may become the second leading cause of cancer death in the USA by 2030. Only 15-20% of PDAC patients are eligible to undergo surgery; diagnostic biopsies and individualized treatment present a more significant challenge for the remaining group. Endoscopic ultrasound-guided tissue acquisition (EUS-TA) has been widely used in the diagnosis of pancreatic masses. With the advancement of this sampling technique, adequate specimens can be obtained from all patients with PDAC in both early and late clinical stages. Recent data suggest that the specimens obtained from EUS-TA might be used to establish viable preclinical models, which conserve the genetic mutation and preserve the heterogeneity of the original tumors. Additionally, any drug sensitivity evident in the EUS-TA-derived preclinical models might predict the clinical response, thus guiding the prospective therapeutic selection. As we move toward the era of precision medicine, this review provides an update on the role of EUS-TA as a method for obtaining genetic material used in preclinical models that can assess and stratify individuals according to their individual cancer biology.
Collapse
Affiliation(s)
- Ting Tong
- Endoscopic Center, The First Affiliated Hospital of Xiamen University, Xiamen, China,Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China
| | - Chao Zhang
- Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China
| | - Jingbo Li
- Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China
| | - Minzi Deng
- Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China,*Correspondence: Minzi Deng,
| | - Xiaoyan Wang
- Endoscopic Center, Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Central South University, Changsha, China,Xiaoyan Wang,
| |
Collapse
|
7
|
Serum Visfatin/NAMPT as a Potential Risk Predictor for Malignancy of Adrenal Tumors. J Clin Med 2022; 11:jcm11195563. [PMID: 36233428 PMCID: PMC9572558 DOI: 10.3390/jcm11195563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocortical carcinomas (ACC) are rare endocrine malignancies, often with a poor prognosis. Visfatin/NAMPT regulates a variety of signaling pathway components, and its overexpression has been found in carcinogenesis. Our study aimed to assess the clinical usefulness of visfatin/NAMPT serum level in discriminating between ACC and benign adrenocortical tumors. Twenty-two patients with ACC and twenty-six patients with benign adrenocortical tumors were recruited. Fasting blood samples were collected from each patient, and visfatin serum levels were measured with the ELISA Kit. Clinical stage, tumor size, Ki67 proliferation index, hormonal secretion pattern, and follow-up were determined in ACC patients. Patients with ACC had significantly higher visfatin serum concentrations (7.81 ± 2.25 vs. 6.08 ± 1.32 ng/mL, p-value = 0.003). The most advanced clinical stage with metastases was associated with significantly elevated visfatin levels (p-value = 0.022). Based on ROC analysis, visfatin serum concentrations higher than 8.05 ng/mL could discriminate ACC with a sensitivity of 50.0% and specificity of 92.3%. Univariate Cox regression indicated that tumor size was significantly related to shorter survival, and the visfatin level was borderline significant in all patients (HR = 1.013, p-value = 0.002, HR = 1.321, p-value = 0.058). In the Kaplan-Meier method, patients with visfatin serum concentrations higher than 6.3 ng/mL presented significantly lower survival probability (p-value = 0.006). Serum visfatin/NAMPT could be a potential risk predictor for the malignancy of adrenal tumors. However, further studies are needed on this subject.
Collapse
|
8
|
Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553. [PMID: 36160449 PMCID: PMC9490061 DOI: 10.3389/fphar.2022.970553] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the NAD salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. These include breast cancer, ovarian cancer, prostate cancer, gastric cancer, colorectal cancer, glioma, and b-cell lymphoma. NAMPT is also known to impact the NAD and NADPH pool. Research has demonstrated that NAMPT can be inhibited. NAMPT inhibitors are diverse anticancer medicines with significant anti-tumor efficacy in ex vivo tumor models. A few notable NAMPT specific inhibitors which have been produced include FK866, CHS828, and OT-82. Despite encouraging preclinical evidence of the potential utility of NAMPT inhibitors in cancer models, early clinical trials have yielded only modest results, necessitating the adaptation of additional tactics to boost efficacy. This paper examines a number of cancer treatment methods which target NAMPT, including the usage of individual inhibitors, pharmacological combinations, dual inhibitors, and ADCs, all of which have demonstrated promising experimental or clinical results. We intend to contribute further ideas regarding the usage and development of NAMPT inhibitors in clinical therapy to advance the field of research on this intriguing target.
Collapse
Affiliation(s)
- Yichen Wei
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Xiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenqiu Zhang,
| |
Collapse
|
9
|
Podsednik A, Jiang J, Jacob A, Li LZ, Xu HN. Optical Redox Imaging of Treatment Responses to Nampt Inhibition and Combination Therapy in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22115563. [PMID: 34070254 PMCID: PMC8197351 DOI: 10.3390/ijms22115563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023] Open
Abstract
We evaluated the utility of optical redox imaging (ORI) to identify the therapeutic response of triple-negative breast cancers (TNBC) under various drug treatments. Cultured HCC1806 and MDA-MB-231 cells treated with FK866 (nicotinamide phosphoribosyltransferase (Nampt) inhibitor), FX11 (lactate dehydrogenase A inhibitor), paclitaxel, and their combinations were subjected to ORI, followed by imaging fluorescently labeled reactive oxygen species (ROS). Cell growth inhibition was measured by a cell viability assay. We found that both cell lines experienced significant NADH decrease and redox ratio (Fp/(NADH+Fp)) increase due to FK866 treatment; however, HCC1806 was much more responsive than MDA-MB-231. We further studied HCC1806 with the main findings: (i) nicotinamide riboside (NR) partially restored NADH in FK866-treated cells; (ii) FX11 induced an over 3-fold NADH increase in FK866 or FK866+NR pretreated cells; (iii) FK866 combined with paclitaxel caused synergistic increases in both Fp and the redox ratio; (iv) FK866 sensitized cells to paclitaxel treatments, which agrees with the redox changes detected by ORI; (v) Fp and the redox ratio positively correlated with cell growth inhibition; and (vi) Fp and NADH positively correlated with ROS level. Our study supports the utility of ORI for detecting the treatment responses of TNBC to Nampt inhibition and the sensitization effects on standard chemotherapeutics.
Collapse
|
10
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
11
|
Moore AM, Zhou L, Cui J, Li L, Wu N, Yu A, Poddar S, Liang K, Abt ER, Kim S, Ghukasyan R, Khachatourian N, Pagano K, Elliott I, Dann AM, Riahi R, Le T, Dawson DW, Radu CG, Donahue TR. NAD + depletion by type I interferon signaling sensitizes pancreatic cancer cells to NAMPT inhibition. Proc Natl Acad Sci U S A 2021; 118:e2012469118. [PMID: 33597293 PMCID: PMC7923374 DOI: 10.1073/pnas.2012469118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests that intratumoral interferon (IFN) signaling can trigger targetable vulnerabilities. A hallmark of pancreatic ductal adenocarcinoma (PDAC) is its extensively reprogrammed metabolic network, in which nicotinamide adenine dinucleotide (NAD) and its reduced form, NADH, are critical cofactors. Here, we show that IFN signaling, present in a subset of PDAC tumors, substantially lowers NAD(H) levels through up-regulating the expression of NAD-consuming enzymes PARP9, PARP10, and PARP14. Their individual contributions to this mechanism in PDAC have not been previously delineated. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD salvage pathway, a dominant source of NAD in cancer cells. We found that IFN-induced NAD consumption increased dependence upon NAMPT for its role in recycling NAM to salvage NAD pools, thus sensitizing PDAC cells to pharmacologic NAMPT inhibition. Their combination decreased PDAC cell proliferation and invasion in vitro and suppressed orthotopic tumor growth and liver metastases in vivo.
Collapse
Affiliation(s)
- Alexandra M Moore
- Department of Surgery, University of California, Los Angeles, CA 90095
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Lei Zhou
- Department of Surgery, University of California, Los Angeles, CA 90095
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Jing Cui
- Department of Surgery, University of California, Los Angeles, CA 90095
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430022, China
| | - Luyi Li
- Department of Surgery, University of California, Los Angeles, CA 90095
| | - Nanping Wu
- Department of Surgery, University of California, Los Angeles, CA 90095
| | - Alice Yu
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Soumya Poddar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095
| | - Keke Liang
- Department of Surgery, University of California, Los Angeles, CA 90095
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Evan R Abt
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095
| | - Stephanie Kim
- Department of Surgery, University of California, Los Angeles, CA 90095
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Razmik Ghukasyan
- Department of Surgery, University of California, Los Angeles, CA 90095
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | | | - Kristina Pagano
- Department of Surgery, University of California, Los Angeles, CA 90095
| | - Irmina Elliott
- Department of Surgery, University of California, Los Angeles, CA 90095
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Amanda M Dann
- Department of Surgery, University of California, Los Angeles, CA 90095
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Rana Riahi
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
| | - Thuc Le
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095
| | - David W Dawson
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| | - Caius G Radu
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095;
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| | - Timothy R Donahue
- Department of Surgery, University of California, Los Angeles, CA 90095;
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| |
Collapse
|
12
|
Galli U, Colombo G, Travelli C, Tron GC, Genazzani AA, Grolla AA. Recent Advances in NAMPT Inhibitors: A Novel Immunotherapic Strategy. Front Pharmacol 2020; 11:656. [PMID: 32477131 PMCID: PMC7235340 DOI: 10.3389/fphar.2020.00656] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a cofactor of many enzymatic reactions as well as being a substrate for a number of NAD-consuming enzymes (e.g., PARPS, sirtuins, etc). NAD can be synthesized de novo starting from tryptophan, nicotinamide, nicotinic acid, or nicotinamide riboside from the diet. On the other hand, the nicotinamide that is liberated by NAD-consuming enzymes can be salvaged to re-form NAD. In this former instance, nicotinamide phosphoribosyltransferase (NAMPT) is the bottleneck enzyme. In the many cells in which the salvage pathway is predominant, NAMPT, therefore, represents an important controller of intracellular NAD concentrations, and as a consequence of energy metabolism. It is, therefore, not surprising that NAMPT is over expressed by tumoral cells, which take advantage from this to sustain growth rate and tumor progression. This has led to the initiation of numerous medicinal chemistry programs to develop NAMPT inhibitors in the context of oncology. More recently, however, it has been shown that NAMPT inhibitors do not solely target the tumor but also have an effect on the immune system. To add complexity, this enzyme can also be secreted by cells, and in the extracellular space it acts as a cytokine mainly through the activation of Toll like Receptor 4 (TLR4), although it has not been clarified yet if this is the only receptor responsible for its actions. While specific small molecules have been developed only against the intracellular form of NAMPT, growing evidences sustain the possibility to target the extracellular form. In this contribution, the most recent evidences on the medicinal chemistry of NAMPT will be reviewed, together with the key elements that sustain the hypothesis of NAMPT targeting and the drawbacks so far encountered.
Collapse
Affiliation(s)
- Ubaldina Galli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| | - Gian Cesare Tron
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ambra A Grolla
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
13
|
Kiss A, Ráduly AP, Regdon Z, Polgár Z, Tarapcsák S, Sturniolo I, El-Hamoly T, Virág L, Hegedűs C. Targeting Nuclear NAD + Synthesis Inhibits DNA Repair, Impairs Metabolic Adaptation and Increases Chemosensitivity of U-2OS Osteosarcoma Cells. Cancers (Basel) 2020; 12:cancers12051180. [PMID: 32392755 PMCID: PMC7281559 DOI: 10.3390/cancers12051180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone tumor in children and adolescents. Modern OS treatment, based on the combination of neoadjuvant chemotherapy (cisplatin + doxorubicin + methotrexate) with subsequent surgical removal of the primary tumor and metastases, has dramatically improved overall survival of OS patients. However, further research is needed to identify new therapeutic targets. Here we report that expression level of the nuclear NAD synthesis enzyme, nicotinamide mononucleotide adenylyltransferase-1 (NMNAT1), increases in U-2OS cells upon exposure to DNA damaging agents, suggesting the involvement of the enzyme in the DNA damage response. Moreover, genetic inactivation of NMNAT1 sensitizes U-2OS osteosarcoma cells to cisplatin, doxorubicin, or a combination of these two treatments. Increased cisplatin-induced cell death of NMNAT1−/− cells showed features of both apoptosis and necroptosis, as indicated by the protective effect of the caspase-3 inhibitor z-DEVD-FMK and the necroptosis inhibitor necrostatin-1. Activation of the DNA damage sensor enzyme poly(ADP-ribose) polymerase 1 (PARP1), a major consumer of NAD+ in the nucleus, was fully blocked by NMNAT1 inactivation, leading to increased DNA damage (phospho-H2AX foci). The PARP inhibitor, olaparib, sensitized wild type but not NMNAT1−/− cells to cisplatin-induced anti-clonogenic effects, suggesting that impaired PARP1 activity is important for chemosensitization. Cisplatin-induced cell death of NMNAT1−/− cells was also characterized by a marked drop in cellular ATP levels and impaired mitochondrial respiratory reserve capacity, highlighting the central role of compromised cellular bioenergetics in chemosensitization by NMNAT1 inactivation. Moreover, NMNAT1 cells also displayed markedly higher sensitivity to cisplatin when grown as spheroids in 3D culture. In summary, our work provides the first evidence that NMNAT1 is a promising therapeutic target for osteosarcoma and possibly other tumors as well.
Collapse
Affiliation(s)
- Alexandra Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Arnold Péter Ráduly
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| | - Zsuzsanna Polgár
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary,
| | - Isotta Sturniolo
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| | - Tarek El-Hamoly
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, 113701 Cairo, Egypt
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
- MTA-DE Cell Biology and Signaling Research Group, H-4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary, (A.K.)
| |
Collapse
|
14
|
Pramono AA, Rather GM, Herman H, Lestari K, Bertino JR. NAD- and NADPH-Contributing Enzymes as Therapeutic Targets in Cancer: An Overview. Biomolecules 2020; 10:biom10030358. [PMID: 32111066 PMCID: PMC7175141 DOI: 10.3390/biom10030358] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Actively proliferating cancer cells require sufficient amount of NADH and NADPH for biogenesis and to protect cells from the detrimental effect of reactive oxygen species. As both normal and cancer cells share the same NAD biosynthetic and metabolic pathways, selectively lowering levels of NAD(H) and NADPH would be a promising strategy for cancer treatment. Targeting nicotinamide phosphoribosyltransferase (NAMPT), a rate limiting enzyme of the NAD salvage pathway, affects the NAD and NADPH pool. Similarly, lowering NADPH by mutant isocitrate dehydrogenase 1/2 (IDH1/2) which produces D-2-hydroxyglutarate (D-2HG), an oncometabolite that downregulates nicotinate phosphoribosyltransferase (NAPRT) via hypermethylation on the promoter region, results in epigenetic regulation. NADPH is used to generate D-2HG, and is also needed to protect dihydrofolate reductase, the target for methotrexate, from degradation. NAD and NADPH pools in various cancer types are regulated by several metabolic enzymes, including methylenetetrahydrofolate dehydrogenase, serine hydroxymethyltransferase, and aldehyde dehydrogenase. Thus, targeting NAD and NADPH synthesis under special circumstances is a novel approach to treat some cancers. This article provides the rationale for targeting the key enzymes that maintain the NAD/NADPH pool, and reviews preclinical studies of targeting these enzymes in cancers.
Collapse
Affiliation(s)
- Alvinsyah Adhityo Pramono
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (A.A.P.); (G.M.R.)
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Gulam M. Rather
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (A.A.P.); (G.M.R.)
| | - Herry Herman
- Division of Oncology, Department of Orthopaedic Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia;
| | - Keri Lestari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Joseph R. Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; (A.A.P.); (G.M.R.)
- Department of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence: ; Tel.: +1-(732)-235-8510
| |
Collapse
|
15
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a rapidly evolving and most frequently fatal disease. Despite the enormous progress in understanding the mechanisms related to PDAC pathogenesis, the impact on patient management has not yet been possible. Pancreatic organoids can be generated from small amounts of tissue. One of the most promising applications of organoids is that they can serve as a platform for selecting the right drugs for each patient. This approach has the potential to identify individual therapeutic vulnerabilities by allowing the personalization of treatments. However, these analyzes require several weeks before obtaining enough organoids from the same individual, to carry out the tests with several drugs, and to analyze the results, which limits its use in current clinical practice for the patients with a PDAC, whose it must be remembered that half die within 6 months of diagnosis. To overcome this obstacle, we assessed the ability of transcriptomic molecular signatures to identify patients with a particular sensitivity profile to a given treatment. The approaches based on transcriptomic profiling have the enormous advantage of using very little biological material and thus significantly reducing the time to arrive at the selection of more effective drugs to each patient.
Collapse
Affiliation(s)
- Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| |
Collapse
|
16
|
Heske CM. Beyond Energy Metabolism: Exploiting the Additional Roles of NAMPT for Cancer Therapy. Front Oncol 2020; 9:1514. [PMID: 32010616 PMCID: PMC6978772 DOI: 10.3389/fonc.2019.01514] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells have increased requirements for NAD+. Thus, many cancers exhibit an increased reliance on NAD+ production pathways. This dependence may be exploited therapeutically through pharmacological targeting of NAMPT, the rate-limiting enzyme in the NAD+ salvage pathway. Despite promising preclinical data using NAMPT inhibitors in cancer models, early NAMPT inhibitors showed limited efficacy in several early phase clinical trials, necessitating the identification of strategies, such as drug combinations, to enhance their efficacy. While the effect of NAMPT inhibitors on impairment of energy metabolism in cancer cells has been well-described, more recent insights have uncovered a number of additional targetable cellular processes that are impacted by inhibition of NAMPT. These include sirtuin function, DNA repair machinery, redox homeostasis, molecular signaling, cellular stemness, and immune processes. This review highlights the recent findings describing the effects of NAMPT inhibitors on the non-metabolic functions of malignant cells, with a focus on how this information can be leveraged clinically. Combining NAMPT inhibitors with other therapies that target NAD+-dependent processes or selecting tumors with specific vulnerabilities that can be co-targeted with NAMPT inhibitors may represent opportunities to exploit the multiple functions of this enzyme for greater therapeutic benefit.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Davis K, Dunseth CD, Mott SL, Cramer-Morales KL, Miller AM, Ear PH, Mezhir JJ, Bellizzi AM, Chan CHF. Nicotinamide phosphoribosyltransferase expression and clinical outcome of resected stage I/II pancreatic ductal adenocarcinoma. PLoS One 2019; 14:e0213576. [PMID: 30856230 PMCID: PMC6411120 DOI: 10.1371/journal.pone.0213576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/25/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Nicotinamide phosphoribosyltransferase (NAMPT) plays a key role in the biosynthesis of nicotinamide adenine dinucleotide (NAD+), which is a vital cofactor in redox reactions and a substrate for NAD+ consuming enzymes including CD38, PARPs and sirtuins. NAMPT over-expression has been shown in various cancers and its inhibition decreases cancer cell growth, making it an attractive therapeutic target. Here we examine the NAMPT expression in a large cohort of resected stage I/II pancreatic ductal adenocarcinomas (PDAs) and correlate its expression with clinical outcomes and pathologic features. METHODS A retrospective review of patients with PDAs was conducted at a single institution. Tissue microarrays (TMAs) containing primary PDAs and their metastatic lymph nodes (mLNs) were constructed and stained for NAMPT expression. Each TMA core was evaluated for staining intensity of cancer cells (0 = no staining, 1+ = weak, 2+ = moderate, 3+ = strong) and a mean score was calculated for each case with at least two evaluable cores. NAMPT expression was correlated with clinicopathological variables using chi-squared or Fisher's exact test, and t-tests for categorical and continuous variables, respectively. Survival probabilities were estimated and plotted using the Kaplan-Meier method. Cox proportional hazards regression was used to assess the effects of NAMPT staining values on recurrence-free survival (RFS) and overall survival (OS). This study was conducted under an approved IRB protocol. RESULTS 173 primary PDAs had at least 2 TMA cores with identifiable cancer cells. The mean IHC score was 0.55 (range: 0 to 2.33). The mean IHC score of mLNs was 0.39 (range: 0-2), which was not significantly different from their primary tumors (mean IHC score = 0.47, P = 0.38). Sixty-four percent (111/173) of PDAs were positive for NAMPT staining. Stage II tumors were more likely to be positive (68% of 151 vs 41% of 22; P = 0.01). Non-obese non-diabetic patients were more likely to have NAMPT+ tumors (43.7% vs. 27.9%, P = 0.04). While RFS and OS were not statistically different between NAMPT+ vs. NAMPT- PDAs, patients with NAMPT- tumors tended to have a longer median OS (26.0 vs. 20.4 months, P = 0.34). CONCLUSION NAMPT expression was detected in 64% of stage I/II PDAs and up to 72% in non-obese non-diabetic patients. Frequency of NAMPT expression correlated with pathological stage, consistent with published literature regarding its role in cancer progression. While RFS and OS were not statistically significantly different, patients with NAMPT+ PDAs tended to have a shorter survival. Thus, NAMPT inhibition may prove beneficial in clinical trials.
Collapse
Affiliation(s)
- Katelynn Davis
- Department of Surgery, University of Iowa, Iowa City, IA, United States of America
- Department of Pathology, University of Iowa, Iowa City, IA, United States of America
| | - Craig D. Dunseth
- Department of Pathology, University of Iowa, Iowa City, IA, United States of America
| | - Sarah L. Mott
- Holden Comprehensive Cancer Center, Iowa City, IA, United States of America
| | | | - Ann M. Miller
- Department of Surgery, University of Iowa, Iowa City, IA, United States of America
| | - Po Hien Ear
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States of America
| | - James J. Mezhir
- Department of Surgery, University of Iowa, Iowa City, IA, United States of America
- Holden Comprehensive Cancer Center, Iowa City, IA, United States of America
| | - Andrew M. Bellizzi
- Department of Pathology, University of Iowa, Iowa City, IA, United States of America
- Holden Comprehensive Cancer Center, Iowa City, IA, United States of America
| | - Carlos H. F. Chan
- Department of Surgery, University of Iowa, Iowa City, IA, United States of America
- Holden Comprehensive Cancer Center, Iowa City, IA, United States of America
| |
Collapse
|
18
|
Swayden M, Iovanna J, Soubeyran P. Pancreatic cancer chemo-resistance is driven by tumor phenotype rather than tumor genotype. Heliyon 2018; 4:e01055. [PMID: 30582059 PMCID: PMC6299038 DOI: 10.1016/j.heliyon.2018.e01055] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/28/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the deadliest forms of cancer. A major reason for this situation is the fact that these tumors are already resistant or become rapidly resistant to all conventional therapies. Like any transformation process, initiation and development of PDCA are driven by a well known panel of genetic alterations, few of them are shared with most cancers, but many mutations are specific to PDAC and are partially responsible for the great inter-tumor heterogeneity. Importantly, this knowledge has been inefficient in predicting response to anticancer therapy, or in establishing diagnosis and prognosis. Hence, the pre-existing or rapidly acquired resistance of pancreatic cancer cells to therapeutic drugs rely on other parameters and features developed by the cells and/or the micro-environment, that are independent of their genetic profiles. This review sheds light on all major phenotypic, non genetic, alterations known to play important roles in PDAC cells resistance to treatments and therapeutic escape.
Collapse
Affiliation(s)
| | | | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
19
|
Zhang B, Shi D, Zhang X, Liang G, Liu W, Qiao S. FK866 inhibits the epithelial-mesenchymal transition of hepatocarcinoma MHCC97-H cells. Oncol Lett 2018; 16:7231-7238. [PMID: 30546461 PMCID: PMC6256367 DOI: 10.3892/ol.2018.9541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is known to serve a pivotal function in hepatocellular carcinoma (HCC) metastasis. Nicotinamide phosphoribosyltransferase (NAMPT), the key enzyme in the nicotinamide-adenine dinucleotide (NAD+)-mediated pathway for the activation of silent information regulator 1 (SIRT1), serves a key function in HCC cell invasion and metastasis. Previous studies demonstrated that FK866, a targeted NAMPT inhibitor, inhibits the viability of HCC cells and induces cancer cell apoptosis; however, the effect of FK866 on the invasion and metastasis of HCC cells, particularly those associated with EMT through the SIRT1 pathway, remains unknown. In the present study, FK866 was identified to inhibit the capability of invasion and metastasis of cells from the HCC MHCC97-H line in a dose-dependent manner using a wound healing assay, an invasion assay and a migration assay. Furthermore, FK866 markedly decreased NAD+ and adenosine 5′-triphosphate content in MHCC97-H cells by inhibiting NAMPT expression. The results of the present study also revealed that FK866 led to a decrease in the expression of SIRT1, and to increased and decreased levels of the EMT marker proteins epithelial cadherin and vimentin, respectively, in MHCC97-H cells. Furthermore, FK866 inhibited the SIRT1-mediated EMT, invasion and migration of HCC cells by decreasing the expression of the NAMPT/NAD+ pathway. Taken together, the results of the present study suggest that FK866 may be an effective drug targeting HCC metastasis and invasion, and that the NAMPT/NAD+/SIRT1 pathway may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Bin Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China.,Department of Hepatobiliary Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Dongmei Shi
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Xiangyu Zhang
- Department of Pathology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Guanzhao Liang
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Weida Liu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu 210042, P.R. China
| | - Sen Qiao
- Department of Hepatobiliary Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
20
|
Pan JH, Zhou H, Zhu SB, Huang JL, Zhao XX, Ding H, Qin L, Pan YL. Nicotinamide phosphoribosyl transferase regulates cell growth via the Sirt1/P53 signaling pathway and is a prognosis marker in colorectal cancer. J Cell Physiol 2018; 234:4385-4395. [PMID: 30191976 DOI: 10.1002/jcp.27228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 07/17/2018] [Indexed: 01/01/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy, and the metabolic properties of CRC cells include enhanced aerobic glycolysis (the Warburg effect). Nicotinamide phosphoribosyl transferase (NAMPT) is one of the crucial enzymes that regulate the activity of nicotinamide adenine dinucleodinucleotide dependent enzymes. Targeting NAMPT is a potential method of CRC therapy. Nevertheless, the underlying clinical implications and regulatory mechanisms of NAMPT in CRC remain unclear. In this study, we showed that NAMPT protein expression was increased in subjects with rectal localization compared with those with colon localization, and NAMPT was a poor prognostic marker for the overall survival rate in patients with CRC. In addition, the NAMPT inhibitor FK866 or lentivirus-mediated silencing induced CRC cell growth inhibition. Mechanistically, NAMPT regulated Sirt1 and P53 expression and induced G0/G1 cell cycle arrest, along with the upregulation of downstream p21 and downregulation of cyclin D1, cyclin E1, and cyclin E2 expression. FK866 administration or knockdown of NAMPT induced CRC cell apoptosis via upregulation of caspase-3. In conclusion, NAMPT regulated Sirt1/P53 signaling during CRC cell growth and warrants further investigation for clinical administration in CRC.
Collapse
Affiliation(s)
- Jing-Hua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hong Zhou
- Department of Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sheng-Bin Zhu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jin-Lian Huang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Xu Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Ding
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Qin
- Department of Histology and Embryology, Medical School of Jinan University, Guangzhou, China
| | - Yun-Long Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Birnbaum DJ, Bertucci F, Finetti P, Birnbaum D, Mamessier E. Molecular classification as prognostic factor and guide for treatment decision of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2018; 1869:248-255. [PMID: 29499330 DOI: 10.1016/j.bbcan.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023]
Abstract
Clinico-pathological factors fail to consistently predict the outcome after pancreatic resection for pancreatic ductal adenocarcinoma (PDAC). PDACs show a high level of inter- and intra- tumor genetic heterogeneity. A molecular classification should help sort patients into less heterogeneous and more appropriate groups regarding the metastatic risk and the therapeutic response, with the consequences of better predicting evolution and better orienting the treatment. PDAC can be classified based on mutational subtypes and 18gene alterations. Whole-genome sequencing identified mutational signatures, mutational burden and hyper-mutated tumors with specific DNA repair defects. Their overlap/similarities allow the definition of molecular subtypes. DNA and RNA classifications can be used in prognosis assessment. They are useful in therapeutic choice for they allow the design of approaches that can predict the respective drug sensitivity of each molecular subtype. This review provides a comprehensive analysis of available molecular classifications in PDAC and how this can help guide clinical decisions.
Collapse
Affiliation(s)
- David J Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France; Département de Chirurgie Générale et Viscérale, AP-HM, Marseille, France.
| | - François Bertucci
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France; Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Daniel Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Emilie Mamessier
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France
| |
Collapse
|
22
|
Speeding towards individualized treatment for pancreatic cancer by taking an alternative road. Cancer Lett 2017; 410:63-67. [PMID: 28947138 DOI: 10.1016/j.canlet.2017.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022]
Abstract
Accumulation of genetic mutations drives the development of pancreatic ductal adenocarcinoma (PDAC). Contrary to what it is expected, however, genetic analyses, no matter how precise or detailed, do not allow the identification of patient groups with different clinical outcomes or the selection of specific treatments. In fact, clinical outcome and sensitivity to treatments are associated with a given phenotype and are therefore associated at a transcriptomic level. In practical terms, therefore, the most appropriate readout for phenotypically stratifying PDACs should be transcriptomic and not genetic analysis. Recently data indicate that studying the expression of a selected gene set could inform selection of the most appropriate treatment for patients, moving towards an individualized medicine approach for this dismal disease. We are optimizing this approach by developing a platform based on obtaining organoids directly from surgical as well as endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) biopsies of tumors, which serve as a source of RNA, allowing determination of the transcription level of some informative genes. We are convinced that in the near future, the treatment of cancers will be preceded by an extensive molecular characterization of cancer cells in order to select the most appropriate treatments.
Collapse
|
23
|
Garrido A, Djouder N. NAD + Deficits in Age-Related Diseases and Cancer. Trends Cancer 2017; 3:593-610. [PMID: 28780936 DOI: 10.1016/j.trecan.2017.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Abstract
The phenomenon of aging has gained widespread attention in recent times. Although significant advances have been made to better understand aging and its related pathologies including cancer, there is not yet a clear mechanism explaining why diseases and cancer are inherent parts of the aging process. Finding a unifying equation that could bridge aging and its related diseases would allow therapeutic development and solve an immense human health problem to live longer and better. In this review, we discuss NAD+ reduction as the central mechanism that may connect aging to its related pathologies and cancer. NAD+ boosters would ensure and ameliorate health quality during aging.
Collapse
Affiliation(s)
- Amanda Garrido
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Spanish National Cancer Research Centre, CNIO, Madrid, Spain
| | - Nabil Djouder
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Spanish National Cancer Research Centre, CNIO, Madrid, Spain.
| |
Collapse
|
24
|
Espindola-Netto JM, Chini CCS, Tarragó M, Wang E, Dutta S, Pal K, Mukhopadhyay D, Sola-Penna M, Chini EN. Preclinical efficacy of the novel competitive NAMPT inhibitor STF-118804 in pancreatic cancer. Oncotarget 2017; 8:85054-85067. [PMID: 29156703 PMCID: PMC5689593 DOI: 10.18632/oncotarget.18841] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/05/2017] [Indexed: 11/25/2022] Open
Abstract
NAD salvage is one of the pathways used to generate NAD in mammals. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in this pathway, uses nicotinamide (NAM) to generate nicotinamide mononucleotide (NMN). NMN is one of the main precursors of NAD synthesis in cells. Our previous study showed the importance of NAMPT in maintaining NAD levels in pancreatic ductal adenocarcinoma cells (PDAC), and that the NAMPT inhibitor FK866 decreased pancreatic cancer growth. We now tested the effect of STF-118804, a new highly specific NAMPT inhibitor, in models of pancreatic ductal adenocarcinoma. STF-118804 reduced viability and growth of different PDAC lines, as well as the formation of colonies in soft agar. In addition, STF-118804 decreased glucose uptake, lactate excretion, and ATP levels, resulting in metabolic collapse. STF-118804 treatment activated AMPK and inhibited of mTOR pathways in these cells. This effect was significantly potentiated by pharmacological AMPK activation and mTOR inhibition. Exogenous NMN blocked both the activation of the AMPK pathway and the decrease in cell viability. Panc-1 cells expressing GFP-luciferase were orthotopically implanted on mice pancreas to test the in vivo effectiveness of STF-118804. Both STF-118804 and FK866 reduced tumor size after 21 days of treatment. Combinations of STF-118804 with chemotherapeutic agents such as paclitaxel, gemcitabine, and etoposide showed an additive effect in decreasing cell viability and growth. In conclusion, our preclinical study shows that the NAMPT inhibitor STF-118804 reduced the growth of PDAC in vitro and in vivo and had an additive effect in combination with main current chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jair Machado Espindola-Netto
- Laboratory of Signal Transduction and Molecular Nutrition, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, U.S.A.,Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmacia, Centro de Ciencias da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia C S Chini
- Laboratory of Signal Transduction and Molecular Nutrition, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, U.S.A
| | - Mariana Tarragó
- Laboratory of Signal Transduction and Molecular Nutrition, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, U.S.A
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, U.S.A
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, U.S.A
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, U.S.A
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN, U.S.A
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica (BioTecFar), Faculdade de Farmacia, Centro de Ciencias da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo N Chini
- Laboratory of Signal Transduction and Molecular Nutrition, Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, U.S.A
| |
Collapse
|
25
|
Chen X, Zhang L, Ding S, Lei Q, Fang W. Cisplatin combination drugs induce autophagy in HeLa cells and interact with HSA via electrostatic binding affinity. RSC Adv 2017. [DOI: 10.1039/c7ra00056a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cisplatin combination drugs induce autophagy in HeLa cells and interact with HSAviaelectrostatic binding affinity.
Collapse
Affiliation(s)
- Xuerui Chen
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Li Zhang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Shiping Ding
- School of Medicine
- Zhejiang University
- Hangzhou 310058
- China
| | - Qunfang Lei
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Wenjun Fang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|