1
|
Yang J, Dong W, Zhang H, Zhao H, Zeng Z, Zhang F, Li Q, Duan X, Hu Y, Xiao W. Exosomal microRNA panel as a diagnostic biomarker in patients with hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:927251. [PMID: 36211468 PMCID: PMC9537616 DOI: 10.3389/fcell.2022.927251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Diagnostic tools for hepatocellular carcinoma (HCC) are critical for patient treatment and prognosis. Thus, this study explored the diagnostic value of the exosomal microRNA panel for HCC.Methods: Expression profiles of microRNAs in exosomes and plasma of HCC and control groups were assessed using microRNA microarray analysis. Reverse transcription-quantitative PCR was applied to evaluate the expression of candidate microRNAs in blood samples from 50 HCC patients, 50 hepatic cirrhosis patients, and 50 healthy subjects. The area calculated the diagnostic accuracy of the microRNAs and microRNA panel under the receiver operating characteristic curve (AUC).Results: MicroRNA microarray analysis revealed that there were more differentially expressed microRNAs in the exosome HCC group than plasma HCC group. Among the 43 differentially expressed microRNAs contained in both exosomes and plasma, we finally decided to testify the expression and diagnostic significance of microRNA-26a, microRNA-29c, and microRNA-199a. The results indicated that expression of the microRNA-26a, microRNA-29c, and microRNA-199a in both exosomes and plasma was significantly lower in HCC patients compared with hepatic cirrhosis and healthy group. Interestingly, exosomal microRNAs were substantially more accurate in diagnosing HCC than microRNAs and alpha-fetoprotein in plasma. Moreover, the exosomal microRNA panel containing microRNA-26a, microRNA-29c, and microRNA-199a showed high accuracy in discriminating HCC from healthy (AUC = 0.994; sensitivity 100%; specificity 96%) and hepatic cirrhosis group (AUC = 0.965; sensitivity 92%; specificity 90%).Conclusion: This study revealed that the exosomal microRNA panel has high accuracy in diagnosing HCC and has important clinical significance.
Collapse
Affiliation(s)
- Jingwen Yang
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Weiwei Dong
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - He Zhang
- Department of Oncology, 4th Medical Center of PLA General Hospital, Beijing, China
| | - Huixia Zhao
- Department of Oncology, 4th Medical Center of PLA General Hospital, Beijing, China
| | - Zhiyan Zeng
- Department of Oncology, 4th Medical Center of PLA General Hospital, Beijing, China
| | - Fengyun Zhang
- Department of Oncology, 4th Medical Center of PLA General Hospital, Beijing, China
| | - Qiuwen Li
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohong Duan
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
- *Correspondence: Xiaohong Duan, ; Yanyan Hu, ; Wenhua Xiao,
| | - Yanyan Hu
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Xiaohong Duan, ; Yanyan Hu, ; Wenhua Xiao,
| | - Wenhua Xiao
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Xiaohong Duan, ; Yanyan Hu, ; Wenhua Xiao,
| |
Collapse
|
2
|
Fathinavid A, Ghobadi MZ, Najafi A, Masoudi-Nejad A. Identification of common microRNA between COPD and non-small cell lung cancer through pathway enrichment analysis. BMC Genom Data 2021; 22:41. [PMID: 34635059 PMCID: PMC8507163 DOI: 10.1186/s12863-021-00986-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Different factors have been introduced which influence the pathogenesis of chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC). COPD as an independent factor is involved in the development of lung cancer. Moreover, there are certain resemblances between NSCLC and COPD, such as growth factors, activation of intracellular pathways, as well as epigenetic factors. One of the best approaches to understand the possible shared pathogenesis routes between COPD and NSCLC is to study the biological pathways that are activated. MicroRNAs (miRNAs) are critical biomolecules that implicate the regulation of several biological and cellular processes. As such, the main goal of this study was to use a systems biology approach to discover common dysregulated miRNAs between COPD and NSCLC, one that targets most genes within common enriched pathways. RESULTS To reconstruct the miRNA-pathways for each disease, we used the microarray miRNA expression data. Then, we employed "miRNA set enrichment analysis" (MiRSEA) to identify the most significant joint miRNAs between COPD and NSCLC based on the enrichment scores. Overall, our study revealed the involvement of the targets of miRNAs (such as has-miR-15b, hsa-miR-106a, has-miR-17, has-miR-103, and has-miR-107) in the most important common biological pathways. CONCLUSIONS According to the promising results of the pathway analysis, the identified miRNAs can be utilized as the new potential signatures for therapy through understanding the molecular mechanisms of both diseases.
Collapse
Affiliation(s)
- Amirhossein Fathinavid
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Mohadeseh Zarei Ghobadi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, System Biology and Poisoning Institute, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Zeidler M, Hüttenhofer A, Kress M, Kummer KK. Intragenic MicroRNAs Autoregulate Their Host Genes in Both Direct and Indirect Ways-A Cross-Species Analysis. Cells 2020; 9:E232. [PMID: 31963421 PMCID: PMC7016697 DOI: 10.3390/cells9010232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) function as master switches for post-transcriptional gene expression. Their genes are either located in the extragenic space or within host genes, but these intragenic miRNA::host gene interactions are largely enigmatic. The aim of this study was to investigate the location and co-regulation of all to date available miRNA sequences and their host genes in an unbiased computational approach. The majority of miRNAs were located within intronic regions of protein-coding and non-coding genes. These intragenic miRNAs exhibited both increased target probability as well as higher target prediction scores as compared to a model of randomly permutated genes. This was associated with a higher number of miRNA recognition elements for the hosted miRNAs within their host genes. In addition, strong indirect autoregulation of host genes through modulation of functionally connected gene clusters by intragenic miRNAs was demonstrated. In addition to direct miRNA-to-host gene targeting, intragenic miRNAs also appeared to interact with functionally related genes, thus affecting their host gene function through an indirect autoregulatory mechanism. This strongly argues for the biological relevance of autoregulation not only for the host genes themselves but, more importantly, for the entire gene cluster interacting with the host gene.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Institute of Genomics and RNomics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Lei H, Liu W, Si J, Wang J, Zhang T. Analyzing the regulation of miRNAs on protein-protein interaction network in Hodgkin lymphoma. BMC Bioinformatics 2019; 20:449. [PMID: 31477006 PMCID: PMC6720096 DOI: 10.1186/s12859-019-3041-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background Hodgkin Lymphoma (HL) is a type of aggressive malignancy in lymphoma that has high incidence in young adults and elderly patients. Identification of reliable diagnostic markers and efficient therapeutic targets are especially important for the diagnosis and treatment of HL. Although many HL-related molecules have been identified, our understanding on the molecular mechanisms underlying the disease is still far from complete due to its complex and heterogeneous characteristics. In such situation, exploring the molecular mechanisms underlying HL via systems biology approaches provides a promising option. In this study, we try to elucidate the molecular mechanisms related to the disease and identify potential pharmaceutical targets from a network-based perspective. Results We constructed a series of network models. Based on the analysis of these networks, we attempted to identify the biomarkers and elucidate the molecular mechanisms underlying HL. Initially, we built three different but related protein networks, i.e., background network, HL-basic network and HL-specific network. By analyzing these three networks, we investigated the connection characteristic of the HL-related proteins. Subsequently, we explored the miRNA regulation on HL-specific network and analyzed three kinds of simple regulation patterns, i.e., co-regulation of protein pairs, as well as the direct and indirect regulation of triple proteins. Finally, we constructed a simplified protein network combined with the regulation of miRNAs on proteins to better understand the relation between HL-related proteins and miRNAs. Conclusions We find that the HL-related proteins are more likely to connect with each other compared to other proteins. Moreover, the HL-specific network can be further divided into five sub-networks and 49 proteins as the backbone of HL-specific network make up and connect these 5 sub-networks. Thus, they may be closely associated with HL. In addition, we find that the co-regulation of protein pairs is the main regulatory pattern of miRNAs on the protein network in the HL-specific network. According to the regulation of miRNA on protein network, we have identified 5 core miRNAs as the potential biomarkers for diagnostic of HL. Finally, several protein pathways have been identified to closely associated with HL, which provides deep insights into underlying mechanism of HL. Electronic supplementary material The online version of this article (10.1186/s12859-019-3041-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huimin Lei
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.,School of Continuation Education, Tianjin Medical University, Tianjin, China
| | - Wenxu Liu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jiarui Si
- School of Basic Medicine, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Tao Zhang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
5
|
Di J, Zheng B, Kong Q, Jiang Y, Liu S, Yang Y, Han X, Sheng Y, Zhang Y, Cheng L, Han J. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities. Mol Oncol 2019; 13:2259-2277. [PMID: 31408580 PMCID: PMC6763777 DOI: 10.1002/1878-0261.12564] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/13/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022] Open
Abstract
Due to the speed, efficiency, relative risk, and lower costs compared to traditional drug discovery, the prioritization of candidate drugs for repurposing against cancers of interest has attracted the attention of experts in recent years. Herein, we present a powerful computational approach, termed prioritization of candidate drugs (PriorCD), for the prioritization of candidate cancer drugs based on a global network propagation algorithm and a drug–drug functional similarity network constructed by integrating pathway activity profiles and drug activity profiles. This provides a new approach to drug repurposing by first considering the drug functional similarities at the pathway level. The performance of PriorCD in drug repurposing was evaluated by using drug datasets of breast cancer and ovarian cancer. Cross‐validation tests on the drugs approved for the treatment of these cancers indicated that our approach can achieve area under receiver‐operating characteristic curve (AUROC) values greater than 0.82. Furthermore, literature searches validated our results, and comparison with other classical gene‐based repurposing methods indicated that our pathway‐level PriorCD is comparatively more effective at prioritizing candidate drugs with similar therapeutic effects. We hope that our study will be of benefit to the field of drug discovery. In order to expand the usage of PriorCD, a freely available R‐based package, PriorCD, has been developed to prioritize candidate anticancer drugs for drug repurposing.
Collapse
Affiliation(s)
- Jieyi Di
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Baotong Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyao Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yang Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Xudong Han
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yuqi Sheng
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| |
Collapse
|
6
|
Abstract
Cervical cancer is the third most common gynecological cancer and the fourth leading cause of cancer-related deaths in women around the world. Substantial evidence has demonstrated that microRNA (miRNA) expression is disordered in many malignant tumors. The dysregulation of miRNAs has been suggested to be involved in the tumorigenesis and tumor development of cervical cancer. Therefore, identification of miRNAs and their biological roles and targets involved in tumor pathology would provide valuable insight into the diagnosis and treatment of patients with cervical cancer. MicroRNA-411 (miR-411) has been reported to play an important role in several types of human cancer. However, the expression level, role, and underlying molecular mechanisms of miR-411 in cervical cancer remain unclear. Therefore, the objectives of this study were to investigate the expression pattern and clinical significance of miR-411 in cervical cancer and to evaluate its role and underlying mechanisms in this disease. In this study, we confirmed that the expression of miR-411 was significantly downregulated in both cervical cancer tissues and cell lines. Low expression of miR-411 was associated with tumor size, FIGO stage, lymph node metastasis, and distant metastasis. Additionally, miR-411 overexpression inhibited cell proliferation and invasion in cervical cancer. Furthermore, signal transducer and activator of transcription 3 (STAT3) was identified as a direct target of miR-411 in this disease. In clinical samples, miR-411 expression levels were inversely correlated with STAT3, which was significantly upregulated in cervical cancer. Restored STAT3 expression abolished the tumor-suppressing effects of miR-411 overexpression on the proliferation and invasion of cervical cancer cells. In conclusion, our data demonstrated that miR-411 inhibited cervical cancer progression by directly targeting STAT3 and may represent a novel potential therapeutic target and prognostic marker for patients with this disease.
Collapse
Affiliation(s)
- Dan Shan
- Department of Obstetrics and Gynecology, Tianjin Hospital, Tianjin, P.R. China
| | - Yumin Shang
- Department of Obstetrics and Gynecology, Tianjin Hospital, Tianjin, P.R. China
| | - Tongxiu Hu
- Department of Obstetrics and Gynecology, Tianjin Hospital, Tianjin, P.R. China
| |
Collapse
|
7
|
Das SS, Saha P, Chakravorty N. miRwayDB: a database for experimentally validated microRNA-pathway associations in pathophysiological conditions. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4915493. [PMID: 29688364 PMCID: PMC5829561 DOI: 10.1093/database/bay023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/07/2018] [Indexed: 01/31/2023]
Abstract
MicroRNAs (miRNAs) are well-known as key regulators of diverse biological pathways. A series of experimental evidences have shown that abnormal miRNA expression profiles are responsible for various pathophysiological conditions by modulating genes in disease associated pathways. In spite of the rapid increase in research data confirming such associations, scientists still do not have access to a consolidated database offering these miRNA-pathway association details for critical diseases. We have developed miRwayDB, a database providing comprehensive information of experimentally validated miRNA-pathway associations in various pathophysiological conditions utilizing data collected from published literature. To the best of our knowledge, it is the first database that provides information about experimentally validated miRNA mediated pathway dysregulation as seen specifically in critical human diseases and hence indicative of a cause-and-effect relationship in most cases. The current version of miRwayDB collects an exhaustive list of miRNA-pathway association entries for 76 critical disease conditions by reviewing 663 published articles. Each database entry contains complete information on the name of the pathophysiological condition, associated miRNA(s), experimental sample type(s), regulation pattern (up/down) of miRNA, pathway association(s), targeted member of dysregulated pathway(s) and a brief description. In addition, miRwayDB provides miRNA, gene and pathway score to evaluate the role of a miRNA regulated pathways in various pathophysiological conditions. The database can also be used for other biomedical approaches such as validation of computational analysis, integrated analysis and prediction of computational model. It also offers a submission page to submit novel data from recently published studies. We believe that miRwayDB will be a useful tool for miRNA research community. Database URL: http://www.mirway.iitkgp.ac.in
Collapse
Affiliation(s)
- Sankha Subhra Das
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Pritam Saha
- Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
8
|
Li C, Dinu V. miR2Pathway: A novel analytical method to discover MicroRNA-mediated dysregulated pathways involved in hepatocellular carcinoma. J Biomed Inform 2018; 81:31-40. [PMID: 29578099 DOI: 10.1016/j.jbi.2018.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs involved in the regulation of gene expression at a post-transcriptional level. Recent studies have shown miRNAs as key regulators of a variety of biological processes, such as proliferation, differentiation, apoptosis, metabolism, etc. Aberrantly expressed miRNAs influence individual gene expression level, but rewired miRNA-mRNA connections can influence the activity of biological pathways. Here, we define rewired miRNA-mRNA connections as the differential (rewiring) effects on the activity of biological pathways between hepatocellular carcinoma (HCC) and normal phenotypes. Our work presented here uses a PageRank-based approach to measure the degree of miRNA-mediated dysregulation of biological pathways between HCC and normal samples based on rewired miRNA-mRNA connections. In our study, we regard the degree of miRNA-mediated dysregulation of biological pathways as disease risk of biological pathways. Therefore, we propose a new method, miR2Pathway, to measure and rank the degree of miRNA-mediated dysregulation of biological pathways by measuring the total differential influence of miRNAs on the activity of pathways between HCC and normal states. miR2Pathway proposed here systematically shows the first evidence for a mechanism of biological pathways being dysregulated by rewired miRNA-mRNA connections, and provides new insight into exploring mechanisms behind HCC. Thus, miR2Pathway is a novel method to identify and rank miRNA-dysregulated pathways in HCC.
Collapse
Affiliation(s)
- Chaoxing Li
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Valentin Dinu
- Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ 85255, USA.
| |
Collapse
|
9
|
Yang L, Luo P, Song Q, Fei X. DNMT1/miR-200a/GOLM1 signaling pathway regulates lung adenocarcinoma cells proliferation. Biomed Pharmacother 2018; 99:839-847. [PMID: 29710483 DOI: 10.1016/j.biopha.2018.01.161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Lung adenocarcinoma (LAD) comprises about 80% of all diagnosed lung cancers. However, the underlying regulatory mechanism of LAD cell proliferation is largely unclear. The emergence of microRNAs and molecular-targeted therapies adds a new dimension in our efforts to combat this deadly disease. METHOD In this work, the A549 and H1650 human lung cancer cell lines were used in this study. The proliferation was evaluated by the MTT and BrdU assay. The expression level of related proteins was detected by western blot. RESULT We reported GOLM1 was highly expressed in LAD cells and associated with low survival ratio and higher grade malignancy. Knockdown of GOLM1 repressed the LAD cell proliferation. Overexpression of GOLM1 promoted the cell proliferation. Further we found that the level of microRNA-200a (miR-200a) expression was low in LAD cells. miR-200a repress GOLM1 expression by directly targeting its 3? UTR. Overexpression of miR-200a repressed the cell proliferation and blocked the increase of LAD cell proliferation caused by GOLM1 overexpression. Further, we found that miR-200 was downregulated by DNMT1.Overexpression of DNMT1 blocked the function of miR-200a on repressing proliferation. We then found that knockdown of DNMT1 repressed LAD cell proliferation, which could be rescued by GOLM1 overexpression. CONCLUSION This work revealed the critical function of GOLM1/miR-200a/DNMT1 signaling pathway on regulating LAD cell proliferation, and might lay the foundation for further clinical treatment of LAD.
Collapse
Affiliation(s)
- Longqiu Yang
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, China
| | - Pengcheng Luo
- Department of Urology Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, 435000, China
| | - Qiong Song
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, Henan, 450007, China.
| | - Xuejie Fei
- Department of Intensive Care Unit, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China.
| |
Collapse
|
10
|
Zhong L, Sun S, Shi J, Cao F, Han X, Chen Z. MicroRNA-125a-5p plays a role as a tumor suppressor in lung carcinoma cells by directly targeting STAT3. Tumour Biol 2017. [PMID: 28631574 DOI: 10.1177/1010428317697579] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence supports that the dysregulation of microRNA expression plays an important role in the process of tumor occurrence and development. Studies have found that mir-125a-5p expression was downregulated in a variety of tumors, but the effects and mechanism of mir-125a-5p in lung cancer are still unclear. The aim of this study is to detect the expression of mir-125a-5p in lung cancer tissues and lung cancer cell lines and to explore the effects of mir-125a-5p on the biological characteristics of lung cancer cells; thus, this study aims to provide new methods and new strategies for the treatment of lung cancer. The result from quantitative reverse transcription polymerase chain reaction showed that the expression of miR-125a-5p was significantly lower in lung cancer tissues and lung cancer cell lines (95-D, A549, HCC827, and NCI-H1299) than that in normal tissue adjacent to lung cancer or normal human bronchial epithelial cells. In order to explore the function and mechanism of mir-125a-5p in lung cancer cells, miR-125a-5p mimic or mir-125a-5p inhibitor was transfected into A549 cells. Mir-125a-5p displayed an obvious upregulation in A549 cells transfected with miR-125a-5p and an obvious downregulation in A549 cells transfected with mir-125a-5p inhibitor compared to that in A549 cells transfected with control miRNA. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, BrdU staining, flow cytometry, and Transwell assay showed that the upregulation of miR-125a-5p could significantly decrease the cell viability, proliferation, and invasion of lung cancer cells and increase apoptosis of lung cancer cells. The downregulation of miR-125a-5p provided very contrasting results. Computational algorithms predicted that the STAT3 is a target of miR-125a-5p. Here, we validated that miR-125a-5p could directly bind to the 3'-untranslated region of STAT3, and miR-125a-5p overexpression could significantly inhibit the protein expression of STAT3. These results suggested that mir-125a-5p can regulate the expression of STAT3 in lung cancer cells. To further verify whether mir-125a-5p can play a biological role through regulating STAT3, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, flow cytometry, and Transwell analysis demonstrated that overexpression of STAT3 can reverse the cells' biological effects induced by mir-125a-5p overexpression. Mir-125a-5p downregulated in lung cancer tissue and cell lines can negatively regulate STAT3 protein expression. Taken together, mir-125a-5p inhibited the proliferation and invasion of lung cancer cells and facilitated lung cancer cell apoptosis through suppressing STAT3. Enhancing the expression of miR-125a-5p is expected to benefit the therapy for the patients with lung cancer.
Collapse
Affiliation(s)
- Lou Zhong
- 1 Department of Surgery, Medical College, Suzhou University, Suzhou, People's Republic of China.,2 Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Siyuan Sun
- 3 Department of Clinical Medicine, Nantong University Xinglin College, Nantong, People's Republic of China
| | - Jiahai Shi
- 2 Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Fei Cao
- 2 Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiao Han
- 2 Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Zhong Chen
- 1 Department of Surgery, Medical College, Suzhou University, Suzhou, People's Republic of China.,2 Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|