1
|
Deng L, Yang X, Ding Y, Fan J, Peng Y, Xu D, Huang B, Hu Z. Oncolytic therapy with vaccinia virus carrying IL-24 for hepatocellular carcinoma. Virol J 2022; 19:44. [PMID: 35292065 PMCID: PMC8922813 DOI: 10.1186/s12985-022-01779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly refractory cancer associated with increasing mortality, which currently lacks effective treatment options. Interleukin-24 (IL-24) is a novel tumor suppressor cytokine that can selectively induce cancer cell apoptosis, and it has been utilized as a cancer gene therapy strategy. The vaccinia virus is a promising strategy for cancer therapy, owing to its direct viral lytic effects, as well as a vehicle to overexpress therapeutic transgenes. METHODS We constructed a recombinant oncolytic vaccinia viruse (VG9-IL-24) based on vaccinia virus Guang9 (VG9) harboring the IL-24 gene. In vitro, we assessed the replication of VG9-IL-24 in HCC cell lines and normal liver cells and evaluated the cytotoxicity in different cell lines; then, we determined the expression of IL-24 by RT-PCR and ELISA. We examined apoptosis and cell cycle progression in SMMC-7721 cells treated with VG9-IL-24 by flow cytometry. In vivo, we established the SMMC-7721 xenograft mouse model to evaluate the antitumor effects of VG9-IL-24. RESULTS In vitro, VG9-IL-24 efficiently infected HCC cell lines, but not normal liver cells, and resulted in a high level of IL-24 expression and significant cytotoxicity. Moreover, VG9-IL-24 induced an increase in the proportion of apoptotic cells and blocked the SMMC-7721 cell cycle in the G2/M phase. In vivo, tumor growth was significantly suppressed and the survival was prolonged in VG9-IL-24-treated mice. CONCLUSIONS Vaccinia virus VG9-mediated gene therapy might be an innovative treatment for cancer with tumor-specific lysis and apoptosis-inducing effects. VG9-IL-24 exhibited enhanced antitumor effects and is a promising candidate for HCC therapy.
Collapse
Affiliation(s)
- Lili Deng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
| | - Xue Yang
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Jun Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Dong Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Biao Huang
- School of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
2
|
Production and Evaluation of In-vitro and In-vivo Effects of P28-IL24, a Promising Anti-breast Cancer Fusion Protein. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Hu HJ, Liang X, Li HL, Wang HY, Gu JF, Sun LY, Xiao J, Hu JQ, Ni AM, Liu XY. Optimization of the Administration Strategy for the Armed Oncolytic Adenovirus ZD55-IL-24 in Both Immunocompromised and Immunocompetent Mouse Models. Hum Gene Ther 2021; 32:1481-1494. [PMID: 34155929 DOI: 10.1089/hum.2021.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ZD55-IL-24 is an armed oncolytic adenovirus similar but superior to ONYX-015. Virotherapeutic strategies using ZD55-IL-24 have been demonstrated to be effective against several cancer types. However, it is unclear whether the traditional administration strategy is able to exert the maximal antitumor efficacy of ZD55-IL-24. In this study, we sought to optimize the administration strategy of ZD55-IL-24 in both A375-bearing immunocompromised mouse model and B16-bearing immunocompetent mouse model. Although the underlying antitumor mechanisms are quite different, the obtained results are similar in these two mouse tumor models. We find that the antitumor efficacy of ZD55-IL-24 increases as injection times increase in both of these two models. However, no obvious increase of efficacy is observed as the dose of each injection increases. Our further investigation reveals that the administration strategy of sustained ZD55-IL-24 therapy can achieve a better therapeutic effect than the traditional administration strategy of short-term ZD55-IL-24 therapy. Furthermore, there is no need to inject every day; every 2 or 3 days of injection achieves an equivalent therapeutic efficacy. Finally, we find that the sustained rather than the traditional short-term ZD55-IL-24 therapy can synergize with anti-PD-1 therapy to reject tumors in B16-bearing immunocompetent mouse model. These findings suggest that the past administration strategy of ZD55-IL-24 is in fact suboptimal and the antitumor efficacy can be further enhanced through administration strategy optimization. This study might shed some light on the development of clinically applicable administration regimens for ZD55-IL-24 therapy.
Collapse
Affiliation(s)
- Hai-Jun Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiu Liang
- School of Life Sciences and Technology, Tongji University, Shanghai, China; and
| | - Hai-Lang Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Huai-Yuan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Fa Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Lan-Ying Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Qing Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ai-Min Ni
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
Tang XZ, Zhou XG, Zhang XG, Li GS, Chen G, Dang YW, Huang ZG, Li MX, Liang Y, Yao YX, Chen XY, Rong MH, Huang SN. The clinical significance of interleukin 24 and its potential molecular mechanism in laryngeal squamous cell carcinoma. Cancer Biomark 2021; 29:111-124. [PMID: 32623386 DOI: 10.3233/cbm-201441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin 24 (IL24) has been documented to be highly expressed in several cancers, but its role in laryngeal squamous cell carcinoma (LSCC) remains unclarified. In this study, to reveal the function and its clinical significance of IL24 in LSCC, multiple detecting methods were used comprehensively. IL24 protein expression was remarkably higher in LSCC (n= 49) than non-cancerous laryngeal controls (n= 26) as detected by in-house immunohistochemistry. Meanwhile, the IL24 mRNA expression was also evaluated based on high throughput data from Gene Expression Omnibus, The Cancer Genome Atlas, ArrayExpress and Oncomine databases. Consistently with the protein level, IL24 mRNA expression level was also predominantly upregulated in LSCC (n= 172) compared to non-cancerous laryngeal tissues (n= 81) with the standard mean difference (SMD) being 1.25 and the area under the curve (AUC) of the summary receiver operating characteristic (sROC) being 0.89 (95% CI = 0.86-0.92). Furthermore, the related genes of IL24 and the differentially expressed genes (DEGs) of LSCC were intersected and sent for Gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and the protein-protein interaction (PPI) analyses. In the GO annotation, the top terms of biological process (BP), cellular component (CC) and molecular function (MF) were extracellular matrix organization, extracellular matrix, cytokine activity, respectively. The top pathway of KEGG was ECM-receptor interaction. The PPI networks indicated the top hub genes of IL24-related genes in LSCC were SERPINE1, TGFB1, MMP1, MMP3, CSF2, and ITGA5. In conclusion, upregulating expression of IL24 may enhance the occurrence of LSCC, which owns prospect diagnostic ability and therapeutic significance in LSCC.
Collapse
Affiliation(s)
- Xiao-Zhun Tang
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China.,Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Xian-Guo Zhou
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi, China.,Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Xiao-Guohui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Guo-Sheng Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Ming-Xuan Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yao Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yu-Xuan Yao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xiao-Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Guangxi, China
| |
Collapse
|
5
|
Hu HJ, Liang X, Li HL, Wang HY, Gu JF, Sun LY, Xiao J, Hu JQ, Ni AM, Liu XY. Enhanced anti-melanoma efficacy through a combination of the armed oncolytic adenovirus ZD55-IL-24 and immune checkpoint blockade in B16-bearing immunocompetent mouse model. Cancer Immunol Immunother 2021; 70:3541-3555. [PMID: 33903973 PMCID: PMC8571158 DOI: 10.1007/s00262-021-02946-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/14/2021] [Indexed: 12/22/2022]
Abstract
Although the recent treatment in melanoma through the use of anti-PD-1 immunotherapy is successful, the efficacy of this approach remains to be improved. Here, we explore the feasibility of combination strategy with the armed oncolytic adenovirus ZD55-IL-24 and PD-1 blockade. We find that combination therapy with localized ZD55-IL-24 and systemic PD-1 blockade leads to synergistic inhibition of both local and distant established tumors in B16-bearing immunocompetent mouse model. Our further mechanism investigation reveals that synergistic therapeutic effect is associated with marked promotion of tumor immune infiltration and recognition in both local and distant tumors as well as spleens. PD-1 blockade has no obvious effect on promotion of tumor immune infiltration and recognition. Localized therapy with ZD55-IL-24, however, can help PD-1 blockade to overcome the limitation of relatively low tumor immune infiltration and recognition. This study provides a rationale for investigation of such combination therapy in the clinic.
Collapse
Affiliation(s)
- Hai-Jun Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiu Liang
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hai-Lang Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Huai-Yuan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Fa Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lan-Ying Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Qing Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ai-Min Ni
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
6
|
Wang C, Li Q, Xiao B, Fang H, Huang B, Huang F, Wang Y. Luteolin enhances the antitumor efficacy of oncolytic vaccinia virus that harbors IL-24 gene in liver cancer cells. J Clin Lab Anal 2021; 35:e23677. [PMID: 33274495 PMCID: PMC7957971 DOI: 10.1002/jcla.23677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Interleukin 24 (IL-24) is an IL-10 family member and a secreted cytokine characterized by cancer-targeted toxicity and can activate apoptosis by sensitizing cancer cells to chemotherapy. Cytotoxic effects of luteolin on different types of cancer cells suppress their growth by acting on the components of the apoptosis signaling cascade. Therefore, our study aimed to prove whether oncolytic vaccinia virus (VV) that harbors IL-24 (VV-IL-24) combine with luteolin exerts a synergistic inhibitory effect in liver cancer cells. METHODS Impacts on cell viability of VV-IL-24 and luteolin were assessed by MTT in various liver cancer cell lines. Then, liver cancer cell apoptosis was analyzed via flow cytometry and Western blotting. Besides, the MHCC97-H xenograft mouse model was employed as a means of assessing in vivo antitumor efficacy. RESULTS MTT assay confirmed that the combination treatment decreased liver cancer cells viability to a greater degree than treatment with VV-IL-24 or luteolin alone. Flow cytometry and Western blot assay proved that VV-IL-24 plus luteolin induced more liver cancer cells apoptosis than single treatment. Furthermore, in the MHCC97-H xenograft model, 15 days of treatment with VV-IL-24 plus luteolin inhibited tumor growth significantly more than single treatment. CONCLUSION These data confirm that the synergistic mechanism of VV-IL-24 and luteolin elicits a stronger tumor growth inhibition than any single therapy. Thus, the combination of VV-IL-24 and luteolin could provide the basis for preclinical research in the treatment of liver cancer.
Collapse
Affiliation(s)
- Chunming Wang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Qiang Li
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Boduan Xiao
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Huiling Fang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Biao Huang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Fang Huang
- Department of PathologyZhejiang Provincial People's HospitalPeople's Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Yigang Wang
- College of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| |
Collapse
|
7
|
Hu HJ, Liang X, Li HL, Du CM, Hao JL, Wang HY, Gu JF, Ni AM, Sun LY, Xiao J, Hu JQ, Yuan H, Dai YS, Jin XT, Zhang KJ, Liu XY. The armed oncolytic adenovirus ZD55-IL-24 eradicates melanoma by turning the tumor cells from the self-state into the nonself-state besides direct killing. Cell Death Dis 2020; 11:1022. [PMID: 33257647 PMCID: PMC7705698 DOI: 10.1038/s41419-020-03223-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
ZD55-IL-24 is similar but superior to the oncolytic adenovirus ONYX-015, yet the exact mechanism underlying the observed therapeutic effect is still not well understood. Here we sought to elucidate the underlying antitumor mechanism of ZD55-IL-24 in both immunocompetent and immunocompromised mouse model. We find that ZD55-IL-24 eradicates established melanoma in B16-bearing immunocompetent mouse model not through the classic direct killing pathway, but mainly through the indirect pathway of inducing systemic antitumor immunity. Inconsistent with the current prevailing view, our further results suggest that ZD55-IL-24 can induce antitumor immunity in B16-bearing immunocompetent mouse model in fact not due to its ability to lyse tumor cells and release the essential elements, such as tumor-associated antigens (TAAs), but due to its ability to put a “nonself” label in tumor cells and then turn the tumor cells from the “self” state into the “nonself” state without tumor cell death. The observed anti-melanoma efficacy of ZD55-IL-24 in B16-bearing immunocompetent mouse model was practically caused only by the viral vector. In addition, we also notice that ZD55-IL-24 can inhibit tumor growth in B16-bearing immunocompetent mouse model through inhibiting angiogenesis, despite it plays only a minor role. In contrast to B16-bearing immunocompetent mouse model, ZD55-IL-24 eliminates established melanoma in A375-bearing immunocompromised mouse model mainly through the classic direct killing pathway, but not through the antitumor immunity pathway and anti-angiogenesis pathway. These findings let us know ZD55-IL-24 more comprehensive and profound, and provide a sounder theoretical foundation for its future modification and drug development.
Collapse
Affiliation(s)
- Hai-Jun Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiu Liang
- School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Hai-Lang Li
- Department of Pharmacy, Xiamen Medical College, 361023, Xiamen, China
| | - Chun-Ming Du
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jia-Li Hao
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Huai-Yuan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jin-Fa Gu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ai-Min Ni
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Lan-Ying Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jing Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jin-Qing Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Hao Yuan
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Yan-Song Dai
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Xiao-Ting Jin
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Kang-Jian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
8
|
Farrera-Sal M, Fillat C, Alemany R. Effect of Transgene Location, Transcriptional Control Elements and Transgene Features in Armed Oncolytic Adenoviruses. Cancers (Basel) 2020; 12:E1034. [PMID: 32340119 PMCID: PMC7226017 DOI: 10.3390/cancers12041034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical results with oncolytic adenoviruses (OAds) used as antitumor monotherapies show limited efficacy. To increase OAd potency, transgenes have been inserted into their genome, a strategy known as "arming OAds". Here, we review different parameters that affect the outcome of armed OAds. Recombinant adenovirus used in gene therapy and vaccination have been the basis for the design of armed OAds. Hence, early region 1 (E1) and early region 3 (E3) have been the most commonly used transgene insertion sites, along with partially or complete E3 deletions. Besides transgene location and orientation, transcriptional control elements, transgene function, either virocentric or immunocentric, and even the codons encoding it, greatly impact on transgene levels and virus fitness.
Collapse
Affiliation(s)
- Martí Farrera-Sal
- VCN Biosciences S.L., 08174 Sant Cugat, Spain
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| | - Cristina Fillat
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rare Diseases Networking Biomedical Research Center (CIBERER), University of Barcelona, 08036 Barcelona, Spain;
| | - Ramon Alemany
- ProCure and Oncobell Programs, Institut Català d’Oncologia/Bellbitge Biomedical Research Institute, 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
9
|
Yang H, Xuefeng Y, Jianhua X. Systematic review of the roles of interleukins in hepatocellular carcinoma. Clin Chim Acta 2020; 506:33-43. [PMID: 32142718 DOI: 10.1016/j.cca.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with high morbidity and mortality that is often accompanied by immune system disorders and local lymphocyte infiltration. Tumor-infiltrating lymphocytes, cancer cells, stromal cells, and the numerous cytokines they produce, such as chemokines, interferons, tumor necrosis factors, and interleukins, collectively constitute the tumor microenvironment. As a main type of immune effector, interleukin plays opposing roles in regulating tumor cell progression, adhesion, and migration according to its different subtypes. Many reports have concentrated on the roles that interleukins play in HCC, but understanding them systematically remains challenging. This study reviewed the current data to comprehensively summarize the relationships between HCC progression and human interleukin gene families.
Collapse
Affiliation(s)
- Hu Yang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China; Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Yang Xuefeng
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Xiao Jianhua
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
10
|
Pearl TM, Markert JM, Cassady KA, Ghonime MG. Oncolytic Virus-Based Cytokine Expression to Improve Immune Activity in Brain and Solid Tumors. MOLECULAR THERAPY-ONCOLYTICS 2019; 13:14-21. [PMID: 30997392 PMCID: PMC6453942 DOI: 10.1016/j.omto.2019.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oncolytic viral therapy has gained significant traction as cancer therapy over the past 2 decades. Oncolytic viruses are uniquely designed both to lyse tumor cells through their replication and to recruit immune responses against virally infected cells. Increasingly, investigators are leveraging this immune response to target the immunosuppressive tumor microenvironment and improve immune effector response against bystander tumor cells. In this article, we review the spectrum of preclinical, early-stage clinical, and potential future efforts with cytokine-secreting oncolytic viruses, with a focus on the treatment of brain tumors and solid tumors.
Collapse
Affiliation(s)
- Taylor M. Pearl
- The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kevin A. Cassady
- The Ohio State University College of Medicine, Columbus, OH 43205, USA
- The Research Institute at Nationwide Children’s Hospital Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Corresponding author: Kevin A. Cassady, Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH 43205, USA.
| | - Mohammed G. Ghonime
- The Research Institute at Nationwide Children’s Hospital Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
| |
Collapse
|
11
|
Wei D, Xu J, Liu XY, Chen ZN, Bian H. Fighting Cancer with Viruses: Oncolytic Virus Therapy in China. Hum Gene Ther 2019; 29:151-159. [PMID: 29284308 DOI: 10.1089/hum.2017.212] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
As part of oncolytic virotherapy to treat cancer, oncolytic viruses (OVs) can selectively infect tumor cells to promote oncolysis of cancer cells, local immunological reactions, and systemic antitumor immunity with minimal toxicity to normal tissues. The immunostimulatory properties of OVs provide enormous benefits for the treatment of cancer. A variety of OVs, including genetically engineered and natural viruses, have shown promise in preclinical models and clinical studies. In 2005, the China Food and Drug Administration approved its first OV drug, Oncorine (H101), for treatment of advanced head and neck cancer. To explore new treatment strategies, >200 recombinant or natural OVs are undergoing in-depth investigation in China, and >250 oncolytic virotherapy-related reports from the OV community in China have been published in the past 5 years. These studies investigated a variety of exogenous genes and combination therapeutic strategies to enhance the treatment effects of OVs. To date, five clinical trials covering four OV agents (Oncorine, OrienX010, KH901, and H103) are ongoing, and additional OV agents are awaiting approval for clinical trials in China. Overall, this research emphasizes that combination therapy, especially tumor immunotherapy coupled with effective system administration strategies, can promote the development of oncolytic virotherapies. This article focuses on studies that were carried out in China in order to give an overview of the past, present, and future of oncolytic virotherapy in China.
Collapse
Affiliation(s)
- Ding Wei
- 1 Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University , Xi'an, China
| | - Jing Xu
- 1 Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University , Xi'an, China
| | - Xin-Yuan Liu
- 2 State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Nan Chen
- 1 Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University , Xi'an, China
| | - Huijie Bian
- 1 Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University , Xi'an, China
| |
Collapse
|
12
|
Hao J, Xie W, Li H, Li R. Prostate Cancer-Specific of DD3-driven Oncolytic Virus-harboring mK5 Gene. Open Med (Wars) 2018; 14:1-9. [PMID: 30613790 PMCID: PMC6310915 DOI: 10.1515/med-2019-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in Western male population. In this study, we insert mK5 (the mutational kringle5 of human plasminogen) into a DD3-promoted (differential display code 3) oncolytic adenovirus to construct OncoAd.mK5.DD3. E1A.dE1B, briefly, OAd.DD3.mK5. DD3 is one of the most prostate cancer specific promoters which can transcriptionally control adenoviral replication. mK5 has been proved to be able to inhibit the tumor angiogenesis and inhibit cell proliferation. Our results suggested that targeting PCa with OAd.DD3.mK5 elicited strong antitumor effect.
Collapse
Affiliation(s)
- Jiali Hao
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang SciTech University, Hangzhou 310018, China
| | - Wenjie Xie
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang SciTech University, Hangzhou 310018, China
| | - Hui Li
- Shanghai Yuansong biotechnology Co., Ltd., Shanghai, China
| | - Runsheng Li
- Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| |
Collapse
|
13
|
Efficacy of combining ING4 and TRAIL genes in cancer-targeting gene virotherapy strategy: first evidence in preclinical hepatocellular carcinoma. Gene Ther 2017; 25:54-65. [PMID: 28925992 PMCID: PMC5817393 DOI: 10.1038/gt.2017.86] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
Abstract
Current treatments of hepatocellular carcinoma (HCC) are ineffective and unsatisfactory in many aspects. Cancer-targeting gene virotherapy using oncolytic adenoviruses (OAds) armed with anticancer genes has shown efficacy and safety in clinical trials. Nowadays, both inhibitor of growth 4 (ING4), as a multimodal tumor suppressor gene, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as a potent apoptosis-inducing gene, are experiencing a renaissance in cancer gene therapy. Herein we investigated the antitumor activity and safety of mono- and combined therapy with OAds armed with ING4 (Ad-ΔB/ING4) and TRAIL (Ad-ΔB/TRAIL) gene, respectively, on preclinical models of human HCC. OAd-mediated expression of ING4 or TRAIL transgene was confirmed. Ad-ΔB/TRAIL and/or Ad-ΔB/ING4 exhibited potent killing effect on human HCC cells (HuH7 and Hep3B) but not on normal liver cells. Most importantly, systemic therapy with Ad-ΔB/ING4 plus Ad-ΔB/TRAIL elicited more eradicative effect on an orthotopic mouse model of human HCC than their monotherapy, without causing obvious overlapping toxicity. Mechanistically, Ad-ΔB/ING4 and Ad-ΔB/TRAIL were remarkably cooperated to induce antitumor apoptosis and immune response, and to repress tumor angiogenesis. This is the first study showing that concomitant therapy with Ad-ΔB/ING4 and Ad-ΔB/TRAIL may provide a potential strategy for HCC therapy and merits further investigations to realize its possible clinical translation.
Collapse
|
14
|
Hu L, Jiang K, Ding C, Meng S. Targeting Autophagy for Oncolytic Immunotherapy. Biomedicines 2017; 5:biomedicines5010005. [PMID: 28536348 PMCID: PMC5423490 DOI: 10.3390/biomedicines5010005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/22/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022] Open
Abstract
Oncolytic viruses (OVs) are capable of exerting anti-cancer effects by a variety of mechanisms, including immune-mediated tumor cell death, highlighting their potential use in immunotherapy. Several adaptation mechanisms such as autophagy contribute to OV-mediated anti-tumor properties. Autophagy regulates immunogenic signaling during cancer therapy which can be utilized to design therapeutic combinations using approaches that either induce or block autophagy to potentiate the therapeutic efficacy of OVs. In this article, we review the complicated interplay between autophagy, cancer, immunity, and OV, summarize recent progress in the contribution of OV-perturbed autophagy to oncolytic immunity, and discuss the challenges in targeting autophagy to enhance oncolytic immunotherapy.
Collapse
Affiliation(s)
- Lulu Hu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9Lvshun Road South, Dalian 116044, China.
| | - Ke Jiang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9Lvshun Road South, Dalian 116044, China.
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200000, China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9Lvshun Road South, Dalian 116044, China.
| |
Collapse
|