1
|
Al-Rawi DH, Lettera E, Li J, DiBona M, Bakhoum SF. Targeting chromosomal instability in patients with cancer. Nat Rev Clin Oncol 2024; 21:645-659. [PMID: 38992122 DOI: 10.1038/s41571-024-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and a driver of metastatic dissemination, therapeutic resistance, and immune evasion. CIN is present in 60-80% of human cancers and poses a formidable therapeutic challenge as evidenced by the lack of clinically approved drugs that directly target CIN. This limitation in part reflects a lack of well-defined druggable targets as well as a dearth of tractable biomarkers enabling direct assessment and quantification of CIN in patients with cancer. Over the past decade, however, our understanding of the cellular mechanisms and consequences of CIN has greatly expanded, revealing novel therapeutic strategies for the treatment of chromosomally unstable tumours as well as new methods of assessing the dynamic nature of chromosome segregation errors that define CIN. In this Review, we describe advances that have shaped our understanding of CIN from a translational perspective, highlighting both challenges and opportunities in the development of therapeutic interventions for patients with chromosomally unstable cancers.
Collapse
Affiliation(s)
- Duaa H Al-Rawi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuele Lettera
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Islam A, Shaukat Z, Hussain R, Ricos MG, Dibbens LM, Gregory SL. Aneuploidy is Linked to Neurological Phenotypes Through Oxidative Stress. J Mol Neurosci 2024; 74:50. [PMID: 38693434 PMCID: PMC11062972 DOI: 10.1007/s12031-024-02227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Aneuploidy, having an aberrant genome, is gaining increasing attention in neurodegenerative diseases. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. A growing body of research from numerous laboratories suggests that many neurodegenerative disorders, especially Alzheimer's disease and frontotemporal dementia, are characterised by neuronal aneuploidy and the ensuing apoptosis, which may contribute to neuronal loss. Using Drosophila as a model, we investigated the effect of induced aneuploidy in GABAergic neurons. We found an increased proportion of aneuploidy due to Mad2 depletion in the third-instar larval brain and increased cell death. Depletion of Mad2 in GABAergic neurons also gave a defective climbing and seizure phenotype. Feeding animals an antioxidant rescued the climbing and seizure phenotype. These findings suggest that increased aneuploidy leads to higher oxidative stress in GABAergic neurons which causes cell death, climbing defects, and seizure phenotype. Antioxidant feeding represents a potential therapy to reduce the aneuploidy-driven neurological phenotype.
Collapse
Affiliation(s)
- Anowarul Islam
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Zeeshan Shaukat
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Rashid Hussain
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Michael G Ricos
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Leanne M Dibbens
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stephen L Gregory
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia.
| |
Collapse
|
3
|
Islam A, Shaukat Z, Newman DL, Hussain R, Ricos MG, Dibbens L, Gregory SL. Chromosomal Instability Causes Sensitivity to Polyamines and One-Carbon Metabolism. Metabolites 2023; 13:metabo13050642. [PMID: 37233683 DOI: 10.3390/metabo13050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Aneuploidy, or having a disrupted genome, is an aberration commonly found in tumours but rare in normal tissues. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift, which makes these cells sensitive to internal and environmental stresses. Using Drosophila as a model, we investigated the changes in transcription in response to ongoing changes to ploidy (chromosomal instability, CIN). We noticed changes in genes affecting one-carbon metabolism, specifically those affecting the production and use of s-adenosyl methionine (SAM). The depletion of several of these genes has led to cell death by apoptosis in CIN cells but not in normal proliferating cells. We found that CIN cells are particularly sensitive to SAM metabolism at least partly because of its role in generating polyamines. Feeding animals spermine was seen to rescue the cell death caused by the loss of SAM synthase in CIN tissues. The loss of polyamines led to decreased rates of autophagy and sensitivity to reactive oxygen species (ROS), which we have shown to contribute significantly to cell death in CIN cells. These findings suggest that a well-tolerated metabolic intervention such as polyamine inhibition has the potential to target CIN tumours via a relatively well-characterised mechanism.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia 2 Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia 3 School of Biological Sciences, University of Adelaide, Adelaide 5006, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Zeeshan Shaukat
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - David L Newman
- School of Biological Sciences, University of Adelaide, Adelaide 5006, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Michael G Ricos
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Leanne Dibbens
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Stephen L Gregory
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia 2 Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia 3 School of Biological Sciences, University of Adelaide, Adelaide 5006, Australia
| |
Collapse
|
4
|
cGAS-STING signalling in cancer: striking a balance with chromosomal instability. Biochem Soc Trans 2023; 51:539-555. [PMID: 36876871 DOI: 10.1042/bst20220838] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer that drives tumour evolution. It is now recognised that CIN in cancer leads to the constitutive production of misplaced DNA in the form of micronuclei and chromatin bridges. These structures are detected by the nucleic acid sensor cGAS, leading to the production of the second messenger 2'3'-cGAMP and activation of the critical hub of innate immune signalling STING. Activation of this immune pathway should instigate the influx and activation of immune cells, resulting in the eradication of cancer cells. That this does not universally occur in the context of CIN remains an unanswered paradox in cancer. Instead, CIN-high cancers are notably adept at immune evasion and are highly metastatic with typically poor outcomes. In this review, we discuss the diverse facets of the cGAS-STING signalling pathway, including emerging roles in homeostatic processes and their intersection with genome stability regulation, its role as a driver of chronic pro-tumour inflammation, and crosstalk with the tumour microenvironment, which may collectively underlie its apparent maintenance in cancers. A better understanding of the mechanisms whereby this immune surveillance pathway is commandeered by chromosomally unstable cancers is critical to the identification of new vulnerabilities for therapeutic exploitation.
Collapse
|
5
|
Martín A, Epifano C, Vilaplana-Marti B, Hernández I, Macías RIR, Martínez-Ramírez Á, Cerezo A, Cabezas-Sainz P, Garranzo-Asensio M, Amarilla-Quintana S, Gómez-Domínguez D, Caleiras E, Camps J, Gómez-López G, Gómez de Cedrón M, Ramírez de Molina A, Barderas R, Sánchez L, Velasco-Miguel S, Pérez de Castro I. Mitochondrial RNA methyltransferase TRMT61B is a new, potential biomarker and therapeutic target for highly aneuploid cancers. Cell Death Differ 2023; 30:37-53. [PMID: 35869285 PMCID: PMC9883398 DOI: 10.1038/s41418-022-01044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Despite being frequently observed in cancer cells, chromosomal instability (CIN) and its immediate consequence, aneuploidy, trigger adverse effects on cellular homeostasis that need to be overcome by anti-stress mechanisms. As such, these safeguard responses represent a tumor-specific Achilles heel, since CIN and aneuploidy are rarely observed in normal cells. Recent data have revealed that epitranscriptomic marks catalyzed by RNA-modifying enzymes change under various stress insults. However, whether aneuploidy is associated with such RNA modifying pathways remains to be determined. Through an in silico search for aneuploidy biomarkers in cancer cells, we found TRMT61B, a mitochondrial RNA methyltransferase enzyme, to be associated with high levels of aneuploidy. Accordingly, TRMT61B protein levels are increased in tumor cell lines with an imbalanced karyotype as well as in different tumor types when compared to control tissues. Interestingly, while TRMT61B depletion induces senescence in melanoma cell lines with low levels of aneuploidy, it leads to apoptosis in cells with high levels. The therapeutic potential of these results was further validated by targeting TRMT61B in transwell and xenografts assays. We show that TRM61B depletion reduces the expression of several mitochondrial encoded proteins and limits mitochondrial function. Taken together, these results identify a new biomarker of aneuploidy in cancer cells that could potentially be used to selectively target highly aneuploid tumors.
Collapse
Affiliation(s)
- Alberto Martín
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Carolina Epifano
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Borja Vilaplana-Marti
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Iván Hernández
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rocío I R Macías
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, Madrid, Spain
| | - Ángel Martínez-Ramírez
- Department of Molecular Cytogenetics, MD Anderson Cancer Center, Madrid, Spain
- Oncohematology Cytogenetics Laboratory, Eurofins-Megalab, Madrid, Spain
| | - Ana Cerezo
- Lilly Cell Signaling and Immunometabolism Section, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pablo Cabezas-Sainz
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain
| | - Maria Garranzo-Asensio
- Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), E-28220, Madrid, Spain
| | - Sandra Amarilla-Quintana
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Programa de Doctorado UNED-ISCIII Ciencias Biomédicas y Salud Pública, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Déborah Gómez-Domínguez
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Core Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigacio´ Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Cancer Program, IMDEA FOOD, CEI UAM+CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Cancer Program, IMDEA FOOD, CEI UAM+CSIC, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), E-28220, Madrid, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain
| | - Susana Velasco-Miguel
- Lilly Cell Signaling and Immunometabolism Section, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ignacio Pérez de Castro
- Gene Therapy Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
6
|
Islam A, Shaukat Z, Hussain R, Gregory SL. One-Carbon and Polyamine Metabolism as Cancer Therapy Targets. Biomolecules 2022; 12:biom12121902. [PMID: 36551330 PMCID: PMC9775183 DOI: 10.3390/biom12121902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer metabolic reprogramming is essential for maintaining cancer cell survival and rapid replication. A common target of this metabolic reprogramming is one-carbon metabolism which is notable for its function in DNA synthesis, protein and DNA methylation, and antioxidant production. Polyamines are a key output of one-carbon metabolism with widespread effects on gene expression and signaling. As a result of these functions, one-carbon and polyamine metabolism have recently drawn a lot of interest for their part in cancer malignancy. Therapeutic inhibitors that target one-carbon and polyamine metabolism have thus been trialed as anticancer medications. The significance and future possibilities of one-carbon and polyamine metabolism as a target in cancer therapy are discussed in this review.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Zeeshan Shaukat
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Stephen L. Gregory
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Correspondence: ; Tel.: +61-0466987583
| |
Collapse
|
7
|
Almacellas E, Mauvezin C. Emerging roles of mitotic autophagy. J Cell Sci 2022; 135:275665. [PMID: 35686549 DOI: 10.1242/jcs.255802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lysosomes exert pleiotropic functions to maintain cellular homeostasis and degrade autophagy cargo. Despite the great advances that have boosted our understanding of autophagy and lysosomes in both physiology and pathology, their function in mitosis is still controversial. During mitosis, most organelles are reshaped or repurposed to allow the correct distribution of chromosomes. Mitotic entry is accompanied by a reduction in sites of autophagy initiation, supporting the idea of an inhibition of autophagy to protect the genetic material against harmful degradation. However, there is accumulating evidence revealing the requirement of selective autophagy and functional lysosomes for a faithful chromosome segregation. Degradation is the most-studied lysosomal activity, but recently described alternative functions that operate in mitosis highlight the lysosomes as guardians of mitotic progression. Because the involvement of autophagy in mitosis remains controversial, it is important to consider the specific contribution of signalling cascades, the functions of autophagic proteins and the multiple roles of lysosomes, as three entangled, but independent, factors controlling genomic stability. In this Review, we discuss the latest advances in this area and highlight the therapeutic potential of targeting autophagy for drug development.
Collapse
Affiliation(s)
- Eugenia Almacellas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline Mauvezin
- Department of Biomedicine, Faculty of Medicine, University of Barcelona c/ Casanova, 143 08036 Barcelona, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), c/ Rosselló, 149-153 08036 Barcelona, Spain
| |
Collapse
|
8
|
Zhou L, Jilderda LJ, Foijer F. Exploiting aneuploidy-imposed stresses and coping mechanisms to battle cancer. Open Biol 2020; 10:200148. [PMID: 32873156 PMCID: PMC7536071 DOI: 10.1098/rsob.200148] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Aneuploidy, an irregular number of chromosomes in cells, is a hallmark feature of cancer. Aneuploidy results from chromosomal instability (CIN) and occurs in almost 90% of all tumours. While many cancers display an ongoing CIN phenotype, cells can also be aneuploid without displaying CIN. CIN drives tumour evolution as ongoing chromosomal missegregation will yield a progeny of cells with variable aneuploid karyotypes. The resulting aneuploidy is initially toxic to cells because it leads to proteotoxic and metabolic stress, cell cycle arrest, cell death, immune cell activation and further genomic instability. In order to overcome these aneuploidy-imposed stresses and adopt a malignant fate, aneuploid cancer cells must develop aneuploidy-tolerating mechanisms to cope with CIN. Aneuploidy-coping mechanisms can thus be considered as promising therapeutic targets. However, before such therapies can make it into the clinic, we first need to better understand the molecular mechanisms that are activated upon aneuploidization and the coping mechanisms that are selected for in aneuploid cancer cells. In this review, we discuss the key biological responses to aneuploidization, some of the recently uncovered aneuploidy-coping mechanisms and some strategies to exploit these in cancer therapy.
Collapse
Affiliation(s)
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
9
|
Feng Q, Bian X, Liu X, Wang Y, Zhou H, Ma X, Quan C, Yao Y, Zheng Z. Intracellular expression of arginine deiminase activates the mitochondrial apoptosis pathway by inhibiting cytosolic ferritin and inducing chromatin autophagy. BMC Cancer 2020; 20:665. [PMID: 32677906 PMCID: PMC7367323 DOI: 10.1186/s12885-020-07133-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Based on its low toxicity, arginine starvation therapy has the potential to cure malignant tumors that cannot be treated surgically. The Arginine deiminase (ADI) gene has been identified to be an ideal cancer-suppressor gene. ADI expressed in the cytosol displays higher oncolytic efficiency than ADI-PEG20 (Pegylated Arginine Deiminase by PEG 20,000). However, it is still unknown whether cytosolic ADI has the same mechanism of action as ADI-PEG20 or other underlying cellular mechanisms. METHODS The interactions of ADI with other protein factors were screened by yeast hybrids, and verified by co-immunoprecipitation and immunofluorescent staining. The effect of ADI inhibiting the ferritin light-chain domain (FTL) in mitochondrial damage was evaluated by site-directed mutation and flow cytometry. Control of the mitochondrial apoptosis pathway was analyzed by Western Blotting and real-time PCR experiments. The effect of p53 expression on cancer cells death was assessed by siTP53 transfection. Chromatin autophagy was explored by immunofluorescent staining and Western Blotting. RESULTS ADI expressed in the cytosol inhibited the activity of cytosolic ferritin by interacting with FTL. The inactive mutant of ADI still induced apoptosis in certain cell lines of ASS- through mitochondrial damage. Arginine starvation also generated an increase in the expression of p53 and p53AIP1, which aggravated the cellular mitochondrial damage. Chromatin autophagy appeared at a later stage of arginine starvation. DNA damage occurred along with the entire arginine starvation process. Histone 3 (H3) was found in autophagosomes, which implies that cancer cells attempted to utilize the arginine present in histones to survive during arginine starvation. CONCLUSIONS Mitochondrial damage is the major mechanism of cell death induced by cytosolic ADI. The process of chromatophagy does not only stimulate cancer cells to utilize histone arginine but also speeds up cancer cell death at a later stage of arginine starvation.
Collapse
Affiliation(s)
- Qingyuan Feng
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xuzhao Bian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuan Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Huiting Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaojing Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chunju Quan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi Yao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhongliang Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Abstract
Cancer is a genetic disease that involves the gradual accumulation of mutations. Human tumours are genetically unstable. However, the current knowledge about the origins and implications of genomic instability in this disease is limited. Understanding the biology of cancer requires the use of animal models. Here, we review relevant studies addressing the implications of genomic instability in cancer by using the fruit fly, Drosophila melanogaster, as a model system. We discuss how this invertebrate has helped us to expand the current knowledge about the mechanisms involved in genomic instability and how this hallmark of cancer influences disease progression.
Collapse
Affiliation(s)
- Stephan U Gerlach
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Co-Operation between Aneuploidy and Metabolic Changes in Driving Tumorigenesis. Int J Mol Sci 2019; 20:ijms20184611. [PMID: 31540349 PMCID: PMC6770258 DOI: 10.3390/ijms20184611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Alterations from the normal set of chromosomes are extremely common as cells progress toward tumourigenesis. Similarly, we expect to see disruption of normal cellular metabolism, particularly in the use of glucose. In this review, we discuss the connections between these two processes: how chromosomal aberrations lead to metabolic disruption, and vice versa. Both processes typically result in the production of elevated levels of reactive oxygen species, so we particularly focus on their role in mediating oncogenic changes.
Collapse
|
12
|
Abstract
Genomic instability is a common feature of tumours that has a wide range of disruptive effects on cellular homeostasis. In this review we briefly discuss how instability comes about, then focus on the impact of gain or loss of DNA (aneuploidy) on oxidative stress. We discuss several mechanisms that lead from aneuploidy to the production of reactive oxygen species, including the effects on protein complex stoichiometry, endoplasmic reticulum stress and metabolic disruption. Each of these are involved in positive feedback loops that amplify relatively minor genetic changes into major cellular disruption or cell death, depending on the capacity of the cell to induce antioxidants or processes such as mitophagy that can moderate the disruption. Finally we examine the direct effects of reactive oxygen species on mitosis and how oxidative stress can compromise centrosome number, cytoskeletal integrity and signalling processes that are vital for mitotic fidelity.
Collapse
Affiliation(s)
- David L Newman
- a Department of Molecular and Biomedical Science, University of Adelaide , Adelaide , Australia
| | - Lauren A Thurgood
- b Discipline of Molecular Medicine and Pathology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University , Adelaide , Australia
| | - Stephen L Gregory
- a Department of Molecular and Biomedical Science, University of Adelaide , Adelaide , Australia.,b Discipline of Molecular Medicine and Pathology and Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University , Adelaide , Australia
| |
Collapse
|
13
|
Romero-Macías JR, Pascual-Serra R, Roche O, Ruiz-Marcos F, Serrano-Martínez A, González-Aguado P, Belandia B, Ruiz-Hidalgo MJ, Sánchez-Prieto R. Blockage of autophagic flux is associated with lymphocytosis and higher percentage of tumoral cells in chronic lymphocytic leukemia of B cells. Clin Transl Oncol 2019; 21:1280-1285. [PMID: 30680609 DOI: 10.1007/s12094-019-02041-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Autophagy has lately emerged as an important biological process with implications in several hematological pathologies. Recently, a growing body of evidence supports a putative role of autophagy in chronic lymphocytic leukemia; however, no definitive clue has been established so far. To elucidate this issue, we have developed a pilot study to measure autophagic flux in peripheral blood mononuclear cells from chronic lymphocytic leukemia patients, and explored its correlation with classical clinical/analytical parameters. METHODS/PATIENTS Thirty-three chronic lymphocytic leukemia patients participated in the study. Autophagic flux in peripheral blood mononuclear cells was determined by western blot measuring the levels of the proteins p62 and lipidated LC3. Moreover, p62 mRNA levels were analyzed by RT-qPCR. RESULTS Lymphocytosis and the percentage of tumoral lymphocytes in chronic lymphocytic leukemia patients statistically correlate with a blocked autophagic flux. CONCLUSION Alterations in autophagic flux could play an important role in the physiopathology of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- J-R Romero-Macías
- Servicio de Hematología, Complejo Hospitalario Universitario de Albacete, 02006, Albacete, Spain.,Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006, Albacete, Spain
| | - R Pascual-Serra
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006, Albacete, Spain
| | - O Roche
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006, Albacete, Spain.,Unidad Asociada de Biomedicina CSIC-UCLM, 02006, Albacete, Spain.,Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02006, Albacete, Spain
| | - F Ruiz-Marcos
- Servicio de Hematología, Complejo Hospitalario Universitario de Albacete, 02006, Albacete, Spain
| | - A Serrano-Martínez
- Servicio de Hematología, Complejo Hospitalario Universitario de Albacete, 02006, Albacete, Spain
| | - P González-Aguado
- Servicio de Hematología, Complejo Hospitalario Universitario de Albacete, 02006, Albacete, Spain
| | - B Belandia
- Lab. 1.5.2, Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Unidad Asociada de Biomedicina CSIC-UCLM, 28029, Madrid, Spain
| | - M-J Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006, Albacete, Spain.,Unidad Asociada de Biomedicina CSIC-UCLM, 02006, Albacete, Spain.,Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02006, Albacete, Spain
| | - R Sánchez-Prieto
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02006, Albacete, Spain. .,Lab. 1.5.2, Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Unidad Asociada de Biomedicina CSIC-UCLM, 28029, Madrid, Spain.
| |
Collapse
|
14
|
Khan M, Shaukat Z, Saint R, Gregory SL. Chromosomal instability causes sensitivity to protein folding stress and ATP depletion. Biol Open 2018; 7:7/10/bio038000. [PMID: 30327366 PMCID: PMC6215417 DOI: 10.1242/bio.038000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aneuploidy – having an unbalanced genome – is poorly tolerated at the cellular and organismal level. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. Using Drosophila as a model, we found that protein folding stress is exacerbated by redox stress that occurs in response to ongoing changes to ploidy (chromosomal instability, CIN). We also found that if de novo nucleotide synthesis is blocked, CIN cells are dependent on a high level of lysosome function to survive. Depletion of adenosine monophosphate (AMP) synthesis enzymes led to DNA damage in CIN cells, which showed elevated activity of the DNA repair enzyme activated poly(ADP ribose) polymerase (PARP). PARP activation causes depletion of its substrate, nicotinamide adenine dinucleotide (NAD+) and subsequent loss of Adenosine Tri-Phosphate (ATP), and we found that adding ATP or nicotinamide (a precursor in the synthesis of NAD+) could rescue the observed phenotypes. These findings provide ways to interpret, target and exploit aneuploidy, which has the potential to offer tumour-specific therapies. Summary: Cells that gain or lose chromosomes during cell division are shown to be sensitive to ATP levels and protein folding stress.
Collapse
Affiliation(s)
- Mahwish Khan
- Department of Genetics, University of Adelaide, Adelaide 5006, Australia
| | - Zeeshan Shaukat
- Department of Genetics, University of Adelaide, Adelaide 5006, Australia
| | - Robert Saint
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Stephen L Gregory
- Department of Genetics, University of Adelaide, Adelaide 5006, Australia .,College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
15
|
You L, Jin S, Zhu L, Qian W. Autophagy, autophagy-associated adaptive immune responses and its role in hematologic malignancies. Oncotarget 2017; 8:12374-12388. [PMID: 27902471 PMCID: PMC5355352 DOI: 10.18632/oncotarget.13583] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a tightly regulated catabolic process that leads to the degradation of cytoplasmatic components such as aggregated/misfolded proteins and organelles through the lysosomal machinery. Recent studies suggest that autophagy plays such a role in the context of the anti-tumor immune response, make it an attractive target for cancer immunotherapy. Defective autophagy in hematopoietic stem cells may contribute to the development of hematologic malignancies, including leukemia, myelodysplastic syndrome, and lymphoproliferative disorder. In blood cancer cells, autophagy can either result in chemoresistance or induce autophagic cell death that may act as immunogenic. Based on the successful experimental findings in vitro and in vivo, clinical trials of autophagy inhibitor such as hydroxychloroquine in combination with chemotherapy in patients with blood cancers are currently underway. However, autophagy inactivation might impair autophagy-triggered anticancer immunity, whereas induction of autophagy might become an effective immunotherapy. These aspects are discussed in this review together with a brief introduction to the autophagic molecular machinery and its roles in hematologic malignancies.
Collapse
Affiliation(s)
- Liangshun You
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Shenhe Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Li Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Wenbin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| |
Collapse
|