1
|
Goto A, Rodriguez-Esteban R, Scharf SH, Morris GM. Understanding the genetics of viral drug resistance by integrating clinical data and mining of the scientific literature. Sci Rep 2022; 12:14476. [PMID: 36008431 PMCID: PMC9403226 DOI: 10.1038/s41598-022-17746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Drug resistance caused by mutations is a public health threat for existing and emerging viral diseases. A wealth of evidence about these mutations and their clinically associated phenotypes is scattered across the literature, but a comprehensive perspective is usually lacking. This work aimed to produce a clinically relevant view for the case of Hepatitis B virus (HBV) mutations by combining a chronic HBV clinical study with a compendium of genetic mutations systematically gathered from the scientific literature. We enriched clinical mutation data by systematically mining 2,472,725 scientific articles from PubMed Central in order to gather information about the HBV mutational landscape. By performing this analysis, we were able to identify mutational hotspots for each HBV genotype (A-E) and gene (C, X, P, S), as well as the location of disulfide bonds associated with these mutations. Through a modelling study, we also identified a mutation position common in both the clinical data and the literature that is located at the binding pocket for a known anti-HBV drug, namely entecavir. The results of this novel approach show the potential of integrated analyses to assist in the development of new drugs for viral diseases that are more robust to resistance. Such analyses should be of particular interest due to the increasing importance of viral resistance in established and emerging viruses, such as for newly developed drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- An Goto
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | | | | | - Garrett M Morris
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.
| |
Collapse
|
2
|
Qian F, Zou W, Jin F, Li D, Shen Y. Prevalence of Potential Resistance Related Variants Among Chinese Chronic Hepatitis B Patients Not Receiving Nucleos(T)ide Analogues. Infect Drug Resist 2020; 13:2407-2416. [PMID: 32765014 PMCID: PMC7381783 DOI: 10.2147/idr.s249476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Background and Aims Potential drug resistance (DR) related variants in the hepatitis B virus (HBV) reverse transcriptase (RT) region may be associated with the effectiveness of antiviral drugs and disease progression. The aim of this study was to investigate the prevalence and clinical characteristics of potential DR-related variants in Chinese CHB patients not receiving nucleos(t)ide analogues (NAs). Patients and Methods Two hundred and six untreated CHB patients from Huzhou Central Hospital in eastern China were recruited for this study. The serum DNA was extracted and the HBV RT region was amplified using nest polymerase chain reaction (nest-PCR). The 42 potential DR-related variants were analyzed by direct sequencing. Results Among these CHB patients, HBV genotype B and genotype C were identified in 121 (58.7%) and 85 (41.3%) patients, respectively. Potential DR-related variants were detected in 42.7% (88/206) of patients. Primary and secondary DR variants were found in 7.3% (15/206) of patients, including rtL80I/V, rtI169T, rtV173L rtL180M, rtA181T/V, rtM204I/V, and rtN236T. The variants at rt53, rt82, rt221, rt233, rt237, and rt256 were specific for genotype B, and those at rt38, rt84, rt126, rt139, rt153, rt191, rt214, rt238, and rt242 were specific for genotype C. Moreover, the variation frequency in the A-B interdomain (3.96%) was significantly higher than that in the functional domains (1.17%) and non-A-B interdomains (1.11%). Multivariate logistic regression analysis showed that lower HBV-DNA load (<106 IU/mL) was an independent factor associated with potential DR-related variants in untreated CHB patients (P <0.05). Conclusion Potential DR-related variants were frequent and complex in untreated Chinese CHB patients. Furthermore, the variants may contribute to decreased serum HBV-DNA loads. However, the effects of potential DR-related variants on the antiviral therapy and liver disease progression require further study.
Collapse
Affiliation(s)
- Fuchu Qian
- Department of Precision Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China.,Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
| | - Weihua Zou
- Department of Laboratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
| | - Fang Jin
- Department of Precision Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China.,Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
| | - Dongli Li
- Department of Precision Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China.,Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
| | - Yujuan Shen
- Department of Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People's Republic of China
| |
Collapse
|
3
|
Park ES, Lee AR, Kim DH, Lee JH, Yoo JJ, Ahn SH, Sim H, Park S, Kang HS, Won J, Ha YN, Shin GC, Kwon SY, Park YK, Choi BS, Lee YB, Jeong N, An Y, Ju YS, Yu SJ, Chae HB, Yu KS, Kim YJ, Yoon JH, Zoulim F, Kim KH. Identification of a quadruple mutation that confers tenofovir resistance in chronic hepatitis B patients. J Hepatol 2019; 70:1093-1102. [PMID: 30794889 DOI: 10.1016/j.jhep.2019.02.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Tenofovir disoproxil fumarate (TDF) is one the most potent nucleot(s)ide analogues for treating chronic hepatitis B virus (HBV) infection. Phenotypic resistance caused by genotypic resistance to TDF has not been reported. This study aimed to characterize HBV mutations that confer tenofovir resistance. METHODS Two patients with viral breakthrough during treatment with TDF-containing regimens were prospectively enrolled. The gene encoding HBV reverse transcriptase was sequenced. Eleven HBV clones harboring a series of mutations in the reverse transcriptase gene were constructed by site-directed mutagenesis. Drug susceptibility of each clone was determined by Southern blot analysis and real-time PCR. The relative frequency of mutants was evaluated by ultra-deep sequencing and clonal analysis. RESULTS Five mutations (rtS106C [C], rtH126Y [Y], rtD134E [E], rtM204I/V, and rtL269I [I]) were commonly found in viral isolates from 2 patients. The novel mutations C, Y, and E were associated with drug resistance. In assays for drug susceptibility, the IC50 value for wild-type HBV was 3.8 ± 0.6 µM, whereas the IC50 values for CYE and CYEI mutants were 14.1 ± 1.8 and 58.1 ± 0.9 µM, respectively. The IC90 value for wild-type HBV was 30 ± 0.5 µM, whereas the IC90 values for CYE and CYEI mutants were 185 ± 0.5 and 790 ± 0.2 µM, respectively. Both tenofovir-resistant mutants and wild-type HBV had similar susceptibility to the capsid assembly modulator NVR 3-778 (IC50 <0.4 µM vs. IC50 = 0.4 µM, respectively). CONCLUSIONS Our study reveals that the quadruple (CYEI) mutation increases the amount of tenofovir required to inhibit HBV by 15.3-fold in IC50 and 26.3-fold in IC90. These results demonstrate that tenofovir-resistant HBV mutants can emerge, although the genetic barrier is high. LAY SUMMARY Tenofovir is the most potent nucleotide analogue for the treatment of chronic hepatitis B virus infection and there has been no hepatitis B virus mutation that confers >10-fold resistance to tenofovir up to 8 years. Herein, we identified, for the first time, a quadruple mutation that conferred 15.3-fold (IC50) and 26.3-fold (IC90) resistance to tenofovir in 2 patients who experienced viral breakthrough during tenofovir treatment.
Collapse
Affiliation(s)
- Eun-Sook Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ah Ram Lee
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Doo Hyun Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jeong-Ju Yoo
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Gastroenterology and Hepatology, Soonchunhyang University Bucheon Hospital, Gyeonggido, Republic of Korea
| | - Sung Hyun Ahn
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Heewoo Sim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Soree Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hong Seok Kang
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Juhee Won
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Yea Na Ha
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Gu-Choul Shin
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - So Young Kwon
- Department of Internal Medicine, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Yong Kwang Park
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Osong, Chungbuk, Republic of Korea
| | - Byeong-Sun Choi
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Osong, Chungbuk, Republic of Korea
| | - Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggido, Republic of Korea
| | - Nakcheol Jeong
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Yohan An
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea
| | - Young Seok Ju
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Bok Chae
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Fabien Zoulim
- INSERM Unité 1052, Cancer Research Center of Lyon, Hospices Civils de Lyon, Lyon University, Lyon, France
| | - Kyun-Hwan Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea; KU Open Innovation Center, Konkuk University, Seoul, Republic of Korea; Research Institute of Medical Sciences, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Choi YM, Lee SY, Kim BJ. Naturally occurring hepatitis B virus reverse transcriptase mutations related to potential antiviral drug resistance and liver disease progression. World J Gastroenterol 2018; 24:1708-1724. [PMID: 29713126 PMCID: PMC5922991 DOI: 10.3748/wjg.v24.i16.1708] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
The annual number of deaths caused by hepatitis B virus (HBV)-related disease, including cirrhosis and hepatocellular carcinoma (HCC), is estimated as 887000. The reported prevalence of HBV reverse transcriptase (RT) mutation prior to treatment is varied and the impact of preexisting mutations on the treatment of naïve patients remains controversial, and primarily depends on geographic factors, HBV genotypes, HBeAg serostatus, HBV viral loads, disease progression, intergenotypic recombination and co-infection with HIV. Different sensitivity of detection methodology used could also affect their prevalence results. Several genotype-dependent HBV RT positions that can affect the emergence of drug resistance have also been reported. Eight mutations in RT (rtL80I, rtD134N, rtN139K/T/H, rtY141F, rtM204I/V, rtF221Y, rtI224V, and rtM309K) are significantly associated with HCC progression. HBeAg-negative status, low viral load, and genotype C infection are significantly related to a higher frequency and prevalence of preexisting RT mutations. Preexisting mutations are most frequently found in the A-B interdomain of RT which overlaps with the HBsAg “a” determinant region, mutations of which can lead to simultaneous viral immune escape. In conclusion, the presence of baseline RT mutations can affect drug treatment outcomes and disease progression in HBV-infected populations via modulation of viral fitness and host-immune responses.
Collapse
Affiliation(s)
- Yu-Min Choi
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, Seoul National University, College of Medicine, Seoul 110799, South Korea
| | - So-Young Lee
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, Seoul National University, College of Medicine, Seoul 110799, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, Seoul National University, College of Medicine, Seoul 110799, South Korea
| |
Collapse
|
5
|
Rajoriya N, Combet C, Zoulim F, Janssen HLA. How viral genetic variants and genotypes influence disease and treatment outcome of chronic hepatitis B. Time for an individualised approach? J Hepatol 2017; 67:1281-1297. [PMID: 28736138 DOI: 10.1016/j.jhep.2017.07.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis B virus (HBV) infection remains a global problem. Several HBV genotypes exist with different biology and geographical prevalence. Whilst the future aim of HBV treatment remains viral eradication, current treatment strategies aim to suppress the virus and prevent the progression of liver disease. Current strategies also involve identification of patients for treatment, namely those at risk of progressive liver disease. Identification of HBV genotype, HBV mutants and other predictive factors allow for tailoured treatments, and risk-surveillance pathways, such as hepatocellular cancer screening. In the future, these factors may enable stratification not only of treatment decisions, but also of patients at risk of higher relapse rates when current therapies are discontinued. Newer technologies, such as next-generation sequencing, to assess drug-resistant or immune escape variants and quasi-species heterogeneity in patients, may allow for more information-based treatment decisions between the clinician and the patient. This article serves to discuss how HBV genotypes and genetic variants impact not only upon the disease course and outcomes, but also current treatment strategies. Adopting a personalised genotypic approach may play a role in future strategies to combat the disease. Herein, we discuss new technologies that may allow more informed decision-making for response guided therapy in the battle against HBV.
Collapse
Affiliation(s)
- Neil Rajoriya
- Toronto Centre for Liver Diseases, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Christophe Combet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon 69XXX, France
| | - Fabien Zoulim
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon 69XXX, France; Department of Hepatology, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Harry L A Janssen
- Toronto Centre for Liver Diseases, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|