1
|
Kalkan BM, Ozcan SC, Cicek E, Gonen M, Acilan C. Nek2A prevents centrosome clustering and induces cell death in cancer cells via KIF2C interaction. Cell Death Dis 2024; 15:222. [PMID: 38493150 PMCID: PMC10944510 DOI: 10.1038/s41419-024-06601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Unlike normal cells, cancer cells frequently exhibit supernumerary centrosomes, leading to formation of multipolar spindles that can trigger cell death. Nevertheless, cancer cells with supernumerary centrosomes escape the deadly consequences of unequal segregation of genomic material by coalescing their centrosomes into two poles. This unique trait of cancer cells presents a promising target for cancer therapy, focusing on selectively attacking cells with supernumerary centrosomes. Nek2A is a kinase involved in mitotic regulation, including the centrosome cycle, where it phosphorylates linker proteins to separate centrosomes. In this study, we investigated if Nek2A also prevents clustering of supernumerary centrosomes, akin to its separation function. Reduction of Nek2A activity, achieved through knockout, silencing, or inhibition, promotes centrosome clustering, whereas its overexpression results in inhibition of clustering. Significantly, prevention of centrosome clustering induces cell death, but only in cancer cells with supernumerary centrosomes, both in vitro and in vivo. Notably, none of the known centrosomal (e.g., CNAP1, Rootletin, Gas2L1) or non-centrosomal (e.g., TRF1, HEC1) Nek2A targets were implicated in this machinery. Additionally, Nek2A operated via a pathway distinct from other proteins involved in centrosome clustering mechanisms, like HSET and NuMA. Through TurboID proximity labeling analysis, we identified novel proteins associated with the centrosome or microtubules, expanding the known interaction partners of Nek2A. KIF2C, in particular, emerged as a novel interactor, confirmed through coimmunoprecipitation and localization analysis. The silencing of KIF2C diminished the impact of Nek2A on centrosome clustering and rescued cell viability. Additionally, elevated Nek2A levels were indicative of better patient outcomes, specifically in those predicted to have excess centrosomes. Therefore, while Nek2A is a proposed target, its use must be specifically adapted to the broader cellular context, especially considering centrosome amplification. Discovering partners such as KIF2C offers fresh insights into cancer biology and new possibilities for targeted treatment.
Collapse
Affiliation(s)
- Batuhan Mert Kalkan
- Koç University, Graduate School of Health Sciences, Istanbul, Turkey
- Koç University, Research Center for Translational Medicine, Istanbul, Turkey
| | | | - Enes Cicek
- Koç University, Graduate School of Health Sciences, Istanbul, Turkey
- Koç University, Research Center for Translational Medicine, Istanbul, Turkey
| | - Mehmet Gonen
- Koç University, School of Medicine, Istanbul, Turkey
- Koç University, College of Engineering, Department of Industrial Engineering, Istanbul, Turkey
| | - Ceyda Acilan
- Koç University, Research Center for Translational Medicine, Istanbul, Turkey.
- Koç University, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
2
|
Bukkuri A, Pienta KJ, Austin RH, Hammarlund EU, Amend SR, Brown JS. A life history model of the ecological and evolutionary dynamics of polyaneuploid cancer cells. Sci Rep 2022; 12:13713. [PMID: 35962062 PMCID: PMC9374668 DOI: 10.1038/s41598-022-18137-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Therapeutic resistance is one of the main reasons for treatment failure in cancer patients. The polyaneuploid cancer cell (PACC) state has been shown to promote resistance by providing a refuge for cancer cells from the effects of therapy and by helping them adapt to a variety of environmental stressors. This state is the result of aneuploid cancer cells undergoing whole genome doubling and skipping mitosis, cytokinesis, or both. In this paper, we create a novel mathematical framework for modeling the eco-evolutionary dynamics of state-structured populations and use this framework to construct a model of cancer populations with an aneuploid and a PACC state. Using in silico simulations, we explore how the PACC state allows cancer cells to (1) survive extreme environmental conditions by exiting the cell cycle after S phase and protecting genomic material and (2) aid in adaptation to environmental stressors by increasing the cancer cell's ability to generate heritable variation (evolvability) through the increase in genomic content that accompanies polyploidization. In doing so, we demonstrate the ability of the PACC state to allow cancer cells to persist under therapy and evolve therapeutic resistance. By eliminating cells in the PACC state through appropriately-timed PACC-targeted therapies, we show how we can prevent the emergence of resistance and promote cancer eradication.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program, Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Emma U Hammarlund
- Nordic Center for Earth Evolution, University of Southern Denmark and Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program, Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
3
|
Köhler LHF, Reich S, Begemann G, Schobert R, Biersack B. 2-Amino-4-aryl-5-oxo-4,5-dihydropyrano[3,2-c]chromene-3-carbonitriles with Microtubule-Disruptive, Centrosome-Declustering, and Antiangiogenic Effects in vitro and in vivo. ChemMedChem 2022; 17:e202200064. [PMID: 35226402 PMCID: PMC9311119 DOI: 10.1002/cmdc.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Indexed: 12/02/2022]
Abstract
A series of fifteen 2-amino-4-aryl-5-oxo-4,5-dihydropyrano[3,2-c]chromene-3-carbonitriles (1 a-o) were synthesized via a three-component reaction of 4-hydroxycoumarin, malononitrile, and diversely substituted benzaldehydes or pyridine carbaldehydes. The compounds were tested for anticancer activities against a panel of eight human tumor cell lines. A few derivatives with high antiproliferative activities and different cancer cell specificity were identified and investigated for their modes of action. They led to microtubule disruption, centrosome de-clustering and G2/M cell cycle arrest in 518 A2 melanoma cells. They also showed anti-angiogenic effects in vitro and in vivo.
Collapse
Affiliation(s)
- Leonhard H. F. Köhler
- Organic Chemistry LaboratoryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Sebastian Reich
- Organic Chemistry LaboratoryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Gerrit Begemann
- Department of BiologyUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Rainer Schobert
- Organic Chemistry LaboratoryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Bernhard Biersack
- Organic Chemistry LaboratoryUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
4
|
Farrukh UB, Bilal A, Zahid H, Iqbal M, Manzoor S, Firdous F, Furqan M, Azeem M, Emwas A, Alazmi M, Gao X, Saleem RSZ, Faisal A. Synthesis and Evaluation of Novel Carboxamides Capable of Causing Centrosome Declustering and Apoptosis in Breast Cancer Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202104218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Usama B. Farrukh
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Aishah Bilal
- Department of Biology Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Huda Zahid
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Maheen Iqbal
- Department of Biology Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Safia Manzoor
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Farhat Firdous
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Muhammad Furqan
- Department of Biology Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Muhammad Azeem
- Department of Biology Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Abdul‐Hamid Emwas
- Imaging and Characterization Core Lab King Abdullah University of Science and Technology Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Meshari Alazmi
- Computer, Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rahman S. Z. Saleem
- Department of Chemistry and Chemical Engineering Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Amir Faisal
- Department of Biology Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences Lahore 54792 Pakistan
| |
Collapse
|
5
|
Keep Calm and Carry on with Extra Centrosomes. Cancers (Basel) 2022; 14:cancers14020442. [PMID: 35053604 PMCID: PMC8774008 DOI: 10.3390/cancers14020442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Precise chromosome segregation during mitosis is a vital event orchestrated by formation of bipolar spindle poles. Supernumerary centrosomes, caused by centrosome amplification, deteriorates mitotic processes, resulting in segregation defects leading to chromosomal instability (CIN). Centrosome amplification is frequently observed in various types of cancer and considered as a significant contributor to destabilization of chromosomes. This review provides a comprehensive overview of causes and consequences of centrosome amplification thoroughly describing molecular mechanisms. Abstract Aberrations in the centrosome number and structure can readily be detected at all stages of tumor progression and are considered hallmarks of cancer. Centrosome anomalies are closely linked to chromosome instability and, therefore, are proposed to be one of the driving events of tumor formation and progression. This concept, first posited by Boveri over 100 years ago, has been an area of interest to cancer researchers. We have now begun to understand the processes by which these numerical and structural anomalies may lead to cancer, and vice-versa: how key events that occur during carcinogenesis could lead to amplification of centrosomes. Despite the proliferative advantages that having extra centrosomes may confer, their presence can also lead to loss of essential genetic material as a result of segregational errors and cancer cells must deal with these deadly consequences. Here, we review recent advances in the current literature describing the mechanisms by which cancer cells amplify their centrosomes and the methods they employ to tolerate the presence of these anomalies, focusing particularly on centrosomal clustering.
Collapse
|
6
|
Nadanaka S, Bai Y, Kitagawa H. Cleavage of Syndecan-1 Promotes the Proliferation of the Basal-Like Breast Cancer Cell Line BT-549 Via Akt SUMOylation. Front Cell Dev Biol 2021; 9:659428. [PMID: 34113616 PMCID: PMC8185021 DOI: 10.3389/fcell.2021.659428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Basal-like breast cancer is characterized by an aggressive clinical outcome and presence of metastasis, for which effective therapies are unavailable. We have previously shown that chondroitin 4-O-sulfotransferase-1 (C4ST-1) controls the invasive properties of the basal-like breast cancer cell line BT-549 by inducing matrix metalloproteinase (MMP) expression through the N-cadherin/β-catenin pathway. Here we report that C4ST-1 controls the proliferation of BT-549 cells via the MMP-dependent cleavage of syndecan-1. Syndecan-1 is a membrane-bound proteoglycan associated with an aggressive phenotype and poor prognosis in breast cancer. In addition, the cleavage of syndecan-1 at a specific juxtamembrane cleavage site is implicated in the pathophysiological response in breast cancer. Knockout of C4ST-1 remarkably suppressed both the cleavage of syndecan-1 and proliferation of BT-549 cells. Kinases (AKT1, ERK1/2, PI3K, and STAT3) comprising cancer proliferative pathways are phosphorylated in C4ST-1 knockout cells at a level similar to that in parental BT-549 cells, whereas levels of phosphorylated S6 kinase and SUMOylated AKT (hyperactivated AKT observed in breast cancer) decreased in C4ST-1 knockout cells. An MMP inhibitor, GM6001, suppressed the small ubiquitin-like modifier (SUMO) modification of AKT, suggesting that cleavage of syndecan-1 by MMPs is involved in the SUMO modification of AKT. Forced expression of the cytoplasmic domain of syndecan-1, which is generated by MMP-dependent cleavage, increased the SUMO modification of AKT and global protein SUMOylation. Furthermore, syndecan-1 C-terminal domain-expressing BT-549 cells were more proliferative and sensitive to a potent SUMOylation inhibitor, tannic acid, compared with BT-549 cells transfected with an empty expression vector. These findings assign new functions to the C-terminal fragment of syndecan-1 generated by MMP-dependent proteolysis, thereby broadening our understanding of their physiological importance and implying that the therapeutic inhibition of syndecan-1 cleavage could affect the progression of basal-like breast cancer.
Collapse
Affiliation(s)
- Satomi Nadanaka
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Yaqiang Bai
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
7
|
Rana A, Bhatnagar S. Advancements in folate receptor targeting for anti-cancer therapy: A small molecule-drug conjugate approach. Bioorg Chem 2021; 112:104946. [PMID: 33989916 DOI: 10.1016/j.bioorg.2021.104946] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Targeted delivery combined with controlled release of drugs has a crucial role in future of personalized medicine. The majority of cancer drugs are intended to interfere with one or more cellular events. Anticancer agents can also be toxic to healthy cells, as healthy cells may also need to proliferate and avoid apoptosis. The focus of this review covers the principles, advantages, drawbacks and summarize criteria that must be met for design of small molecule-drug conjugates (SMDCs) to achieve the desired therapeutic potency with minimal toxicity. SMDCs are composed of a targeting ligand, a releasable bridge, a spacer, and a therapeutic payload. We summarize the criteria for the effective design that influences the selection of tumor specific receptor and optimum elements in the design of SMDCs. We also discuss the criteria for selecting the optimal therapeutic drug payload, spacer and linker. The linker chemistries and cleavage strategies are also discussed. Finally, we review the folate receptor targeting SMDCs that are in preclinical development and in clinical trials.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Sector125, Noida, Uttar Pradesh, India.
| |
Collapse
|
8
|
Centrosome dysfunction: a link between senescence and tumor immunity. Signal Transduct Target Ther 2020; 5:107. [PMID: 32606370 PMCID: PMC7327052 DOI: 10.1038/s41392-020-00214-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Centrosome aberrations are hallmarks of human cancers and contribute to the senescence process. Structural and numerical centrosome abnormalities trigger mitotic errors, cellular senescence, cell death, genomic instability and/or aneuploidy, resulting in human disorders such as aging and cancer and affecting immunity. Interestingly, centrosome dysfunction promotes the secretion of multiple inflammatory factors that act as pivotal drivers of senescence and tumor immune escape. In this review, we summarize the forms of centrosome dysfunction and further discuss recent advances indicating that centrosome defects contribute to acceleration of senescence progression and promotion of tumor cell immune evasion in different ways.
Collapse
|
9
|
Targeting centrosome amplification, an Achilles' heel of cancer. Biochem Soc Trans 2020; 47:1209-1222. [PMID: 31506331 PMCID: PMC6824836 DOI: 10.1042/bst20190034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
Due to cell-cycle dysregulation, many cancer cells contain more than the normal compliment of centrosomes, a state referred to as centrosome amplification (CA). CA can drive oncogenic phenotypes and indeed can cause cancer in flies and mammals. However, cells have to actively manage CA, often by centrosome clustering, in order to divide. Thus, CA is also an Achilles' Heel of cancer cells. In recent years, there have been many important studies identifying proteins required for the management of CA and it has been demonstrated that disruption of some of these proteins can cause cancer-specific inhibition of cell growth. For certain targets therapeutically relevant interventions are being investigated, for example, small molecule inhibitors, although none are yet in clinical trials. As the field is now poised to move towards clinically relevant interventions, it is opportune to summarise the key work in targeting CA thus far, with particular emphasis on recent developments where small molecule or other strategies have been proposed. We also highlight the relatively unexplored paradigm of reversing CA, and thus its oncogenic effects, for therapeutic gain.
Collapse
|
10
|
Mechanisms of Genomic Instability in Breast Cancer. Trends Mol Med 2019; 25:595-611. [DOI: 10.1016/j.molmed.2019.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022]
|
11
|
Mariappan A, Soni K, Schorpp K, Zhao F, Minakar A, Zheng X, Mandad S, Macheleidt I, Ramani A, Kubelka T, Dawidowski M, Golfmann K, Wason A, Yang C, Simons J, Schmalz HG, Hyman AA, Aneja R, Ullrich R, Urlaub H, Odenthal M, Büttner R, Li H, Sattler M, Hadian K, Gopalakrishnan J. Inhibition of CPAP-tubulin interaction prevents proliferation of centrosome-amplified cancer cells. EMBO J 2018; 38:embj.201899876. [PMID: 30530478 PMCID: PMC6331730 DOI: 10.15252/embj.201899876] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022] Open
Abstract
Centrosome amplification is a hallmark of human cancers that can trigger cancer cell invasion. To survive, cancer cells cluster amplified extra centrosomes and achieve pseudobipolar division. Here, we set out to prevent clustering of extra centrosomes. Tubulin, by interacting with the centrosomal protein CPAP, negatively regulates CPAP‐dependent peri‐centriolar material recruitment, and concurrently microtubule nucleation. Screening for compounds that perturb CPAP–tubulin interaction led to the identification of CCB02, which selectively binds at the CPAP binding site of tubulin. Genetic and chemical perturbation of CPAP–tubulin interaction activates extra centrosomes to nucleate enhanced numbers of microtubules prior to mitosis. This causes cells to undergo centrosome de‐clustering, prolonged multipolar mitosis, and cell death. 3D‐organotypic invasion assays reveal that CCB02 has broad anti‐invasive activity in various cancer models, including tyrosine kinase inhibitor (TKI)‐resistant EGFR‐mutant non‐small‐cell lung cancers. Thus, we have identified a vulnerability of cancer cells to activation of extra centrosomes, which may serve as a global approach to target various tumors, including drug‐resistant cancers exhibiting high incidence of centrosome amplification.
Collapse
Affiliation(s)
- Aruljothi Mariappan
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany.,Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Komal Soni
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Fan Zhao
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Amin Minakar
- Department of Chemistry, University of Cologne, Cologne, Germany
| | - Xiangdong Zheng
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Sunit Mandad
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, University Medical Center Goettingen, Goettingen, Germany.,Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Iris Macheleidt
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Anand Ramani
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany.,IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tomáš Kubelka
- Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Maciej Dawidowski
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany.,Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Kristina Golfmann
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Arpit Wason
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Chunhua Yang
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Judith Simons
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | | | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Roland Ullrich
- Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, University Medical Center Goettingen, Goettingen, Germany
| | - Margarete Odenthal
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Reinhardt Büttner
- Institute of Pathology and Center for Molecular Medicine of the University of Cologne, Cologne, Germany
| | - Haitao Li
- Department of Basic Medical Sciences, Center for Structural Biology, School of Medicine, Beijing, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR at Center for Integrated Protein Science Munich and Department Chemie, Technische Universität München, Garching, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Jay Gopalakrishnan
- Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany .,Center for Molecular Medicine of the University of Cologne, Cologne, Germany.,IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
12
|
Kawakami M, Liu X, Dmitrovsky E. New Cell Cycle Inhibitors Target Aneuploidy in Cancer Therapy. Annu Rev Pharmacol Toxicol 2018; 59:361-377. [PMID: 30110577 DOI: 10.1146/annurev-pharmtox-010818-021649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aneuploidy is a hallmark of cancer. Defects in chromosome segregation result in aneuploidy. Multiple pathways are engaged in this process, including errors in kinetochore-microtubule attachments, supernumerary centrosomes, spindle assembly checkpoint (SAC) defects, and chromosome cohesion defects. Although aneuploidy provides an adaptation and proliferative advantage in affected cells, excessive aneuploidy beyond a critical level can be lethal to cancer cells. Given this, enhanced chromosome missegregation is hypothesized to limit survival of aneuploid cancer cells, especially when compared to diploid cells. Based on this concept, proteins and pathways engaged in chromosome segregation are being exploited as candidate therapeutic targets for aneuploid cancers. Agents that induce chromosome missegregation and aneuploidy now exist, including SAC inhibitors, those that alter centrosome fidelity and others that are under active study in preclinical and clinical contexts. This review explores the therapeutic potentials of such new agents, including the benefits of combining them with other antineoplastic agents.
Collapse
Affiliation(s)
- Masanori Kawakami
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.,Department of Cancer Biology, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.,Current affiliation: Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA;
| |
Collapse
|
13
|
Abstract
This review by Levine and Holland reviews the sources of mitotic errors in human tumors and their effect on cell fitness and transformation. They discuss new findings that suggest that chromosome missegregation can produce a proinflammatory environment and impact tumor responsiveness to immunotherapy and survey the vulnerabilities exposed by cell division errors and how they can be exploited therapeutically. Mitosis is a delicate event that must be executed with high fidelity to ensure genomic stability. Recent work has provided insight into how mitotic errors shape cancer genomes by driving both numerical and structural alterations in chromosomes that contribute to tumor initiation and progression. Here, we review the sources of mitotic errors in human tumors and their effect on cell fitness and transformation. We discuss new findings that suggest that chromosome missegregation can produce a proinflammatory environment and impact tumor responsiveness to immunotherapy. Finally, we survey the vulnerabilities exposed by cell division errors and how they can be exploited therapeutically.
Collapse
Affiliation(s)
- Michelle S Levine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
14
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
15
|
Heckler MM, Zeleke TZ, Divekar SD, Fernandez AI, Tiek DM, Woodrick J, Farzanegan A, Roy R, Üren A, Mueller SC, Riggins RB. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget 2018; 7:47201-47220. [PMID: 27363015 PMCID: PMC5216935 DOI: 10.18632/oncotarget.9719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/19/2016] [Indexed: 01/09/2023] Open
Abstract
Breast cancer remains a leading cause of cancer-related death in women, and triple negative breast cancer (TNBC) lacks clinically actionable therapeutic targets. Death in mitosis is a tumor suppressive mechanism that occurs in cancer cells experiencing a defective M phase. The orphan estrogen-related receptor beta (ERRβ) is a key reprogramming factor in murine embryonic and induced pluripotent stem cells. In primates, ERRβ is alternatively spliced to produce several receptor isoforms. In cellular models of glioblastoma, short form (ERRβsf) and beta2 (ERRβ2) splice variants differentially regulate cell cycle progression in response to the synthetic agonist DY131, with ERRβ2 driving arrest in G2/M.The goals of the present study are to determine the cellular function(s) of ligand-activated ERRβ splice variants in breast cancer and evaluate the potential of DY131 to serve as an antimitotic agent, particularly in TNBC. DY131 inhibits growth in a diverse panel of breast cancer cell lines, causing cell death that involves the p38 stress kinase pathway and a bimodal cell cycle arrest. ERRβ2 facilitates the block in G2/M, and DY131 delays progression from prophase to anaphase. Finally, ERRβ2 localizes to centrosomes and DY131 causes mitotic spindle defects. Targeting ERRβ2 may therefore be a promising therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Mary M Heckler
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Tizita Zewde Zeleke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shailaja D Divekar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aileen I Fernandez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Deanna M Tiek
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jordan Woodrick
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Alexander Farzanegan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aykut Üren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Susette C Mueller
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
16
|
Design, Synthesis, and Cytotoxicity Evaluation of Novel Griseofulvin Analogues with Improved Water Solubility. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2017:7386125. [PMID: 29362676 PMCID: PMC5738580 DOI: 10.1155/2017/7386125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022]
Abstract
Griseofulvin 1 is an important antifungal agent that has recently received attention due to its antiproliferative activity in mammalian cancer cells. Study of SAR of some griseofulvin analogues has led to the identification of 2'-benzyloxy griseofulvin 3, a more potent analogue which retards tumor growth through inhibition of centrosomal clustering. However, similar to griseofulvin 1, compound 3 exhibited poor aqueous solubility. In order to improve the poor water solubility, six new griseofulvin analogues 5-10 were synthesized and tested for their antiproliferative activity and water solubility. The semicarbazone 9 and aminoguanidine 10 analogues were the most potent against HCT116 and MCF-7 cell lines. In combination studies, compound 9 was found to exert synergistic effects with tamoxifen and 5-fluorouracil against MCF-7 and HCT116 cells proliferation, respectively. The flow cytometric analysis of effect of 9 on cell cycle progression revealed G2/M arrest in HCT116. In addition, compound 9 induced apoptosis in MCF-7 cells. Finally, all synthesized analogues revealed higher water solubility than griseofulvin 1 and benzyloxy analogue 3 in pH 1.2 and 6.8 buffer solutions.
Collapse
|
17
|
Thompson LL, Jeusset LMP, Lepage CC, McManus KJ. Evolving Therapeutic Strategies to Exploit Chromosome Instability in Cancer. Cancers (Basel) 2017; 9:cancers9110151. [PMID: 29104272 PMCID: PMC5704169 DOI: 10.3390/cancers9110151] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer is a devastating disease that claims over 8 million lives each year. Understanding the molecular etiology of the disease is critical to identify and develop new therapeutic strategies and targets. Chromosome instability (CIN) is an abnormal phenotype, characterized by progressive numerical and/or structural chromosomal changes, which is observed in virtually all cancer types. CIN generates intratumoral heterogeneity, drives cancer development, and promotes metastatic progression, and thus, it is associated with highly aggressive, drug-resistant tumors and poor patient prognosis. As CIN is observed in both primary and metastatic lesions, innovative strategies that exploit CIN may offer therapeutic benefits and better outcomes for cancer patients. Unfortunately, exploiting CIN remains a significant challenge, as the aberrant mechanisms driving CIN and their causative roles in cancer have yet to be fully elucidated. The development and utilization of CIN-exploiting therapies is further complicated by the associated risks for off-target effects and secondary cancers. Accordingly, this review will assess the strengths and limitations of current CIN-exploiting therapies, and discuss emerging strategies designed to overcome these challenges to improve outcomes and survival for patients diagnosed with cancer.
Collapse
Affiliation(s)
- Laura L Thompson
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Lucile M-P Jeusset
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Chloe C Lepage
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Kirk J McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
18
|
Affiliation(s)
- Edward J Morris
- a Department of Integrative Oncology , BC Cancer Research Centre, BC Cancer Agency , Vancouver , BC , Canada
| | - Shoukat Dedhar
- a Department of Integrative Oncology , BC Cancer Research Centre, BC Cancer Agency , Vancouver , BC , Canada.,b Department of Biochemistry and Molecular Biology , Life Sciences Institute, University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
19
|
Morris EJ, Kawamura E, Gillespie JA, Balgi A, Kannan N, Muller WJ, Roberge M, Dedhar S. Stat3 regulates centrosome clustering in cancer cells via Stathmin/PLK1. Nat Commun 2017; 8:15289. [PMID: 28474672 PMCID: PMC5424153 DOI: 10.1038/ncomms15289] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Cancer cells frequently have amplified centrosomes that must be clustered together to form a bipolar mitotic spindle, and targeting centrosome clustering is considered a promising therapeutic strategy. A high-content chemical screen for inhibitors of centrosome clustering identified Stattic, a Stat3 inhibitor. Stat3 depletion and inhibition in cancer cell lines and in tumours in vivo caused significant inhibition of centrosome clustering and viability. Here we describe a transcription-independent mechanism for Stat3-mediated centrosome clustering that involves Stathmin, a Stat3 interactor involved in microtubule depolymerization, and the mitotic kinase PLK1. Furthermore, PLK4-driven centrosome amplified breast tumour cells are highly sensitive to Stat3 inhibitors. We have identified an unexpected role of Stat3 in the regulation of centrosome clustering, and this role of Stat3 may be critical in identifying tumours that are sensitive to Stat3 inhibitors.
Collapse
Affiliation(s)
- Edward J. Morris
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z 1L3
| | - Eiko Kawamura
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z 1L3
| | - Jordan A. Gillespie
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z 1L3
| | - Aruna Balgi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6E 4A2
| | - Nagarajan Kannan
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z 1L3
| | - William J. Muller
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada H3A 1A3
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6E 4A2
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z 1L3
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6E 4A2
| |
Collapse
|
20
|
Cosenza MR, Krämer A. Centrosome amplification, chromosomal instability and cancer: mechanistic, clinical and therapeutic issues. Chromosome Res 2016; 24:105-26. [PMID: 26645976 DOI: 10.1007/s10577-015-9505-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centrosomes, the main microtubule-organizing centers in most animal cells, are of crucial importance for the assembly of a bipolar mitotic spindle and subsequent faithful segregation of chromosomes into two daughter cells. Centrosome abnormalities can be found in virtually all cancer types and have been linked to chromosomal instability (CIN) and tumorigenesis. Although our knowledge on centrosome structure, replication, and amplification has greatly increased within recent years, still only very little is known on nature, causes, and consequences of centrosome aberrations in primary tumor tissues. In this review, we summarize our current insights into the mechanistic link between centrosome aberrations, aneuploidy, CIN and tumorigenesis. Mechanisms of induction and cellular consequences of aneuploidy, tetraploidization and CIN, as well as origin and effects of supernumerary centrosomes will be discussed. In addition, animal models for both CIN and centrosome amplification will be outlined. Finally, we describe approaches to exploit centrosome amplification, aneuploidy and CIN for novel and specific anticancer treatment strategies based on the modulation of chromosome missegregation rates.
Collapse
Affiliation(s)
- Marco Raffaele Cosenza
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
21
|
Nagel R, Semenova EA, Berns A. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep 2016; 17:1516-1531. [PMID: 27702988 PMCID: PMC5090709 DOI: 10.15252/embr.201643030] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
Historically, cancers have been treated with chemotherapeutics aimed to have profound effects on tumor cells with only limited effects on normal tissue. This approach was followed by the development of small‐molecule inhibitors that can target oncogenic pathways critical for the survival of tumor cells. The clinical targeting of these so‐called oncogene addictions, however, is in many instances hampered by the outgrowth of resistant clones. More recently, the proper functioning of non‐mutated genes has been shown to enhance the survival of many cancers, a phenomenon called non‐oncogene addiction. In the current review, we will focus on the distinct non‐oncogenic addictions found in cancer cells, including synthetic lethal interactions, the underlying stress phenotypes, and arising therapeutic opportunities.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ekaterina A Semenova
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Zhou J, Alfraidi A, Zhang S, Santiago-O'Farrill JM, Yerramreddy Reddy VK, Alsaadi A, Ahmed AA, Yang H, Liu J, Mao W, Wang Y, Takemori H, Vankayalapati H, Lu Z, Bast RC. A Novel Compound ARN-3236 Inhibits Salt-Inducible Kinase 2 and Sensitizes Ovarian Cancer Cell Lines and Xenografts to Paclitaxel. Clin Cancer Res 2016; 23:1945-1954. [PMID: 27678456 DOI: 10.1158/1078-0432.ccr-16-1562] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Purpose: Salt-inducible kinase 2 (SIK2) is a centrosome kinase required for mitotic spindle formation and a potential target for ovarian cancer therapy. Here, we examine the effects of a novel small-molecule SIK2 inhibitor, ARN-3236, on sensitivity to paclitaxel in ovarian cancer.Experimental Design: SIK2 expression was determined in ovarian cancer tissue samples and cell lines. ARN-3236 was tested for its efficiency to inhibit growth and enhance paclitaxel sensitivity in cultures and xenografts of ovarian cancer cell lines. SIK2 siRNA and ARN-3236 were compared for their ability to produce nuclear-centrosome dissociation, inhibit centrosome splitting, block mitotic progression, induce tetraploidy, trigger apoptotic cell death, and reduce AKT/survivin signaling.Results: SIK2 is overexpressed in approximately 30% of high-grade serous ovarian cancers. ARN-3236 inhibited the growth of 10 ovarian cancer cell lines at an IC50 of 0.8 to 2.6 μmol/L, where the IC50 of ARN-3236 was inversely correlated with endogenous SIK2 expression (Pearson r = -0.642, P = 0.03). ARN-3236 enhanced sensitivity to paclitaxel in 8 of 10 cell lines, as well as in SKOv3ip (P = 0.028) and OVCAR8 xenografts. In at least three cell lines, a synergistic interaction was observed. ARN-3236 uncoupled the centrosome from the nucleus in interphase, blocked centrosome separation in mitosis, caused prometaphase arrest, and induced apoptotic cell death and tetraploidy. ARN-3236 also inhibited AKT phosphorylation and attenuated survivin expression.Conclusions: ARN-3236 is the first orally available inhibitor of SIK2 to be evaluated against ovarian cancer in preclinical models and shows promise in inhibiting ovarian cancer growth and enhancing paclitaxel chemosensitivity. Clin Cancer Res; 23(8); 1945-54. ©2016 AACR.
Collapse
Affiliation(s)
- Jinhua Zhou
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Albandri Alfraidi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shu Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Abdulkhaliq Alsaadi
- The Nuffield Department of Obstetrics and Gynecology, University of Oxford, Oxford, United Kingdom
| | - Ahmed A Ahmed
- The Nuffield Department of Obstetrics and Gynecology, University of Oxford, Oxford, United Kingdom
| | - Hailing Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiqun Mao
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yan Wang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hiroshi Takemori
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | | | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
23
|
Konotop G, Bausch E, Nagai T, Turchinovich A, Becker N, Benner A, Boutros M, Mizuno K, Krämer A, Raab MS. Pharmacological Inhibition of Centrosome Clustering by Slingshot-Mediated Cofilin Activation and Actin Cortex Destabilization. Cancer Res 2016; 76:6690-6700. [PMID: 27634760 DOI: 10.1158/0008-5472.can-16-1144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/15/2016] [Accepted: 08/21/2016] [Indexed: 11/16/2022]
Abstract
Centrosome amplification is a hallmark of virtually all types of cancers, including solid tumors and hematologic malignancies. Cancer cells with extra centrosomes use centrosome clustering (CC) to allow for successful division. Because normal cells do not rely on this mechanism, CC is regarded as a promising target to selectively eradicate cells harboring supernumerary centrosomes. To identify novel inhibitors of CC, we developed a cell-based high-throughput screen that reports differential drug cytotoxicity for isogenic cell populations with different centrosome contents. We identified CP-673451 and crenolanib, two chemically related compounds originally developed for the inhibition of platelet-derived growth factor receptor β (PDGFR-β), as robust inhibitors of CC with selective cytotoxicity for cells with extra centrosomes. We demonstrate that these compounds induce mitotic spindle multipolarity by activation of the actin-severing protein cofilin, leading to destabilization of the cortical actin network, and provide evidence that this activation is dependent on slingshot phosphatases 1 and 2 but unrelated to PDGFR-β inhibition. More specifically, we found that although both compounds attenuated PDGF-BB-induced signaling, they significantly enhanced the phosphorylation of PDGFR-β downstream effectors, Akt and MEK, in almost all tested cancer cell lines under physiologic conditions. In summary, our data reveal a novel mechanism of CC inhibition depending on cofilin-mediated cortical actin destabilization and identify two clinically relevant compounds interfering with this tumor cell-specific target. Cancer Res; 76(22); 6690-700. ©2016 AACR.
Collapse
Affiliation(s)
- Gleb Konotop
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Elena Bausch
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Tomoaki Nagai
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Andrey Turchinovich
- Molecular Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Natalia Becker
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, Medical Faculty Mannheim, German Cancer Research Center and University of Heidelberg, Heidelberg, Germany
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.
| | - Marc Steffen Raab
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Ferrari S, Gentili C. Maintaining Genome Stability in Defiance of Mitotic DNA Damage. Front Genet 2016; 7:128. [PMID: 27493659 PMCID: PMC4954828 DOI: 10.3389/fgene.2016.00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy.
Collapse
Affiliation(s)
- Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| | - Christian Gentili
- Institute of Molecular Cancer Research, University of Zurich Zurich, Switzerland
| |
Collapse
|
25
|
Nakayama Y, Inoue T. Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons. Molecules 2016; 21:molecules21050663. [PMID: 27213315 PMCID: PMC6274067 DOI: 10.3390/molecules21050663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubule poisons inhibit spindle function, leading to activation of spindle assembly checkpoint (SAC) and mitotic arrest. Cell death occurring in prolonged mitosis is the first target of microtubule poisons in cancer therapies. However, even in the presence of microtubule poisons, SAC and mitotic arrest are not permanent, and the surviving cells exit the mitosis without cytokinesis (mitotic slippage), becoming tetraploid. Another target of microtubule poisons-based cancer therapy is antiproliferative fate after mitotic slippage. The ultimate goal of both the microtubule poisons-based cancer therapies involves the induction of a mechanism defined as mitotic catastrophe, which is a bona fide intrinsic oncosuppressive mechanism that senses mitotic failure and responds by driving a cell to an irreversible antiproliferative fate of death or senescence. This mechanism of antiproliferative fate after mitotic slippage is not as well understood. We provide an overview of mitotic catastrophe, and explain new insights underscoring a causal association between basal autophagy levels and antiproliferative fate after mitotic slippage, and propose possible improved strategies. Additionally, we discuss nuclear alterations characterizing the mitotic catastrophe (micronuclei, multinuclei) after mitotic slippage, and a possible new type of nuclear alteration (clustered micronuclei).
Collapse
Affiliation(s)
- Yuji Nakayama
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| | - Toshiaki Inoue
- Division of Human Genome Science, Department of Molecular and Cellular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
26
|
Milunović-Jevtić A, Mooney P, Sulerud T, Bisht J, Gatlin JC. Centrosomal clustering contributes to chromosomal instability and cancer. Curr Opin Biotechnol 2016; 40:113-118. [PMID: 27046071 DOI: 10.1016/j.copbio.2016.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/07/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
Abstract
Cells assemble mitotic spindles during each round of division to insure accurate segregation of their duplicated genome. In animal cells, stereotypical spindles have two poles, each containing one centrosome, from which microtubules are nucleated. By contrast, many cancer cells often contain more than two centrosomes and form transient multipolar spindle structures with more than two poles. In order to divide and produce viable progeny, the multipolar spindle intermediate must be reshaped into a pseudo-bipolar structure via a process called centrosomal clustering. Pseudo-bipolar spindles appear to function normally during mitosis, but they occasionally give rise to aneuploid and transformed daughter cells. Agents that inhibit centrosomal clustering might therefore work as a potential cancer therapy, specifically targeting mitosis in supernumerary centrosome-containing cells.
Collapse
Affiliation(s)
| | - P Mooney
- University of Wyoming, Department of Molecular Biology, United States
| | - T Sulerud
- University of Wyoming, Department of Molecular Biology, United States
| | - J Bisht
- University of Wyoming, Department of Molecular Biology, United States
| | - J C Gatlin
- University of Wyoming, Department of Molecular Biology, United States.
| |
Collapse
|
27
|
de Souza EE, Hehnly H, Perez AM, Meirelles GV, Smetana JHC, Doxsey S, Kobarg J. Human Nek7-interactor RGS2 is required for mitotic spindle organization. Cell Cycle 2015; 14:656-67. [PMID: 25664600 DOI: 10.4161/15384101.2014.994988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization.
Collapse
Key Words
- CREST, calcium-responsive transactivator
- EB1, end-binding protein 1
- GAP, GTPase-activating protein
- MT, microtubule
- Nek, NIMA-related kinase
- Nek7
- PCM, centrosomal pericentriolar material
- PD, pull-down
- PPI, protein-protein interaction
- RGS, regulators of G protein signaling
- RGS2
- WB, Western blotting
- cell division
- mitotic spindle
- mitotic spindle orientation
- shRNA, short-interfering RNA
Collapse
Affiliation(s)
- Edmarcia Elisa de Souza
- a Laboratório Nacional de Biociências-LNBio ; Centro Nacional de Pesquisa em Energia e Materiais-CNPEM ; Campinas , SP Brasil
| | | | | | | | | | | | | |
Collapse
|
28
|
Tan S, Guan X, Grün C, Zhou Z, Schepers U, Nick P. Gallic acid induces mitotic catastrophe and inhibits centrosomal clustering in HeLa cells. Toxicol In Vitro 2015; 30:506-13. [PMID: 26368671 DOI: 10.1016/j.tiv.2015.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 01/19/2023]
Abstract
Cancer cells divide rapidly, providing medical targets for anticancer agents. The polyphenolic gallic acid (GA) is known to be toxic for certain cancer cells. However, the cellular mode of action has not been elucidated. Therefore, the current study addressed a potential effect of GA on the mitosis of cancer cells. GA inhibited viability of HeLa cells in a dose-dependent and time-dependent manner. We could show, using fluorescence-activated cell sorting (FACS), that this inhibition was accompanied by elevated frequency of cells arrested at the G2/M transition. This cell-cycle arrest was accompanied by mitotic catastrophe, and formation of cells with multiple nuclei. These aberrations were preceded by impaired centrosomal clustering. We arrive at a model of action, where GA inhibits the progression of the cell cycle at the G2/M phase by impairing centrosomal clustering which will stimulate mitotic catastrophe. Thus, GA has potential as compound against cervical cancer.
Collapse
Affiliation(s)
- Si Tan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Molecular Cell Biology, Botanical Institute 1, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Xin Guan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Christoph Grün
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
| | - Ute Schepers
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany.
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute 1, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany.
| |
Collapse
|
29
|
Godinho SA, Pellman D. Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0467. [PMID: 25047621 DOI: 10.1098/rstb.2013.0467] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Centrosome amplification is a hallmark of cancer. However, despite significant progress in recent years, we are still far from understanding how centrosome amplification affects tumorigenesis. Boveri's hypothesis formulated more than 100 years ago was that aneuploidy induced by centrosome amplification promoted tumorigenesis. Although the hypothesis remains appealing 100 years later, it is also clear that the role of centrosome amplification in cancer is more complex than initially thought. Here, we review how centrosome abnormalities are generated in cancer and the mechanisms cells employ to adapt to centrosome amplification, in particular centrosome clustering. We discuss the different mechanisms by which centrosome amplification could contribute to tumour progression and the new advances in the development of therapies that target cells with extra centrosomes.
Collapse
Affiliation(s)
- S A Godinho
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - D Pellman
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, and Pediatric Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Pediatric Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Venghateri JB, Jindal B, Panda D. The centrosome: a prospective entrant in cancer therapy. Expert Opin Ther Targets 2015; 19:957-72. [PMID: 25787715 DOI: 10.1517/14728222.2015.1018823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The centrosome plays an essential role in the cell cycle. The centrosome and its associated proteins assist in nucleating and organizing microtubules. A structural or a functional aberration in the centrosome is known to cause abnormal cell proliferation leading to tumors. Therefore, the centrosome is considered as a promising anti-cancer target. AREAS COVERED This review begins with a brief introduction to the centrosome and its role in the cell cycle. We elaborate on the centrosome-associated proteins that regulate microtubule dynamics. In addition, we discuss the centrosomal protein kinase targets such as cyclin-dependent, polo-like and aurora kinases. Inhibitors targeting these kinases are undergoing clinical trials for cancer chemotherapy. Further, we shed light on new approaches to target the centrosomal proteins for cancer therapy. EXPERT OPINION Insights into the functioning of the centrosomal proteins will be extremely beneficial in validating the centrosome as a target in cancer therapy. New strategies either as a single entity or in combination with current chemotherapeutic agents should be researched or exploited to reveal the promises that the centrosome holds for future cancer therapy.
Collapse
Affiliation(s)
- Jubina B Venghateri
- Indian Institute of Technology Bombay, IITB-Monash Research Academy , Powai, Mumbai 400076 , India
| | | | | |
Collapse
|
31
|
Glutathione-dependent and -independent oxidative stress-control mechanisms distinguish normal human mammary epithelial cell subsets. Proc Natl Acad Sci U S A 2014; 111:7789-94. [PMID: 24821780 DOI: 10.1073/pnas.1403813111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanisms that control the levels and activities of reactive oxygen species (ROS) in normal human mammary cells are poorly understood. We show that purified normal human basal mammary epithelial cells maintain low levels of ROS primarily by a glutathione-dependent but inefficient antioxidant mechanism that uses mitochondrial glutathione peroxidase 2. In contrast, the matching purified luminal progenitor cells contain higher levels of ROS, multiple glutathione-independent antioxidants and oxidative nucleotide damage-controlling proteins and consume O2 at a higher rate. The luminal progenitor cells are more resistant to glutathione depletion than the basal cells, including those with in vivo and in vitro proliferation and differentiation activity. The luminal progenitors also are more resistant to H2O2 or ionizing radiation. Importantly, even freshly isolated "steady-state" normal luminal progenitors show elevated levels of unrepaired oxidative DNA damage. Distinct ROS control mechanisms operating in different subsets of normal human mammary cells could have differentiation state-specific functions and long-term consequences.
Collapse
|