1
|
Thapa R, Moglad E, Goyal A, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Ali H, Oliver BG, MacLoughlin R, Dureja H, Singh SK, Dua K, Gupta G. Deciphering NF-kappaB pathways in smoking-related lung carcinogenesis. EXCLI JOURNAL 2024; 23:991-1017. [PMID: 39253534 PMCID: PMC11382301 DOI: 10.17179/excli2024-7475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/01/2024] [Indexed: 09/11/2024]
Abstract
One of the main causes of death worldwide is lung cancer, which is largely caused by cigarette smoking. The crucial transcription factor NF-κB, which controls inflammatory responses and various cellular processes, is a constitutively present cytoplasmic protein strictly regulated by inhibitors like IκB proteins. Upon activation by external stimuli, it undergoes phosphorylation, translocates into the nucleus, and modulates the expression of specific genes. The incontrovertible association between pulmonary malignancy and tobacco consumption underscores and highlights a public health concern. Polycyclic aromatic hydrocarbons and nitrosamines, potent carcinogenic compounds present in the aerosol emitted from combusted tobacco, elicit profound deleterious effects upon inhalation, resulting in severe perturbation of pulmonary tissue integrity. The pathogenesis of smoking-induced lung cancer encompasses an intricate process wherein NF-κB activation plays a pivotal role, triggered by exposure to cigarette smoke through diverse signaling pathways, including those associated with oxidative stress and pro-inflammatory cytokines. Unraveling the participation of NF-κB in smoking-induced lung cancer provides pivotal insights into molecular processes, wherein intricate crosstalk between NF-κB and pathways such as MAPK and PI3K-Akt amplifies the inflammatory response, fostering an environment conducive to the formation of lung cancer. This study reviews the critical function of NF-κB in the complex molecular pathways linked to the initiation and advancement of lung carcinogenesis as well as potential treatment targets. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2137 Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Ronan MacLoughlin
- Research and Development, Aerogen Limited, IDA Business Park, Galway, Connacht, H91 HE94 Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77 Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40 Ireland
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Center for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
2
|
Shahid A, Santos SG, Lin C, Huang Y. Role of Insulin-like Growth Factor-1 Receptor in Tobacco Smoking-Associated Lung Cancer Development. Biomedicines 2024; 12:563. [PMID: 38540176 PMCID: PMC10967781 DOI: 10.3390/biomedicines12030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer remains a significant global health concern, with lung cancer consistently leading as one of the most common malignancies. Genetic aberrations involving receptor tyrosine kinases (RTKs) are known to be associated with cancer initiation and development, but RTK involvement in smoking-associated lung cancer cases is not well understood. The Insulin-like Growth Factor 1 Receptor (IGF-1R) is a receptor that plays a critical role in lung cancer development. Its signaling pathway affects the growth and survival of cancer cells, and high expression is linked to poor prognosis and resistance to treatment. Several reports have shown that by activating IGF-1R, tobacco smoke-related carcinogens promote lung cancer and chemotherapy resistance. However, the relationship between IGF-1R and cancer is complex and can vary depending on the type of cancer. Ongoing investigations are focused on developing therapeutic strategies to target IGF-1R and overcome chemotherapy resistance. Overall, this review explores the intricate connections between tobacco smoke-specific carcinogens and the IGF-1R pathway in lung carcinogenesis. This review further highlights the challenges in using IGF-1R inhibitors as targeted therapy for lung cancer due to structural similarities with insulin receptors. Overcoming these obstacles may require a comprehensive approach combining IGF-1R inhibition with other selective agents for successful cancer treatment.
Collapse
Affiliation(s)
- Ayaz Shahid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Shaira Gail Santos
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Carol Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
3
|
Lu Y, Luo J, Huo Z, Ge F, Chen Y, Chen Y, Zhang Q, Li C, Wang J, Gan J, Cheng Z, Li Y, Feng Y, Hu Q, He J, Liang W. Causal effect of beta-blockers on the risk of lung cancer: a Mendelian randomization study. J Thorac Dis 2023; 15:6651-6660. [PMID: 38249886 PMCID: PMC10797374 DOI: 10.21037/jtd-23-1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/03/2023] [Indexed: 01/23/2024]
Abstract
Background It remains uncertain whether there is a causal association of the use of beta-blockers (BBs) on lung cancer risk. We used a two-sample Mendelian randomization (MR) approach to identify the causal association of BBs and lung cancer risk. Methods Twenty-two BB-related single-nucleotide polymorphisms (SNPs) were obtained from the UK Biobank as the instrumental variables (IVs). Genetic summary data information of lung cancer was extracted from the International Lung Cancer Consortium, with a total of 11,348 cases and 15,861 controls. We adopted the inverse-variance weighted (IVW) approach to conduct the MR analyses. Egger-intercept analysis was further performed as sensitivity analysis for pleiotropy evaluation. Additionally, we investigated whether BBs could causally affect the risk of lung cancer through their pharmacological effects. Results The current IVW analysis suggested a decreased lung cancer risk in BB users [odds ratio (OR) =0.83; 95% confidence interval (CI): 0.73-0.95; P<0.01]. Results of Egger-intercept analysis demonstrated that no pleiotropy was found (P=0.94), which suggested the robustness of the causality. However, there was little evidence that pharmacological effects mediate the association between BBs and lung cancer. Conclusions The current analysis suggested that BBs could decrease the risk of lung cancer but may be not via its pharmacological effects. Further research is in need for elucidating the underlying mechanisms.
Collapse
Affiliation(s)
- Yi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jiachun Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenyu Huo
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Ge
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yang Chen
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Chen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qing Zhang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jinhui Wang
- Second Clinical School, Wenzhou Medical University, Wenzhou, China
| | - Jiayu Gan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziqiu Cheng
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yangbin Li
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yi Feng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qiyuan Hu
- First Clinical Medical School, the First Hospital, Shanxi Medical University, Taiyuan, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- Department of Thoracic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- Department of Oncology, the First People’s Hospital of Zhaoqing, Zhaoqing, China
| |
Collapse
|
4
|
Ray R, Goel S, Al Khashali H, Darweesh B, Haddad B, Wozniak C, Ranzenberger R, Khalil J, Guthrie J, Heyl D, Evans HG. Regulation of Soluble E-Cadherin Signaling in Non-Small-Cell Lung Cancer Cells by Nicotine, BDNF, and β-Adrenergic Receptor Ligands. Biomedicines 2023; 11:2555. [PMID: 37760996 PMCID: PMC10526367 DOI: 10.3390/biomedicines11092555] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The ectodomain of the transmembrane protein E-cadherin can be cleaved and released in a soluble form referred to as soluble E-cadherin, or sE-cad, accounting for decreased E-cadherin levels at the cell surface. Among the proteases implicated in this cleavage are matrix metalloproteases (MMP), including MMP9. Opposite functions have been reported for full-length E-cadherin and sE-cad. In this study, we found increased MMP9 levels in the media of two non-small cell lung cancer (NSCLC) cell lines, A549 and H1299, treated with BDNF, nicotine, or epinephrine that were decreased upon cell treatment with the β-adrenergic receptor blocker propranolol. Increased MMP9 levels correlated with increased sE-cad levels in A549 cell media, and knockdown of MMP9 in A549 cells led to downregulation of sE-cad levels in the media. Previously, we reported that A549 and H1299 cell viability increased with nicotine and/or BDNF treatment and decreased upon treatment with propranolol. In investigating the function of sE-cad, we found that immunodepletion of sE-cad from the media of A549 cells untreated or treated with BDNF, nicotine, or epinephrine reduced activation of EGFR and IGF-1R, decreased PI3K and ERK1/2 activities, increased p53 activation, decreased cell viability, and increased apoptosis, while no effects were found using H1299 cells under all conditions tested.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI 48197, USA; (R.R.); (S.G.); (H.A.K.); (B.D.); (B.H.); (C.W.); (R.R.); (J.K.); (J.G.); (D.H.)
| |
Collapse
|
5
|
Boo HJ, Min HY, Hwang SJ, Lee HJ, Lee JW, Oh SR, Park CS, Park JS, Lee YM, Lee HY. The tobacco-specific carcinogen NNK induces pulmonary tumorigenesis via nAChR/Src/STAT3-mediated activation of the renin-angiotensin system and IGF-1R signaling. Exp Mol Med 2023; 55:1131-1144. [PMID: 37258578 PMCID: PMC10317988 DOI: 10.1038/s12276-023-00994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 06/02/2023] Open
Abstract
The renin-angiotensin (RA) system has been implicated in lung tumorigenesis without detailed mechanistic elucidation. Here, we demonstrate that exposure to the representative tobacco-specific carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) promotes lung tumorigenesis through deregulation of the pulmonary RA system. Mechanistically, NNK binding to the nicotinic acetylcholine receptor (nAChR) induces Src-mediated signal transducer and activator of transcription 3 (STAT3) activation, resulting in transcriptional upregulation of angiotensinogen (AGT) and subsequent induction of the angiotensin II (AngII) receptor type 1 (AGTR1) signaling pathway. In parallel, NNK concurrently increases insulin-like growth factor 2 (IGF2) production and activation of IGF-1R/insulin receptor (IR) signaling via a two-step pathway involving transcriptional upregulation of IGF2 through STAT3 activation and enhanced secretion from intracellular storage through AngII/AGTR1/PLC-intervened calcium release. NNK-mediated crosstalk between IGF-1R/IR and AGTR1 signaling promoted tumorigenic activity in lung epithelial and stromal cells. Lung tumorigenesis caused by NNK exposure or alveolar type 2 cell-specific Src activation was suppressed by heterozygous Agt knockout or clinically available inhibitors of the nAChR/Src or AngII/AGTR1 pathways. These results demonstrate that NNK-induced stimulation of the lung RA system leads to IGF2-mediated IGF-1R/IR signaling activation in lung epithelial and stromal cells, resulting in lung tumorigenesis in smokers.
Collapse
Affiliation(s)
- Hye-Jin Boo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Histology, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hye-Young Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, 28116, Republic of Korea
| | - Choon-Sik Park
- Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-do, 14584, Republic of Korea
| | - Jong-Sook Park
- Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-do, 14584, Republic of Korea
| | - You Mie Lee
- Vessel-Organ Interaction Research Center (VOICE, MRC), College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
The β-Blocker Carvedilol Prevents Benzo(a)pyrene-Induced Lung Toxicity, Inflammation and Carcinogenesis. Cancers (Basel) 2023; 15:cancers15030583. [PMID: 36765542 PMCID: PMC9913110 DOI: 10.3390/cancers15030583] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The current study evaluated the effects of the β-blocker carvedilol on benzo(a)pyrene (B(a)P) and its active metabolite benzo(a)pyrene diol epoxide (BPDE)-induced lung toxicity, inflammation and carcinogenesis and explored the potential mechanisms. Carvedilol blocked the BPDE-induced malignant transformation of human bronchial epithelial cells BEAS-2B. In BEAS-2B cells, B(a)P strongly activated ELK-1, a transcription factor regulating serum response element (SRE) signaling, which was attenuated by carvedilol. Carvedilol also inhibited the B(a)P-induced AhR/xenobiotic responsive element (XRE) and mRNA expression of CYP1A1 and attenuated B(a)P-induced NF-κB activation. In a B(a)P-induced acute lung toxicity model in CD-1/IGS mice, pretreatment with carvedilol for 7 days before B(a)P exposure effectively inhibited the B(a)P-induced plasma levels of lactate dehydrogenase and malondialdehyde, inflammatory cell infiltration and histopathologic abnormalities in the lung, and upregulated the expression of GADD45α, caspase-3 and COX-2 in the lung. In a B(a)P-induced lung carcinogenesis model in A/J mice, carvedilol treatment for 20 weeks did not affect body weight but significantly attenuated tumor multiplicity and volume. These data reveal a previously unexplored role of carvedilol in preventing B(a)P-induced lung inflammation and carcinogenesis by inhibiting the cross-talk of the oncogenic transcription factors ELK-1, AhR and NF-κB.
Collapse
|
7
|
The Effect of Beta Adrenoreceptor Blockers on Viability and Cell Colony Formation of Non-Small Cell Lung Cancer Cell Lines A549 and H1299. Molecules 2022; 27:molecules27061938. [PMID: 35335303 PMCID: PMC8950283 DOI: 10.3390/molecules27061938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
Beta adrenoblockers are a large class of drugs used to treat cardiovascular diseases, migraines, glaucoma and hyperthyroidism. Over the last couple of decades, the anticancer effects of these compounds have been extensively studied. However, the exact mechanism is still not known, and more detailed studies are required. The aim of our study was to evaluate the anticancer activity of beta adrenoblockers in non-small cell lung cancer cell lines A549 and H1299. In order to find the relationship with their selectivity to beta adrenoreceptors, selective (atenolol, betaxolol, esmolol, metoprolol) and non-selective (pindolol, propranolol and timolol) beta blockers were tested. The effect on cell viability was evaluated by MTT assay, and the activity on cell ability to form colonies was tested by clonogenic assay. The type of cell death was evaluated by cell double staining with Hoechst 33342 and Propidium iodide. The most active adrenoblockers against both tested cancer cell lines were propranolol and betaxolol. They completely inhibited lung cancer cell colony formation at 90% of the EC50 (half-maximal effective concentration) value. Most tested compounds induced cell death through apoptosis and necrosis. There was no correlation established between beta adrenoblocker anticancer activity and their selectivity to beta adrenoreceptors.
Collapse
|
8
|
Suzuki S, Asai K, Gi M, Kojima K, Kakehashi A, Oishi Y, Matsue T, Yukimatsu N, Hirata K, Kawaguchi T, Wanibuchi H. Response biomarkers of inhalation exposure to cigarette smoke in the mouse lung. J Toxicol Pathol 2022; 35:247-254. [PMID: 35832896 PMCID: PMC9256000 DOI: 10.1293/tox.2021-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cigarette smoking is known to increase the risk of cancer and chronic obstructive
pulmonary disease (COPD). In this study, we evaluated the effects of short-term nose-only
inhalation exposure to cigarette smoke in mice. Male 10-week-old C57BL mice were exposed
to clean air (control) or mainstream cigarette smoke for 1 h/day, 5 days/week, for 2 or 4
weeks. Exposure to cigarette smoke increased the number of inflammatory cells, especially
neutrophils, in the bronchoalveolar lavage fluid, increased inflammatory cell infiltration
foci, and caused an increase in the thickness of the peripheral bronchial epithelium.
Microarray gene expression analysis indicated that smoke exposure induced inflammatory
responses, including leukocyte migration and activation of phagocytes and myeloid cells,
as early as two weeks after the initiation of exposure. Importantly, chemokine (C-C motif)
ligand 17, resistin-like alpha, and lipocalin 2 were upregulated and may serve as useful
markers of the toxic effects of exposure to cigarette smoke before pulmonary histological
changes become evident.
Collapse
Affiliation(s)
- Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Min Gi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kazuya Kojima
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Yuji Oishi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Taisuke Matsue
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Nao Yukimatsu
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Kazuto Hirata
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Tomoya Kawaguchi
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
9
|
Miao TW, Xiao W, Du LY, Mao B, Huang W, Chen XM, Li C, Wang Y, Fu JJ. High expression of SPP1 in patients with chronic obstructive pulmonary disease (COPD) is correlated with increased risk of lung cancer. FEBS Open Bio 2021; 11:1237-1249. [PMID: 33626243 PMCID: PMC8016137 DOI: 10.1002/2211-5463.13127] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by persistent airway inflammation and fixed airflow obstruction. Patients with COPD have increased risk of lung cancer (LC), and the coexistence of both diseases is associated with poorer survival. However, the mechanisms predisposing patients with COPD to LC development and poor prognosis remain unclear. Gene expression profiles were downloaded from the Gene Expression Omnibus. Twenty‐two data sets were included (n = 876). We identified 133 DEGs and 145 DEGs in patients with COPD and LC compared with healthy controls, respectively. There were 1544 DEGs in patients with LC and coexisting COPD compared with COPD, and these DEGs are mainly involved in the cell cycle, DNA replication, p53 signalling and insulin signalling. The biological processes primarily associated with these DEGs are oxidation reduction and apoptosis. SPP1 was the only overlapping DEG that was up‐regulated in patients with COPD and/or LC, and this was validated by qPCR in an independent cohort. The area under the curve value for SPP1 was 0.893 (0.822–0.963) for the prediction of LC in patients with COPD. High expression of SPP1 in patients with LC was associated with shorter survival time. Up‐regulation of SPP1 may be associated with increased risk of LC in patients with COPD and therefore may have potential as a therapeutic target for LC in patients with COPD.
Collapse
Affiliation(s)
- Ti-Wei Miao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Xiao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Long-Yi Du
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Mao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- West China Biobanks, Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Mei Chen
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Cong Li
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Juan-Juan Fu
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Mashhadi MA, Arbabi N, Sargazi S, Kazemi-Lomedasht F, Jahantigh D, Miri-Moghaddam E. Association of VEGFA gene polymorphisms with susceptibility to non-Hodgkin's lymphoma: Evidences from population-based and in silico studies. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Li B, Zhou D, Li S, Feng Y, Li X, Chang W, Zhang J, Sun Y, Qing D, Chen G, Li N. Licochalcone A reverses NNK-induced ectopic miRNA expression to elicit in vitro and in vivo chemopreventive effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153245. [PMID: 32505917 DOI: 10.1016/j.phymed.2020.153245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/14/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chemoprevention is the best cost-effective way regarding cancers. MicroRNAs (miRNAs) have been reported to be differentially expressed during the development of lung cancer. However, if lung cancer prevention can be achieved through modulating miRNAs expression so far remains unknown. PURPOSE To discover ectopically expressed miRNAs in NNK-induced lung cancer and clarify whether Licochalcone A (lico A) can prevent NNK-induced lung cancer by modulating miRNA expression. STUDY DESIGN AND METHODS A/J mice were used to construct a lung cancer model by intraperitoneal injection with physiological saline NNK (100 mg/kg). Chemopreventive effects of lico A against lung cancer at 2 mg/kg and 20 mg/kg doses were evaluated in vivo. MicroRNA array and RT-qPCR were used to assess the expression levels of miRNAs. MLE-12 cells were treated with 0.1 mg/ml NNK, stimulating the ectopic expression pattern of miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p. miR-144-3p mimics and inhibitors were used to manipulate miR-144-3p levels. The effects of lico A (10 μM) on cell cycle distribution, apoptosis, and the expression of CK19, RASA1, miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p in NNK-treated MLE-12 cells were studied. RESULTS The expression levels of miR-144-3p, miR-20a-5p, and miR-29c-3p increased, while those of let-7d-3p and miR-328-3p decreased in both NNK-induced A/J mice and MLE-12 cells. Lico A could reverse the NNK-induced ectopic miRNA (miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p) expression both in vivo and in vitro and elicit in vivo lung cancer chemopreventive effect against NNK. In MLE-12 cells, the overexpression of miR-144-3p elicited the same effect as NNK regarding the expression of lung cancer biomarker CK19; the silencing of miR-144-3p reversed the effect of NNK on cell cycle distribution and apoptosis. Lico A could reverse the effect of NNK on the expression of miR-144-3p, CK19, and RASA1 (predicted target of miR-144-3p). CONCLUSION The present study suggests that miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p were involved in the in vivo pathogenesis of NNK-induced lung cancer, and lico A could reverse the effect of NNK both in vivo and in vitro to elicit lung cancer chemopreventive effects through, at least partially, these five ectopically expressed miRNAs, especially miR-144-3p.
Collapse
Affiliation(s)
- Bingxin Li
- School of Traditional Chinese Materia Medica; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Di Zhou
- School of Traditional Chinese Materia Medica; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Shuang Li
- Physical Education College, Guangzhou University, Guangzhou 510006, China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Xingyu Li
- School of Traditional Chinese Materia Medica; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Wenhui Chang
- School of Traditional Chinese Materia Medica; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Juan Zhang
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Yu Sun
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Degang Qing
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
| | - Ning Li
- School of Traditional Chinese Materia Medica; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
| |
Collapse
|
12
|
|
13
|
Chen J, Cheuk IWY, Shin VY, Kwong A. Acetylcholine receptors: Key players in cancer development. Surg Oncol 2019; 31:46-53. [PMID: 31536927 DOI: 10.1016/j.suronc.2019.09.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/15/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Acetylcholine (ACh) was first identified as a classic neuromodulator and transmit signals through two subgroups of receptors, namely muscarinic receptors (mAChRs) and nicotinic receptors (nAChRs). Apart from its well-established physiological role in central nervous system (CNS) and peripheral nervous system (PNS), autonomic nervous system and neuromuscular junction, the widely distributed expression of AChRs in different human organs suggests roles in other biological processes in addition to synaptic transmission. Accumulating evidence revealed that cancer cell processes such as proliferation, apoptosis, angiogenesis and even epithelial-mesenchymal transition (EMT) are mediated by overexpression of AChRs in different kinds of tumors. In breast cancer, α7-nAChR and α9-nAChR were reported to be oncogenic. On the other hand, research on the role of mAChRs in breast cancer tumorgenesis is limited and confined to M3 receptor only. Since AChRs distributed in both CNS and PNS even non-neuronal tissues, there is an urgent need for the development of subtype-specific AChR antagonist which inhibits cancer cell progression with minimal intervention on the normal acetylcholine-regulated system within human body.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Surgery, The University of Hong Kong, Hong Kong
| | | | | | - Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong; Department of Surgery, Hong Kong Sanatorium & Hospital, Hong Kong; Centre of Cancer Genetics Centre, Hong Kong Sanatorium & Hospital, Hong Kong.
| |
Collapse
|
14
|
De Giorgi V, Geppetti P, Lupi C, Benemei S. The Role of β-Blockers in Melanoma. J Neuroimmune Pharmacol 2019; 15:17-26. [PMID: 31482435 DOI: 10.1007/s11481-019-09876-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/15/2019] [Indexed: 12/22/2022]
Abstract
Melanoma is one of the most aggressive and less chemotherapy-responsive human cancers, representing a major public health issue worldwide. The early diagnosis still represents the best approach in order to reduce mortality, especially in advanced stages. Preclinical evidence, collected through several in vitro and in vivo models, has been accumulating about the pathophysiological involvement of β-adrenoceptors in melanoma progression. This involvement has been paralleled by the evidence that drugs blocking β-adrenoceptors (β-blockers) may have a relevant role in the treatment of melanoma and in the prevention of its progression. β-blockers are a class of drugs extensively used in clinical practice, not limited to cardiovascular therapeutics. Evidence collected through retrospective and prospective observational studies suggests that treatment with β-blockers, mainly propranolol, is able to delay melanoma progression. Although conclusive evidence is still lacking, current knowledge proposes β-blockers as an opportunity for antitumor treatment in melanoma. Clinical trials are needed in order to prove their claimed efficacy. Graphical Abstract.
Collapse
Affiliation(s)
- Vincenzo De Giorgi
- Division of Dermatology, Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | - Pierangelo Geppetti
- Headache Centre, Careggi University Hospital, Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Chiara Lupi
- Headache Centre, Careggi University Hospital, Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Silvia Benemei
- Headache Centre, Careggi University Hospital, Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
15
|
Dal Monte M, Calvani M, Cammalleri M, Favre C, Filippi L, Bagnoli P. β-Adrenoceptors as drug targets in melanoma: novel preclinical evidence for a role of β 3 -adrenoceptors. Br J Pharmacol 2018; 176:2496-2508. [PMID: 30471093 DOI: 10.1111/bph.14552] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Stress plays a role in tumourigenesis through catecholamines acting at β-adrenoceptors including β1 -, β2 - and β3 -adrenoceptors, and the use of β-adrenoceptor antagonists seems to counteract tumour growth and progression. Preclinical evidence and meta-analysis data demonstrate that melanoma shows a positive response to β-adrenoceptor blockers and in particular to propranolol acting mainly at β1 - and β2 -adrenoceptors. Although evidence suggesting that β3 -adrenoceptors may play a role as a therapeutic target in infantile haemangiomas has been recently reviewed, a comprehensive analysis of the data available from preclinical studies supporting a possible role of β3 -adrenoceptors in melanoma was not available. Here, we review data from the literature demonstrating that propranolol may be effective at counteracting melanoma growth, and we provide preclinical evidence that β3 -adrenoceptors may also play a role in the pathophysiology of melanoma, thus opening the door for further clinical assays trying to explore β3 -adrenoceptor blockers as novel alternatives for its treatment. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
| | - Maura Calvani
- Onco-hematology Unit, Department of Pediatric Oncology, Meyer University Children's Hospital, Florence, Italy
| | | | - Claudio Favre
- Onco-hematology Unit, Department of Pediatric Oncology, Meyer University Children's Hospital, Florence, Italy
| | - Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, Meyer University Children's Hospital, Florence, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Huang Q, Tan Q, Mao K, Yang G, Ma G, Luo P, Wang S, Mei P, Wu F, Xu J, Guo M, LV Z, Fan J, Zhang S, Wang X, Jin Y. The role of adrenergic receptors in lung cancer. Am J Cancer Res 2018; 8:2227-2237. [PMID: 30555740 PMCID: PMC6291649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023] Open
Abstract
Adrenergic receptors (ARs), especially β-ARs, are constitutively expressed in most mammalian cells and are associated with various malignancies including lung cancer. Epidemiologic studies have reported that activation of β-AR signalling promotes the development and progression of lung cancer and that pharmacological interference by β-AR blockers could partially reverse lung cancer progression. In this review, we mainly focus on the role of β-ARs in lung cancer and then reveal the possible application of AR blockers in anti-tumour therapy for lung cancer.
Collapse
Affiliation(s)
- Qi Huang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Kaimin Mao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Guanghai Yang
- Department of Cardiothoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Guangzhou Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Ping Luo
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Peiyuan Mei
- Department of Cardiothoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Juanjuan Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Zhilei LV
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Jinshuo Fan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Shuai Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Xuan Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| |
Collapse
|
17
|
Tu CY, Cheng FJ, Chen CM, Wang SL, Hsiao YC, Chen CH, Hsia TC, He YH, Wang BW, Hsieh IS, Yeh YL, Tang CH, Chen YJ, Huang WC. Cigarette smoke enhances oncogene addiction to c-MET and desensitizes EGFR-expressing non-small cell lung cancer to EGFR TKIs. Mol Oncol 2018; 12:705-723. [PMID: 29570930 PMCID: PMC5928373 DOI: 10.1002/1878-0261.12193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 12/23/2022] Open
Abstract
Cigarette smoking is one of the leading risks for lung cancer and is associated with the insensitivity of non‐small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). However, it remains undetermined whether and how cigarette smoke affects the therapeutic efficacy of EGFR TKIs. In this study, our data showed that chronic exposure to cigarette smoke extract (CSE) or tobacco smoke‐derived carcinogen benzo[α]pyrene, B[α]P, but not nicotine‐derived nitrosamine ketone (NNK), reduced the sensitivity of wild‐type EGFR‐expressing NSCLC cells to EGFR TKIs. Treatment with TKIs almost abolished EGFR tyrosine kinase activity but did not show an inhibitory effect on downstream Akt and ERK pathways in B[α]P‐treated NSCLC cells. CSE and B[α]P transcriptionally upregulate c‐MET and activate its downstream Akt pathway, which is not inhibited by EGFR TKIs. Silencing of c‐MET reduces B[α]P‐induced Akt activation. The CSE‐treated NSCLC cells are sensitive to the c‐MET inhibitor crizotinib. These findings suggest that cigarette smoke augments oncogene addiction to c‐MET in NSCLC cells and that MET inhibitors may show clinical benefits for lung cancer patients with a smoking history.
Collapse
Affiliation(s)
- Chih-Yen Tu
- Department of Life Science, the iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Fang-Ju Cheng
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chuan-Mu Chen
- Department of Life Science, the iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Ling Wang
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yu-Chun Hsiao
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Chia-Hung Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - Te-Chun Hsia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Respiratory Therapy, China Medical University, Taichung, Taiwan.,Hyperbaric Oxygen Therapy Center, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Hao He
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Bo-Wei Wang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - I-Shan Hsieh
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yi-Lun Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yun-Ju Chen
- Department of Medical Research, E-DA Hospital, Kaohsiung, Taiwan.,Department of Biological Science & Technology, I-Shou University, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Research Center for New Drug Development, China Medical University, Taichung, Taiwan
| |
Collapse
|