1
|
Mödl B, Moritsch S, Zwolanek D, Eferl R. Type I and II interferon signaling in colorectal cancer liver metastasis. Cytokine 2023; 161:156075. [PMID: 36323190 DOI: 10.1016/j.cyto.2022.156075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Metastatic colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Traditional chemotherapy extended the lifespan of cancer patients by only a few months, but targeted therapies and immunotherapy prolonged survival and led to long-term remissions in some cases. Type I and II interferons have direct pro-apoptotic and anti-proliferative effects on cancer cells and stimulate anti-cancer immunity. As a result, interferon production by cells in the tumor microenvironment is in the spotlight of immunotherapies as it affects the responses of anti-cancer immune cells. However, promoting effects of interferons on colorectal cancer metastasis have also been reported. Here we summarize our knowledge about pro- and anti-metastatic effects of type I and II interferons in colorectal cancer liver metastasis and discuss possible therapeutic implications.
Collapse
Affiliation(s)
- Bernadette Mödl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Stefan Moritsch
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Daniela Zwolanek
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Robert Eferl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Hashimoto M, Konda JD, Perrino S, Celia Fernandez M, Lowy AM, Brodt P. Targeting the IGF-Axis Potentiates Immunotherapy for Pancreatic Ductal Adenocarcinoma Liver Metastases by Altering the Immunosuppressive Microenvironment. Mol Cancer Ther 2021; 20:2469-2482. [PMID: 34552012 PMCID: PMC8677570 DOI: 10.1158/1535-7163.mct-20-0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/13/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, resistant to chemotherapy and associated with high incidence of liver metastases and poor prognosis. Using murine models of aggressive PDAC, we show here that in mice bearing hepatic metastases, treatment with the IGF-Trap, an inhibitor of type I insulin-like growth factor receptor (IGF-IR) signaling, profoundly altered the local, immunosuppressive tumor microenvironment in the liver, curtailing the recruitment of myeloid-derived suppressor cells, reversing innate immune cell polarization and inhibiting metastatic expansion. Significantly, we found that immunotherapy with anti-PD-1 antibodies also reduced the growth of experimental PDAC liver metastases, and this effect was enhanced when combined with IGF-Trap treatment, resulting in further potentiation of a T-cell response. Our results show that a combinatorial immunotherapy based on dual targeting of the prometastatic immune microenvironment of the liver via IGF blockade, on one hand, and reversing T-cell exhaustion on the other, can provide a significant therapeutic benefit in the management of PDAC metastases.
Collapse
Affiliation(s)
- Masakazu Hashimoto
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - John David Konda
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Stephanie Perrino
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Maria Celia Fernandez
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Andrew M Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Centre at UC San Diego Health, La Jolla, California
| | - Pnina Brodt
- Department of Surgery, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada.
- Department of Medicine, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
- Department of Oncology, McGill University and the Cancer Program of the Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Li Z, Li S, Tao H, Zhan Y, Ni K, Gong J, Li G. Higher titer hepatitis B core antibody predicts a higher risk of liver metastases and worse survival in patients with colorectal cancer. World J Surg Oncol 2021; 19:251. [PMID: 34446030 PMCID: PMC8394189 DOI: 10.1186/s12957-021-02369-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There have been controversial voices on if hepatitis B virus infection decreases the risk of colorectal liver metastases or not. This study aims to the find the association between HBV infection and postoperative survival of colorectal cancer and the risk of liver metastases in colorectal cancer patients. METHODS Patients who underwent curative surgical resection for colorectal cancer between January 2011 and December 2012 were included. Patients were grouped according to anti-HBc. Differences in overall survival, time to progress, and hepatic metastasis-free survival between groups and significant predictors were analyzed. RESULTS Three hundred twenty-seven colorectal cancer patients were comprised of 202 anti-HBc negative cases and 125 anti-HBc positive cases, and anti-HBc positive cases were further divided into high-titer anti-HBc group (39) and low-titer anti-HBc group (86). The high-titer anti-HBc group had significantly worse overall survival (5-Yr, 65.45% vs. 80.06%; P < .001), time to progress (5-Yr, 44.26% vs. 84.73%; P < .001), and hepatic metastasis-free survival (5-Yr, 82.44% vs. 94.58%; P = .029) than the low-titer group. Multivariate model showed anti-HBc ≥ 8.8 S/CO was correlated with poor overall survival (HR, 3.510; 95% CI, 1.718-7.17; P < .001), time to progress (HR, 5.747; 95% CI, 2.789-11.842; P < .001), and hepatic metastasis-free survival (HR, 3.754; 95% CI, 1.054-13.369; P = .041) in the anti-HBc positive cases. CONCLUSIONS Higher titer anti-HBc predicts a potential higher risk of liver metastases and a worse survival in anti-HBc positive colorectal cancer patients.
Collapse
Affiliation(s)
- Ziyao Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, No. 190 Jieyuan street, Hongqiao District, Tianjin, 300121, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shaofei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, No. 190 Jieyuan street, Hongqiao District, Tianjin, 300121, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Hangbo Tao
- Department of Colorectal Surgery, Tianjin Union Medical Center, No. 190 Jieyuan street, Hongqiao District, Tianjin, 300121, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yixiang Zhan
- Department of Colorectal Surgery, Tianjin Union Medical Center, No. 190 Jieyuan street, Hongqiao District, Tianjin, 300121, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Kemin Ni
- Department of Colorectal Surgery, Tianjin Union Medical Center, No. 190 Jieyuan street, Hongqiao District, Tianjin, 300121, China.,School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guoxun Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, No. 190 Jieyuan street, Hongqiao District, Tianjin, 300121, China.
| |
Collapse
|
4
|
Physical activity and mortality in patients with colorectal cancer: a meta-analysis of prospective cohort studies. Eur J Cancer Prev 2021; 29:15-26. [PMID: 30964753 DOI: 10.1097/cej.0000000000000511] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The association between physical activity (PA) and colorectal cancer (CRC) patients' survival is inconsistent. We conducted a systematic review and meta-analysis to summarize published articles on this issue. We performed a comprehensive search of the PubMed, Embase, and Web of Science databases for relevant articles through 28 February 2018. The summary hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using a random-effects model. Eighteen prospective cohort studies were included in the meta-analysis, with a total of 9257 cases of total mortality (TM) and 4015 cases of colorectal cancer-specific mortality (CRCSM) among 31 873 CRC survivors and 557 150 general populations. Among CRC survivors, the highest versus the lowest levels of prediagnosis PA showed decreased risks of TM (summary HR = 0.81, 95% CI: 0.76-0.87, I = 1.8%) and CRCSM (summary HR = 0.85, 95% CI: 0.77-0.98, I = 0), respectively. Significant risk reductions for TM and CRCSM were also demonstrated for postdiagnosis PA (HR = 0.63, 95% CI: 0.54-0.74; and HR = 0.64, 95% CI: 0.47-0.88, respectively). The inverse association between prediagnosis PA and cancer mortality was more pronounced for colon cancer than that for rectal cancer (P = 0.08). The summary HRs (95% CIs) of TM were 0.89 (0.83-0.97) and 0.79 (0.69-0.90) per 10 metabolic equivalent task-h/week increase in prediagnosis and postdiagnosis PA, respectively. Our meta-analysis provides comprehensive evidence that PA performed before or after cancer diagnosis is related to reduced mortality risk among CRC survivors.
Collapse
|
5
|
Bustamante P, Piquet L, Landreville S, Burnier JV. Uveal melanoma pathobiology: Metastasis to the liver. Semin Cancer Biol 2020; 71:65-85. [PMID: 32450140 DOI: 10.1016/j.semcancer.2020.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Uveal melanoma (UM) is a type of intraocular tumor with a propensity to disseminate to the liver. Despite the identification of the early driver mutations during the development of the pathology, the process of UM metastasis is still not fully comprehended. A better understanding of the genetic, molecular, and environmental factors participating to its spread and metastatic outgrowth could provide additional approaches for UM treatment. In this review, we will discuss the advances made towards the understanding of the pathogenesis of metastatic UM, summarize the current and prospective treatments, and introduce some of the ongoing research in this field.
Collapse
Affiliation(s)
- Prisca Bustamante
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Experimental Pathology Unit, Department of Pathology, McGill University, Montréal, Canada
| | - Léo Piquet
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Quebec City, Canada; CUO-Recherche and Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Quebec City, Canada; Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Canada
| | - Solange Landreville
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Quebec City, Canada; CUO-Recherche and Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Quebec City, Canada; Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Experimental Pathology Unit, Department of Pathology, McGill University, Montréal, Canada; Gerald Bronfman Department Of Oncology, McGill University, Montréal, Canada.
| |
Collapse
|
6
|
Chen YM, Qi S, Perrino S, Hashimoto M, Brodt P. Targeting the IGF-Axis for Cancer Therapy: Development and Validation of an IGF-Trap as a Potential Drug. Cells 2020; 9:cells9051098. [PMID: 32365498 PMCID: PMC7290707 DOI: 10.3390/cells9051098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The insulin-like growth factor (IGF)-axis was implicated in cancer progression and identified as a clinically important therapeutic target. Several IGF-I receptor (IGF-IR) targeting drugs including humanized monoclonal antibodies have advanced to phase II/III clinical trials, but to date, have not progressed to clinical use, due, at least in part, to interference with insulin receptor signaling and compensatory signaling by the insulin receptor (IR) isoform A that can bind IGF-II and initiate mitogenic signaling. Here we briefly review the current state of IGF-targeting biologicals, discuss some factors that may be responsible for their poor performance in the clinic and outline the stepwise bioengineering and validation of an IGF-Trap—a novel anti-cancer therapeutic that could bypass these limitations. The IGF-Trap is a heterotetramer, consisting of the entire extracellular domain of the IGF-IR fused to the Fc portion of human IgG1. It binds human IGF-I and IGF-II with a three-log higher affinity than insulin and could inhibit IGF-IR driven cellular functions such as survival, proliferation and invasion in multiple carcinoma cell models in vitro. In vivo, the IGF-Trap has favorable pharmacokinetic properties and could markedly reduce metastatic outgrowth of colon and lung carcinoma cells in the liver, outperforming IGF-IR and ligand-binding monoclonal antibodies. Moreover, IGF-Trap dose-response profiles correlate with their bio-availability profiles, as measured by the IGF kinase receptor-activation (KIRA) assay, providing a novel, surrogate biomarker for drug efficacy. Our studies identify the IGF-Trap as a potent, safe, anti-cancer therapeutic that could overcome some of the obstacles encountered by IGF-targeting biologicals that have already been evaluated in clinical settings.
Collapse
Affiliation(s)
- Yinhsuan Michely Chen
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Shu Qi
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Stephanie Perrino
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Masakazu Hashimoto
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Pnina Brodt
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence: ; Tel.: +1-514-934-1934
| |
Collapse
|
7
|
Roy V, Magne B, Vaillancourt-Audet M, Blais M, Chabaud S, Grammond E, Piquet L, Fradette J, Laverdière I, Moulin VJ, Landreville S, Germain L, Auger FA, Gros-Louis F, Bolduc S. Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6051210. [PMID: 32352002 PMCID: PMC7178531 DOI: 10.1155/2020/6051210] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.
Collapse
Affiliation(s)
- Vincent Roy
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Brice Magne
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Maude Vaillancourt-Audet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Mathieu Blais
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Stéphane Chabaud
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Emil Grammond
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Léo Piquet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Isabelle Laverdière
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval and CHU de Québec-Université Laval Research Center, Oncology Division, Québec, QC, Canada
| | - Véronique J. Moulin
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Solange Landreville
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François A. Auger
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François Gros-Louis
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Stéphane Bolduc
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Piquet L, Dewit L, Schoonjans N, Millet M, Bérubé J, Gerges PRA, Bordeleau F, Landreville S. Synergic Interactions Between Hepatic Stellate Cells and Uveal Melanoma in Metastatic Growth. Cancers (Basel) 2019; 11:cancers11081043. [PMID: 31344830 PMCID: PMC6721369 DOI: 10.3390/cancers11081043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UM) is a malignant intraocular tumor that spreads to the liver in half of the cases. Since hepatic cells could play a role in the therapeutic resistance of metastatic UM, the purpose of our study was to investigate the pro-invasive role of hepatic stellate cells (HSteCs) in metastatic UM at the micro- and macro-metastatic stages. We first performed an immunostaining with the alpha-smooth muscle actin (αSMA) to localize activated HSteCs in UM liver macro-metastases from four patients. Their accumulation of collagen was assessed with Masson’s Trichrome stain. Next, we inoculated metastatic UM cells alone or with human HSteCs in triple-immunodeficient mice, in order to determine if HSteCs are recruited as early as the micro-metastatic stage. The growth of metastatic foci was imaged in the liver by ex vivo fluorescence imaging. Histological analyses were performed with Masson’s Trichrome and Picrosirius Red stains, and antibodies against Melan-A and αSMA. The collagen content was measured in xenografts by quantitative polarization microscopy. In patient hepatectomy samples, activated HSteCs and their pathological matrix were localized surrounding the malignant lesions. In the mouse xenograft model, the number of hepatic metastases was increased when human HSteCs were co-inoculated. Histological analyses revealed a significant recruitment of HSteCs near the micro/macrolesions, and an increase in fibrillar collagen production. Our results show that HSteCs can provide a permissive microenvironment and might increase the therapeutic resistance of metastatic UM.
Collapse
Affiliation(s)
- Léo Piquet
- Faculté de médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de recherche sur le cancer de l'Université Laval, Quebec City, QC G1R 3S3, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Louise Dewit
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de recherche sur le cancer de l'Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Nathan Schoonjans
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de recherche sur le cancer de l'Université Laval, Quebec City, QC G1R 3S3, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Martial Millet
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de recherche sur le cancer de l'Université Laval, Quebec City, QC G1R 3S3, Canada
| | - Julie Bérubé
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Peter R A Gerges
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
| | - François Bordeleau
- Faculté de médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de recherche sur le cancer de l'Université Laval, Quebec City, QC G1R 3S3, Canada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Solange Landreville
- Faculté de médecine, Université Laval, Quebec City, QC G1V 0A6, Canada.
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada.
- Centre de recherche sur le cancer de l'Université Laval, Quebec City, QC G1R 3S3, Canada.
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada.
| |
Collapse
|
9
|
Vaniotis G, Moffett S, Sulea T, Wang N, Elahi SM, Lessard E, Baardsnes J, Perrino S, Durocher Y, Frystyk J, Massie B, Brodt P. Enhanced anti-metastatic bioactivity of an IGF-TRAP re-engineered to improve physicochemical properties. Sci Rep 2018; 8:17361. [PMID: 30478273 PMCID: PMC6255772 DOI: 10.1038/s41598-018-35407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/07/2018] [Indexed: 01/22/2023] Open
Abstract
The insulin-like growth factor (IGF) axis has been implicated in the progression of malignant disease and identified as a clinically important therapeutic target. Several IGF-1 receptor (IGF-1R) targeting drugs including humanized monoclonal antibodies have advanced to phase II/III clinical trials, but to date, have not progressed to clinical use, due, at least in part, to interference with insulin receptor signalling. We previously reported on the production of a soluble fusion protein consisting of the extracellular domain of human IGF-1R fused to the Fc portion of human IgG1 (first generation IGF-TRAP) that bound human IGF-1 and IGF-2 with a 3 log higher affinity than insulin. We showed that the IGF-TRAP had potent anti-cancer activity in several pre-clinical models of aggressive carcinomas. Here we report on the re-engineering of the IGF-TRAP with the aim of improving physicochemical properties and suitability for clinical applications. We show that cysteine-serine substitutions in the Fc hinge region of IGF-TRAP eliminated high-molecular-weight oligomerized species, while a further addition of a flexible linker, not only improved the pharmacokinetic profile, but also enhanced the therapeutic profile of the IGF-TRAP, as evaluated in an experimental colon carcinoma metastasis model. Dose-response profiles of the modified IGF-TRAPs correlated with their bio-availability profiles, as measured by the IGF kinase-receptor-activation (KIRA) assay, providing a novel, surrogate biomarker for drug efficacy. This study provides a compelling example of structure-based re-engineering of Fc-fusion-based biologics for better manufacturability that also significantly improved pharmacological parameters. It identifies the re-engineered IGF-TRAP as a potent anti-cancer therapeutic.
Collapse
Affiliation(s)
- George Vaniotis
- Department of Surgery, McGill University, Montreal Quebec, Canada
| | - Serge Moffett
- Department of Surgery, McGill University, Montreal Quebec, Canada
| | - Traian Sulea
- Institute of Parasitology, McGill University, Montreal Quebec, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Ni Wang
- Department of Surgery, McGill University, Montreal Quebec, Canada
| | - S Mehdy Elahi
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Etienne Lessard
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | | | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Jan Frystyk
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bernard Massie
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Pnina Brodt
- Department of Surgery, McGill University, Montreal Quebec, Canada.
- Department of Medicine, McGill University, Montreal Quebec, Canada.
- Department of Oncology, McGill University, Montreal Quebec, Canada.
- Cancer Research Program, Research Institute of the McGill University Health Center, Montreal Quebec, Canada.
| |
Collapse
|
10
|
Shen Y, Wang C, Ren Y, Ye J. A comprehensive look at the role of hyperlipidemia in promoting colorectal cancer liver metastasis. J Cancer 2018; 9:2981-2986. [PMID: 30123367 PMCID: PMC6096362 DOI: 10.7150/jca.25640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most malignant cancers, and it tends to migrate to the liver and has a high mortality rate. Several mechanisms behind the metastasis of CRC have been identified, including hyperlipidemia. For example, hyperlipidemia can lead to enhanced stemness and neutrophil infiltration, which increases CRC metastasis. There are three primary aspects to the relationship between hyperlipidemia and CRC metastasis: hyperlipidemia (1) promotes the initial metastatic properties of CRC, (2) stimulates CRC cells to leave the vasculature, and (3) facilitates the development of CRC metastasis. In this study, we provide a comprehensive overview of the role that hyperlipidemia played in CRC metastasis to help reduce the mortality associated with CRC metastasis from the standpoint of metabolic. We also review cancer metastasis.
Collapse
Affiliation(s)
- Yimin Shen
- 1 Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Caihua Wang
- 2 Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuezhong Ren
- 1 Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jun Ye
- 2 Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
11
|
Rayes RF, Milette S, Fernandez MC, Ham B, Wang N, Bourdeau F, Perrino S, Yakar S, Brodt P. Loss of neutrophil polarization in colon carcinoma liver metastases of mice with an inducible, liver-specific IGF-I deficiency. Oncotarget 2018; 9:15691-15704. [PMID: 29644002 PMCID: PMC5884657 DOI: 10.18632/oncotarget.24593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/19/2018] [Indexed: 11/25/2022] Open
Abstract
The growth of cancer metastases in the liver depends on a permissive interaction with the hepatic microenvironment and neutrophils can contribute to this interaction, either positively or negatively, depending on their phenotype. Here we investigated the role of IGF-I in the control of the tumor microenvironment in the liver, using mice with a conditional, liver-specific, IGF-I deficiency (iLID) induced by a single tamoxifen injection. In mice that had a sustained (3 weeks) IGF-I deficiency prior to the intrasplenic/portal inoculation of colon carcinoma MC-38 cells, we observed an increase in neutrophil accumulation in the liver relative to controls. However, unlike controls, these neutrophils did not acquire the (anti-inflammatory) tumor-promoting phenotype, as evidenced by retention of high ICAM-1 expression and nitric oxide production and low CXCR4, CCL5, and VEGF expression and arginase production, all characteristic of the (pro-inflammatory) phenotype. This coincided with an increase in apoptotic tumor cells and reduced metastasis. Neutrophils isolated from these mice also had reduced IGF-IR expression levels. These changes were not observed in iLID mice with a short-term (2 days) IGF-I depletion, despite a 70% reduction in their circulating IGF-I levels, indicating that a sustained IGF-I deficiency was necessary to alter the neutrophil phenotype. Similar results were obtained with the highly metastatic Lewis lung carcinoma subline H-59 cells and in mice injected with an IGF-Trap that blocks IGF-IR signaling by reducing ligand bioavailability. Our results implicate the IGF axis in neutrophil polarization and the induction of a pro-metastatic microenvironment in the liver.
Collapse
Affiliation(s)
- Roni F. Rayes
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Simon Milette
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Maria Celia Fernandez
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Boram Ham
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Ni Wang
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - France Bourdeau
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Stephanie Perrino
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Shoshana Yakar
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Pnina Brodt
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
- Department of Medicine, McGill University and the McGill University Health Centre, Montréal, QC, Canada
- Department of Oncology, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
12
|
Brown JC, Rickels MR, Troxel AB, Zemel BS, Damjanov N, Ky B, Rhim AD, Rustgi AK, Courneya KS, Schmitz KH. Dose-response effects of exercise on insulin among colon cancer survivors. Endocr Relat Cancer 2018; 25:11-19. [PMID: 29018055 PMCID: PMC5736434 DOI: 10.1530/erc-17-0377] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022]
Abstract
Physical activity is associated with a lower risk of disease recurrence among colon cancer survivors. The pathways through which physical activity may alter disease outcomes are unknown, but may include changes in metabolic growth factors, such as insulin. Between January 2015 and August 2015, 39 stage I-III colon cancer survivors were randomized to one of the three groups: usual care control, 150 min/week of aerobic exercise (low-dose) and 300 min/week of aerobic exercise (high-dose) for six months. The pre-specified key metabolic growth factor outcome was fasting insulin. Insulin resistance was quantified using the homeostatic model assessment. Mean age was 56.5 ± 10.0 years, 51% had stage III disease, 72% were treated with chemotherapy and the mean time since finishing treatment was 10.9 ± 6.1 months. Over six months, the low-dose group completed 141.5 ± 9.9 min/week of aerobic exercise, and the high-dose group completed 247.2 ± 10.7 min/week of aerobic exercise. Fasting insulin concentrations decreased 7.4 ± 9.4 pmol/L in the control group, 28.0 ± 8.3 pmol/L in the low-dose group and 20.7 ± 9.3 pmol/L in the high-dose group (nonlinear Ptrend = 0.042). Insulin resistance decreased 0.11 ± 0.20 in the control group, 0.63 ± 0.17 in the low-dose group and 0.43 ± 0.19 in the high-dose group (nonlinear Ptrend = 0.012). Aerobic exercise reduces insulin concentrations and insulin resistance among patients with stage I-III colon cancer. Prescribing 150 min/week of aerobic exercise may be sufficient for reducing insulin concentrations and insulin resistance, which may partially mediate the relationship between physical activity and colon cancer prognosis.
Collapse
Affiliation(s)
| | | | | | - Babette S Zemel
- University of PennsylvaniaPhiladelphia, Pennsylvania, USA
- Childrens Hospital of PhiladelphiaPhiladelphia, Pennsylvania, USA
| | | | - Bonnie Ky
- University of PennsylvaniaPhiladelphia, Pennsylvania, USA
| | | | - Anil K Rustgi
- University of PennsylvaniaPhiladelphia, Pennsylvania, USA
| | | | | |
Collapse
|
13
|
Milette S, Sicklick JK, Lowy AM, Brodt P. Molecular Pathways: Targeting the Microenvironment of Liver Metastases. Clin Cancer Res 2017; 23:6390-6399. [PMID: 28615370 PMCID: PMC5668192 DOI: 10.1158/1078-0432.ccr-15-1636] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/27/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
Curative treatment for metastatic solid cancers remains elusive. The liver, which is nourished by a rich blood supply from both the arterial and portal venous systems, is the most common site of visceral metastases, particularly from cancers arising in the gastrointestinal tract, with colorectal cancer being the predominant primary site in Western countries. A mounting body of evidence suggests that the liver microenvironment (LME) provides autocrine and paracrine signals originating from both parenchymal and nonparenchymal cells that collectively create both pre- and prometastatic niches for the development of hepatic metastases. These resident cells and their molecular mediators represent potential therapeutic targets for the prevention and/or treatment of liver metastases (LM). This review summarizes: (i) the current therapeutic options for treating LM, with a particular focus on colorectal cancer LM; (ii) the role of the LME in LM at each of its phases; (iii) potential targets in the LME identified through preclinical and clinical investigations; and (iv) potential therapeutic approaches for targeting elements of the LME before and/or after the onset of LM as the basis for future clinical trials. Clin Cancer Res; 23(21); 6390-9. ©2017 AACR.
Collapse
Affiliation(s)
- Simon Milette
- Departments of Surgery, Medicine, and Oncology McGill University and the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jason K. Sicklick
- Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Andrew M. Lowy
- Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Pnina Brodt
- Departments of Surgery, Medicine, and Oncology McGill University and the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|